Current State of Research on the Mechanism of Cavitation Effects in the Treatment of Liquid Petroleum Products—Review and Proposals for Further Research
Abstract
:1. Introduction
1.1. Cavitation
- The hydrodynamic cavitation;
- Acoustic cavitation;
- Optical cavitation;
- Particle cavitation.
1.1.1. Acoustic Cavitation
1.1.2. Hydrodynamic Cavitation
1.1.3. Optical and Particle Cavitation
1.2. The Effects of Cavitation
1.3. Cavitation Mechanism
Cavitation Parameters
- Non-cavitation flow;
- Limited cavitation;
- Evolving cavitation;
- Supercavitation.
1.4. The Need for a Review
2. Materials and Methods
3. Results
3.1. Reduction of Oil Viscosity
3.1.1. Mechanism of Viscosity Reduction
3.1.2. Reduction of Paraffin Content
3.1.3. Asphaltene Content Reduction
3.1.4. Viscosity and Cavitation
- In each study, different combinations of feedstock and reagent are used. Each reagent has a different effect on the fractional composition of the oil. Since published papers mainly present results of the combined effect of cavitation and reagent on oil, it is difficult to evaluate the efficiency of reagent and cavitation separately.
- The use of different grades of oil can have a significant impact on the final result. Both the fractional composition of the oil and the initial rheological characteristics of the feedstock may have an influence. For example, the article [58] states that paraffinic oil was better affected by cavitation. Organic impurities are an integral part of petroleum products. In general, oil consists of carbon, hydrogen, sulfur, oxygen, and nitrogen. In small doses, the oil may contain various metals, mostly nickel and vanadium, as well as a large number of impurities and gas inclusions that affect the threshold of cavitation creation and its intensity. The majority of authors do not take into consideration the composition of the hydrocarbon raw materials under treatment. They often ignore several impurities and other chemical compounds and evaluate only the target fractions. This approach does not allow estimating and comparing results obtained by different teams of scientists because both distorted cavitation characteristics due to ignorance of impurities and gas inclusions and oil fraction composition could have influenced the final result.
- Adding a reagent reduces the initial viscosity of the product. Even if the viscosity of a mixture of reagent and oil is taken for subsequent experimental studies, this will also distort the final results. A change in rheological qualities while maintaining the characteristics of the cavitation generator affects the threshold for the creation of cavitation and its intensity.
3.2. Oil Desulphurization
Influence of the Initial Sulphur Concentration on the Degree of Removal
3.3. Increasing the Light Yield of Fractions
3.4. Influence of Liquid Parameters on Cavitation Rate
4. Discussion
4.1. Aspect of Hydrocarbon Fractional Composition
4.2. Cavitation Aspect
4.3. Efficiency Aspect of Raw Material Treatment
4.4. Recommendations for Further Studies of the Amount of Cavitation on the Fractional Composition of Oil
4.5. Recommendations for Finding New Expressions of the Cavitation Number
