A Bingham Plastic Fluid Solver for Turbulent Flow of Dense Muddy Sediment Mixtures
Abstract
:1. Introduction
2. Mathematical Formulation
3. Numerical Implementation with OpenFOAM
4. Results and Discussion
4.1. Viscoplastic Flow around a Sphere
4.2. Turbulence in Single-Phase Oscillatory Boundary Layer
4.3. Two-Phase Flow in Oscillatory Boundary Layer
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fredsøe, J.; Deigaard, R. Mechanics of Coastal Sediment Transport; WORLD SCIENTIFIC: Singapore, 1992; Volume 3. [Google Scholar] [CrossRef]
- Nielsen, P. Coastal and Estuarine Processes; WORLD SCIENTIFIC: Singapore, 2009; Volume 29. [Google Scholar] [CrossRef]
- Hoefel, F.; Elgar, S. Wave-Induced Sediment Transport and Sandbar Migration. Science 2003, 299, 1885–1887. [Google Scholar] [CrossRef] [PubMed]
- Hsu, T.J.; Hanes, D.M. Effects of wave shape on sheet flow sediment transport. J. Geophys. Res. C Ocean. 2004, 109, 1–15. [Google Scholar] [CrossRef]
- Peng, Y.; Yu, Q.; Du, Z.; Wang, L.; Wang, Y.; Gao, S. The dynamics of wave and current supported gravity flows: Evaluation of drag coefficient and bulk Richardson number. Mar. Geol. 2022, 454, 106947. [Google Scholar] [CrossRef]
- Lanckriet, T.; Puleo, J.; Masselink, G.; Turner, I.; Conley, D.; Blenkinsopp, C.; Russell, P. Comprehensive Field Study of Swash-Zone Processes. II: Sheet Flow Sediment Concentrations during Quasi-Steady Backwash. J. Waterw. Port Coast. Ocean. Eng. 2014, 140, 29–42. [Google Scholar] [CrossRef]
- Aagaard, T.; Black, K.P.; Greenwood, B. Cross-shore suspended sediment transport in the surf zone: A field-based parameterization. Mar. Geol. 2002, 185, 283–302. [Google Scholar] [CrossRef]
- Huang, X.; Garcia, M.H. Modeling of non-hydroplaning mudflows on continental slopes. Marine Geology 1999, 154, 131–142. [Google Scholar] [CrossRef]
- Mei, C.C.; Liu, K.F. A Bingham-plastic model for a muddy seabed under long waves. J. Geophys. Res. C Ocean. 1987, 92, 14581–14594. [Google Scholar] [CrossRef]
- Sahin, C.; Safak, I.; Sheremet, A.; Mehta, A.J. Observations on cohesive bed reworking by waves: Atchafalaya Shelf, Louisiana. J. Geophys. Res. C Ocean. 2012, 117, 1–14. [Google Scholar] [CrossRef]
- Komatina, D.; Jovanovic, M. Experimental study of steady and unsteady free surface flows with water-clay mixtures. J. Hydraul. Res. 1997, 35, 579–590. [Google Scholar] [CrossRef]
- Safak, I.; Sheremet, A.; Allison, M.A.; Hsu, T.J. Bottom turbulence on the muddy Atchafalaya Shelf, Louisiana, USA. J. Geophys. Res. C Ocean. 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Delisle, M.P.C.; Kim, Y.; Mieras, R.S.; Gallien, T.W. Numerical investigation of sheet flow driven by a near-breaking transient wave using SedFoam. Eur. J. Mech.-B/Fluids 2022, 96, 51–64. [Google Scholar] [CrossRef]
- Cheng, Z.; Yu, X.; Hsu, T.J.; Balachandar, S. A numerical investigation of fine sediment resuspension in the wave boundary layer-Uncertainties in particle inertia and hindered settling. Comput. Geosci. 2015, 83, 176–192. [Google Scholar] [CrossRef]
- Cheng, Z.; Yu, X.; Hsu, T.J.; Ozdemir, C.E.; Balachandar, S. On the transport modes of fine sediment in the wave boundary layer due to resuspension/deposition: A turbulence-resolving numerical investigation. J. Geophys. Res. C Ocean. 2015, 120, 1918–1936. [Google Scholar] [CrossRef]
- Mathieu, A.; Cheng, Z.; Chauchat, J.; Bonamy, C.; Hsu, T.J. Numerical investigation of unsteady effects in oscillatory sheet flows. J. Fluid Mech. 2022, 943, A7. [Google Scholar] [CrossRef]
- Partheniades, E. Erosion and Deposition of Cohesive Soils. J. Hydraul. Eng. 1965, 91, 105–139. [Google Scholar] [CrossRef]
- Parchure, T.M.; Mehta, A.J. Erosion of soft cohesive sediment deposits. J. Hydraul. Eng. 1985, 111, 1308–1326. [Google Scholar] [CrossRef]
- Ozdemir, C.; Hsu, T.J.; Balachandar, S. A numerical investigation of lutocline dynamics and saturation of fine sediment in the oscillatory boundary layer. J. Geophys. Res. C Ocean. 2011, 116, 1–21. [Google Scholar] [CrossRef]
- Ozdemir, C.E.; Hsu, T.J.; Balachandar, S. A numerical investigation of fine particle laden flow in an oscillatory channel: The role of particle-induced density stratification. J. Fluid Mech. 2010, 665, 1–45. [Google Scholar] [CrossRef]
- Hsu, T.J.; Jenkins, J.; Liu, P. On two-phase sediment transport: Dilute flow. J. Geophys. Res. 2003, 108, 1–14. [Google Scholar] [CrossRef]
- Chauchat, J.; Cheng, Z.; Nagel, T.; Bonamy, C.; Hsu, T.J. SedFoam-2.0: A 3-D two-phase flow numerical model for sediment transport. Geosci. Model Dev. 2017, 10, 4367–4392. [Google Scholar] [CrossRef]
- Hamedi, N.; Westerberg, L.G. On the Interaction of Side-By-Side Circular Cylinders in Viscoplastic Fluids. Fluids 2019, 4, 93. [Google Scholar] [CrossRef]
- Gavrilov, A.; Finnikov, K.; Podryabinkin, E. Modeling of steady Herschel–Bulkley fluid flow over a sphere. J. Eng. Thermophys. 2017, 26, 197–215. [Google Scholar] [CrossRef]
- Winterwerp, J. On the flocculation and settling velocity of estuarine mud. Contiental Shelf Res. 2002, 22, 1339–1360. [Google Scholar] [CrossRef]
- Lee, B.J.; Toorman, E.A.; Molz, F.J.; Wang, J. A two-class population balance equation yielding bimodal flocculation of marine or estuarine sediments. Water Res. 2011, 45, 2131–2145. [Google Scholar] [CrossRef] [PubMed]
- Maerz, J.; Verney, R.; Wirtz, K.; Feudel, U. Modeling flocculation processes: Intercomparison of a size class-based model and a distribution-based model. Continental Shelf Res. 2011, 31, S84–S93. [Google Scholar] [CrossRef]
- Richardson, J.; Zaki, W. Sedimentation and fluidisation: Part I. Chem. Eng. Res. Des. 1997, 75, S82–S100. [Google Scholar] [CrossRef]
- Jackson, R. Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid. Chem. Eng. Sci. 1997, 52, 2457–2469. [Google Scholar] [CrossRef]
- Greenshields, C.J. OpenFoam Programmers’s Guide; CFD Direct: Boston, MA, USA, 2015. [Google Scholar]
- Patankar, S. Numerical Heat Transfer and Fluid Flow; Series in Computational Methods in Mechanics and Thermal Sciences; Taylor & Francis: Abingdon, UK, 1980. [Google Scholar]
- Kärrholm, F.P. Rhie-Chow Interpolation in Openfoam; Department of Applied Mechanics, Chalmers University of Technology: Goteborg, Sweden, 2006. [Google Scholar]
- Issa, R. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 1986, 62, 40–65. [Google Scholar] [CrossRef]
- Mazzuoli, M.; Vittori, G. Turbulent spots in an oscillatory flow over a rough wall. Eur. J. Mech.-B/Fluids 2019, 78, 161–168. [Google Scholar] [CrossRef]
- Vittori, G.; Blondeaux, P.; Mazzuoli, M.; Simeonov, J.; Calantoni, J. Sediment transport under oscillatory flows. Int. J. Multiph. Flow 2020, 133, 103454. [Google Scholar] [CrossRef]
- Costamagna, P.; Vittori, G.; Blondeaux, P. Coherent structures in oscillatory boundary layers. J. Fluid Mech. 2003, 474, 1–33. [Google Scholar] [CrossRef]
- Jensen, B.; Sumer, B.; Fredsoe, J. Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 1989, 206, 265–297. [Google Scholar] [CrossRef]
- Hino, M.; Sawamoto, M.; Takasu, S. Experiments on transition to turbulence in an oscillatory pipe flow. J. Fluid Mech. 1976, 75, 193–207. [Google Scholar] [CrossRef]
- Sarpkaya, T. Coherent structures in oscillatory boundary layers. J. Fluid Mech. 1993, 253, 105–140. [Google Scholar] [CrossRef]
- Mazzuoli, M.; Vittori, G.; Blondeaux, P. Turbulent spots in oscillatory boundary layers. J. Fluid Mech. 2011, 685, 365–376. [Google Scholar] [CrossRef]
- Yang, G.Y.; Zhang, Q.H. Vertical Diffusion Coefficient with Stratification Effect for Silty Sediment Suspension Under Waves. China Ocean. Eng. 2023, 37, 323–332. [Google Scholar] [CrossRef]
Case | Bn | Re | V (mm/s) | D (mm) |
---|---|---|---|---|
A | 1 | 0.1 | 2 | 0.172 |
B | 100 | 1.0 | 0.643 | 5.6 |
C | 1 | 100 | 64.3 | 5.6 |
1 | 0.1 | 0.5 | 0 | 0 | 1 | 0 | 0 |
Case | Ri | Vs | T | ||
---|---|---|---|---|---|
Case 2 | 1000 | 0.56 m/s | 10 s | ||
Case 3 | 1000 | 0.56 m/s | 10 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, I.; Simeonov, J.; Bateman, S.; Keane, N. A Bingham Plastic Fluid Solver for Turbulent Flow of Dense Muddy Sediment Mixtures. Fluids 2023, 8, 171. https://doi.org/10.3390/fluids8060171
Adams I, Simeonov J, Bateman S, Keane N. A Bingham Plastic Fluid Solver for Turbulent Flow of Dense Muddy Sediment Mixtures. Fluids. 2023; 8(6):171. https://doi.org/10.3390/fluids8060171
Chicago/Turabian StyleAdams, Ian, Julian Simeonov, Samuel Bateman, and Nathan Keane. 2023. "A Bingham Plastic Fluid Solver for Turbulent Flow of Dense Muddy Sediment Mixtures" Fluids 8, no. 6: 171. https://doi.org/10.3390/fluids8060171
APA StyleAdams, I., Simeonov, J., Bateman, S., & Keane, N. (2023). A Bingham Plastic Fluid Solver for Turbulent Flow of Dense Muddy Sediment Mixtures. Fluids, 8(6), 171. https://doi.org/10.3390/fluids8060171