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pirsol, I. Cavitation; Epstein, L.A., Ed.; Zhuravleva, Y.F., Translator; Mir, SSSR: Moscow, Russia, 1975; p. 95. [Google Scholar]
- Taseidifar, M.; Antony, J.J.; Pashley, R. Prevention of Cavitation in Propellers. Substantia 2021, 4, 109–117. [Google Scholar] [CrossRef]
- Yilmaz, N.; Dong, X.; Aktas, B.; Yang, C.; Atlar, M.; Fitzsimmons, P.A. Experimental and numerical investigations of tip vortex cavitation for the propeller of a research vessel, «The Princess Royal». Ocean. Eng. 2020, 215, 107881. [Google Scholar] [CrossRef]
- Albanese, L.; Ciriminna, R.; Meneguzzo, F.; Pagliaro, M. Beer-brewing powered by controlled hydrodynamic cavitation: Theory and real-scale experiments. J. Clean. Production 2016, 142, 1457–1470. [Google Scholar] [CrossRef]
- Dular, M.; Griessler-Bulc, T.; Gutierrez-Aguirre, I.; Heath, E.; Kosjek, T.; Klemenčič, A.K.; Oder, M.; Petkovšek, M.; Rački, N.; Ravnikar, M. Use of hydrodynamic cavitation in (waste) water treatment. Ultrasonic. Sonochem. 2018, 29, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, M.; Sozer, C.; Alcan, G.; Unel, M.; Ekici, S.; Uvet, H.; Koşar, A. Biomedical device prototype based on small scale hydrodynamic cavitation. AIP Adv. 2018, 8, 035108. [Google Scholar] [CrossRef]
- Stebeleva, O.P.; Minakov, A.V. Application of Cavitation in Oil Processing: An Overview of Mechanisms and Results of Treatment. ACS Omega 2021, 6, 31411–31420. [Google Scholar] [CrossRef]
- Díaz Alvarez, J.C.; Rey, R.M.; Patiño Reyes, E.J.; Acosta, R.B. Estudio experimental sobre la eficiencia de un tratamiento de ultrasonido en un sistema de flujo continuo para la reducción de viscosidad de crudo pesado. Rev. ION 2013, 26, 47–63. [Google Scholar]
- Najafi, I.; Mousavi, S.M.R.; Ghazanfari, M.H.; Ramazani, A.; Kharrat, R.; Ghotbi, C.; Amani, M. Quantifying the role of ultrasonic wave radiation on kinetics of asphaltene aggregation in a toluene–pentane mixture. Pet. Sci. Technol. 2011, 29, 966–974. [Google Scholar] [CrossRef]
- Ivanitsky, G.K. Numerical modeling of bubble cluster behavior in hydrodynamic cavitation processes. Collect. Sci. Artic. Mod. Sci. 2017, 2, 52–58. [Google Scholar] [CrossRef]
- Yakimenko, K.Y.; Vengerov, A.A.; Brand, A.E. Application of hydrodynamic cavitation processing technology of high-viscosity oils in order to increase the efficiency of transportation. Fundam. Issled. 2016, 5, 531–536. (In Russian) [Google Scholar]
- Nurullaev, V.H. Conditions for the formation of cavitation zones and their effects on the physico-chemical characteristics of oils. Transp. I Hran. Nefteprod. I Uglevodorodnogo Syr’ya 2017, 1, 38–42. (In Russian) [Google Scholar]
- Wang, Z.; Liu, X.; Zhang, H.; Wang, Y.; Xu, Y.; Peng, B.; Liu, Y. Modeling of kinetic characteristics of alkaline-surfactant-polymer-strengthened foams decay under ultrasonic standing wave. Pet. Sci. 2022, 19, 1825–1839. [Google Scholar] [CrossRef]
- Wang, Q.; Blake, J. Non-spherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave. J. Fluid Mech. 2011, 679, 559–581. [Google Scholar] [CrossRef]
- Gogate, P.R. Application of cavitational reactors for water disinfection: Current status and path forward. J. Environ. Manag. 2008, 85, 801–815. [Google Scholar] [CrossRef] [PubMed]
- Promtov, M.A. Prospects of application of cavitation technologies for intensification of chemical and technological processes. Vestnik TGTU 2008, 4, 861–869. (In Russian) [Google Scholar]
- Verkhovykh, A.A.; Vakhitova, A.K.; Elpidinsky, A.A. Review of works on the effects of ultrasound on oil systems. Vestn. Kazan. Tekhnologicheskogo Univ. 2016, 8, 37–42. (In Russian) [Google Scholar]
- Nevolin, V.G. Experience of Using Sound Effects in the Practice of Oil Production in the PERM Region; Elektronnyj Nauchnyj Zhurnal Neftegazovoe Delo: Perm, Russia, 2008; p. 54. (In Russian) [Google Scholar]
- Cako, E.; Wang, Z.; Castro-Muñoz, R.; Rayaroth, M.P.; Boczkaj, G. Cavitation based cleaner technologies for biodiesel production and processing of hydrocarbon streams: A perspective on key fundamentals, missing process data and economic feasibility—A review. Ultrason. Sonochem. 2022, 88, 106081. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, W. Numerical optimization design of vortex diode hydrodynamic cavitation reactor. J. Phys. Conf. Ser. 2019, 1300, 012116. [Google Scholar] [CrossRef]
- Kuimov, D.; Pavlenko, A. Design of the Inductor as Knot of the Electromechanical Converter with a Secondary Discrete Part: ICIE 2018. Lect. Notes Mech. Eng. 2019, 2393–2399. [Google Scholar] [CrossRef]
- Kuimov, D.; Minkin, M. The Electromechanical Converter in the Systems of Desulfurisation of Crude Oil. MATEC Web Conf. 2017, 132, 03016. [Google Scholar] [CrossRef]
- Rastopov, S.F.; Sukhodol’sky, A.T. Cluster Nucleation in the Process of CW Laser Induced Thermocavitation. Phys. Lett. A 1990, 149, 229–232. [Google Scholar] [CrossRef]
- Rastopov, S.F.; Sukhodolsky, A.T. Sound Generation by Thermocavitation-Induced Cw Laser in Solutions; Bonch-Bruevich, A.M., Konov, V.I., Libenson, M.N., Eds.; SPIE: Leningrad, Russia, 1991. [Google Scholar] [CrossRef]
- Guzmán-Barraza, A.; Ortega-Mendoza, J.G.; Zaca-Morán, P.; Toto-Arellano, N.I.; Toxqui-Quitl, C.; Padilla-Martinez, J.P. Optical Cavitation in Non-Absorbent Solutions Using a Continuous-Wave Laser via Optical Fiber. Opt. Laser Technol. 2022, 154, 108330. [Google Scholar] [CrossRef]
- Binama, M.; Muhirwaa, A.; Bisengimana, E. Cavitation Effects in Centrifugal Pumps—A Review. J. Eng. Res. Appl. 2016, 6, 842–846. [Google Scholar]
- Brennen, C.E. Cavitation and Bubble Dynamics; Oxford Engineering Science Series 44; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Chahine, G.L.; Chao-Tsung, H. Modelling cavitation erosion using fluid–material interaction simulations. Interface Focus 2015, 5, 20150016. [Google Scholar] [CrossRef] [PubMed]
- Suslick, K.S.; Eddingsaas, N.C.; Flannigan, D.J.; Hopkins, S.D.; Xu, H. Extreme Conditions during Multibubble Cavitation: Sonoluminescence as a Spectroscopic Probe. Ultrason. Sonochem. 2011, 18, 842–846. [Google Scholar] [CrossRef]
- Koda, S.; Kimura, T.; Kondo, T.; Mitome, H. A Standard Method to Calibrate Sonochemical Efficiency of an Individual Reaction System. Ultrason. Sonochem. 2003, 10, 149–156. [Google Scholar] [CrossRef]
- Averina, Y.M.; Moiseeva, N.A.; Nyrkov, N.P.; Shuvalov, D.A.; Kurbatov, A.Y. Properties and Effects of Cavitation. Uspekhi V Him. I Him. Tekhnologii 2018, 14, 37. (In Russian) [Google Scholar]
- Fu, Y.; Zhu, X.; Wang, J.; Gong, T. Numerical Study of the Synergistic Effect of Cavitation and Micro-Abrasive Particles. Ultrason. Sonochem. 2022, 89, 106119. [Google Scholar] [CrossRef]
- Dillinger, B.; Suchicital, C.; Clark, D. The effects of ultrasonic cavitation on the dissolution of lithium disilicate glass. Sci. Rep. 2022, 12, 20398. [Google Scholar] [CrossRef]
- Brujan, E.A.; Ikeda, T.; Matsumoto, Y. On the pressure of cavitation bubbles. Exp. Therm. Fluid Sci. 2008, 32, 1188–1191. [Google Scholar] [CrossRef]
- Saharan, V.K.; Rizwani, M.A.; Malani, A.A.; Pandit, A.B. Effect of geometry of hydrodynamically cavitating device on degradation of orange-G. Ultrason. Sonochemistry 2013, 20, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, M.; Pandit, A.B. Experimental quantification of chemical effects of hydrodynamic cavitation. Chem. Eng. Sci. 2000, 55, 1633–1639. [Google Scholar] [CrossRef]
- Raut-Jadhav, S.; Saharan, V.K.; Pinjari, D.; Sonawane, S.; Saini, D.; Pandit, A. Synergetic effect of combination of AOP’s (hydrodynamic cavitation and H2O2) on the degradation of neonicotinoid class of insecticide. J. Hazard. Mater. 2013, 261, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Badve, M.P.; Alpar, T.; Pandit, A.B.; Gogate, P.R.; Csoka, L. Modeling the shear rate and pressure drop in a hydrodynamic cavitation reactor with experimental validation based on KI decomposition studies. Ultrason. Sonochem. 2015, 22, 272–277. [Google Scholar] [CrossRef]
- Bagal, M.V.; Gogate, P.R. Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: A review. Ultrason. Sonochem. 2014, 21, 1–14. [Google Scholar] [CrossRef]
- Gogate, P.R. Cavitation: An auxiliary technique in wastewater treatment schemes. Adv. Environ. Res. 2002, 6, 335–358. [Google Scholar] [CrossRef]
- Sarc, A.; Stepisnik-Perdih, T.; Petkovsek, M.; Dular, M. The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation. Ultrason. Sonochem. 2017, 34, 51–59. [Google Scholar] [CrossRef]
- Omelyanyuk, M.; Ukolov, A.; Pakhlyan, I.; Bukharin, N.; El Hassan, M. Experimental and Numerical Study of Cavitation Number Limitations for Hydrodynamic Cavitation Inception Prediction. Fluids 2022, 7, 198. [Google Scholar] [CrossRef]
- Ge, M.; Petkovšek, M.; Zhang, G.; Jacobs, D.; Coutier-Delgosha, O. Cavitation dynamics and thermodynamic effects at elevated temperatures in a small Venturi channel. Int. J. Heat Mass Transf. 2021, 170, 120970. [Google Scholar] [CrossRef]
- Ge, M.; Manikkam, P.; Ghossein, J.; Kumar Subramanian, R.; Coutier-Delgosha, O.; Zhang, G. Dynamic mode decomposition to classify cavitating flow regimes induced by thermodynamic effects. Energy 2022, 254, 124426. [Google Scholar] [CrossRef]
- Luo, X.; Gong, H.; He, Z.; Zhang, P.; He, L. Recent advances in applications of power ultrasound for petroleum industry. Ultrason. Sonochem. 2021, 70, 105337. [Google Scholar] [CrossRef]
- Olaya-Escobar, D.R.; Quintana-Jiménez, L.A.; González-Jiménez, E.E.; Olaya-Escobar, E.S. Ultrasound Applied in the Reduction of Viscosity of Heavy Crude Oil. Rev. Fac. Ing. 2020, 29, e11528. [Google Scholar] [CrossRef]
- Alboudwarej, H.; Felix, J.; Taylor, S. La Importancia Del Crudo Pesado|Oilfield Review. Available online: https://www.slb.com/-/media/files/oilfield-review/heavy-oil-3-spanish (accessed on 15 February 2023).
- Fang, Y.; Yang, E.; Guo, S.; Cui, C.; Zhou, C. Study on micro remaining oil distribution of polymer flooding in Class-II B oil layer of Daqing Oilfield. Energy 2022, 254, 124479. [Google Scholar] [CrossRef]
- Zhong, H.; He, Y.; Yang, E.; Bi, Y.; Yang, T. Modeling of microflow during viscoelastic polymer flooding in heterogenous reservoirs of Daqing Oilfield. J. Pet. Sci. Eng. 2021, 210, 110091. [Google Scholar] [CrossRef]
- Gunal, O.; Islam, M.R. Alteration of asphaltic crude rheology with electromagnetic and ultrasonic irradiation. J. Pet. Sci. Eng. 2000, 26, 263–272. [Google Scholar] [CrossRef]
- Bjorndalen, N.; Islam, M.R. The effect of microwave and ultrasonic irradiation on crude oil during production with a horizontal well. J. Pet. Sci. Eng. 2004, 43, 139–150. [Google Scholar] [CrossRef]
- Yong, L. Study on the aquathermolysis and viscosity reduced mechanism of heavy oil. J. Daqing Pet. Inst. 2002, 26, 95–98. [Google Scholar]
- Wang, Z.-Q.; Wang, Z.-X. Roles of hydrogen donor in visbreaking of vacuum residue. J. Fuel Chem. Technol. 2006, 34, 745–748. [Google Scholar]
- Liu, Y.-J.; Zhao, F.; Zhao, G.; Hu, S.-B.; Lin, Z. Study on upgrading heavy oil by catalytic aquathermolysis using formic acid as hydrogen donor. Oilfield Chem 2008, 25, 133–136. [Google Scholar]
- Shi, B.; Yang, S.-C.; Men, X.-J.; Li, S.-W.; Que, G.-H. Hydrogen (deuterium) donor effects and isotopic effect in substractions cracking in residue. J. Fuel Chem. Technol. 2005, 33, 561–565. [Google Scholar]
- Tong, F.; Yang, Q.; Dai, L.; Li, D. Effect of Hydrogen Donor on Product Distribution of Residue Oil Hydrotreating. Pet. Process. Petrochem. 2015, 46, 1–4. [Google Scholar]
- Wan, C.; Wang, R.; Zhou, W.; Lia, L. Experimental study on viscosity reduction of heavy oil by hydrogen donors using a cavitating jet. RSC Adv. R. Soc. Chem. 2019, 9, 2509–2515. [Google Scholar] [CrossRef] [PubMed]
- Nurullayev, V.H.; Ismayilov, G.G.; Usubaliyev, B.T. Influence of hydrodynamic cavitation on the rheological properties and microstructure of formulated crude oil. World Sci. News 2018, 99, 44–58. [Google Scholar] [CrossRef]
- Hamidi, H.; Mohammadian, E.; Junin, R.; Rafati, R.; Azdarpour, A.; Junid, M.; Savory, R. The effect of ultrasonic waves on oil viscosity. Pet. Sci. Technol. 2019, 32, 2387–2395. [Google Scholar] [CrossRef]
- Antes, F.G.; Diehl, L.O.; Pereira, J.S.; Guimarães, R.C.; Guarnieri, R.A.; Ferreira, B.M.; Dressler, V.L.; Flores, E.M. Feasibility of low frequency ultrasound for water removal from crude oil emulsions. Ultrason. Sonochem 2015, 25, 70–75. [Google Scholar] [CrossRef]
- Mohsin, M.; Meribout, M. An extended model for ultrasonic-based enhanced oil recovery with experimental validation. Ultrason. Sonochem. 2015, 23, 413–423. [Google Scholar] [CrossRef]
- Muradov, B.K.; Bazarov, A.R. Investigation of physico-chemical properties of viscous paraffin oil deposits of Uzbekistan. Quest. Sci. Educ. 2017, 3, 34–35. (In Russian) [Google Scholar]
- Razavifar, M.; Qajar, J. Experimental investigation of the ultrasonic wave effects on the viscosity and thermal behaviour of an asphaltenic crude oil. Chem. Eng. Process. 2020, 153, 107964. [Google Scholar] [CrossRef]
- Shedid, S.; Attallah, S. Influences of ultrasonic radiation on asphaltene behavior with and without solvent effects. SPE Int. Form. Damage Control. Symp. Proc. 2004, SPE-86473-MS. [Google Scholar] [CrossRef]
- Ghanavati, M.; Shojaei, M.-J.; Ramazani, S.A.A. Effects of asphaltene content and temperature on viscosity of Iranian heavy crude oil: Experimental and modeling study. Energy Fuels 2013, 27, 7217–7232. [Google Scholar] [CrossRef]
- Abramov, V.O.; Abramova, A.V.; Bayazitov, V.M.; Altunina, L.K.; Gerasin, A.; Pashin, D.S.; Mason, T.J. Sonochemical approaches to enhanced oil recovery. Ultrason. Sonochem. 2015, 25, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Promtov, M.A. Change in the fractional composition of oil during hydroimpulse cavitation treatment. Vestn. Tambov. Gos. Teh. Univ. 2017, 23, 412–419. (In Russian) [Google Scholar] [CrossRef]
- Yakovlev, V.A. Investigation of chemical transformations of organic compounds under cavitation action. Him. Fiz. 2010, 29, 43–51. (In Russian) [Google Scholar]
- Pernik, A.D. Problems of Cavitation; Sudpromgiz: Leningrad, Russian, 1966; p. 439. (In Russian) [Google Scholar]
- Verkhovykh, A.A.; Eremeev, A.M.; Elpidinsky, A.A. Refining of rheological properties of oil by physical methods. Vestn. Kazan. Tekhnologicheskogo Univ. 2015, 15, 64–68. (In Russian) [Google Scholar]
- Cui, J.; Zhang, Z.; Liu, X.; Liu, L.; Peng, J. Studies on viscosity reduction and structural change of crude oil treated with acoustic cavitation. Fuel 2020, 263, 116638. [Google Scholar] [CrossRef]
- Najafi, I.; Amani, M. Asphaltene Flocculation Inhibition with Ultrasonic Wave Radiation: A Detailed Experimental Study of the Governing Mechanisms. Adv. Pet. Explor. Dev. 2011, 2, 32–36. [Google Scholar] [CrossRef]
- Kaushik, P.; Kumar, A.; Bhaskar, T.; Sharma, Y.K.; Tandon, D.; Goyal, H.B. Ultrasound cavitation technique for up-gradation of vacuum residue. Fuel Process. Technol. 2012, 93, 73–77. [Google Scholar] [CrossRef]
- Popinet, S.; Zaleski, S. Bubble collapse near a solid boundary: A numerical study of the influence of viscosity. J. Fluid Mech. 2002, 464, 137–163. [Google Scholar] [CrossRef]
- Kim, S.J.; Lim, K.H.; Kim, C. Deformation characteristics of spherical bubble collapse in Newtonian fluids near the wall using the finite element method with ALE formulation. Korea Aust. Rheol. J. 2006, 18, 109–118. [Google Scholar]
- Luo, J.; Xu, W.; Zhai, Y.; Zhang, Q. Experimental study on the mesoscale causes of the influence of viscosity on material erosion in a cavitation field. Ultrason. Sonochem. 2019, 59, 104699. [Google Scholar] [CrossRef]
- Khodaei, B.; Rahimi, M.; Sobati, M.A.; Shahhosseini, S.; Jalali, M.R. Effect of operating pressure on the performance of ultrasound-assisted oxidative desulfurization (UAOD) using a horn type sonicator: Experimental investigation and CFD simulation. Chem. Eng. Process. 2018, 132, 75–88. [Google Scholar] [CrossRef]
- Khodaei, B.; Sobati, M.A.; Shahhosseini, S. Optimization of ultrasound-assisted oxidative desulfurization of high sulfur kerosene using response surface methodology (RSM). Clean Technol. Environ. Policy 2016, 18, 2677–2689. [Google Scholar] [CrossRef]
- Wu, Z.; Ondruschka, B. Ultrasound-assisted oxidative desulfurization of liquid fuels and its industrial application. Ultrason. Sonochem. 2010, 17, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Bhasarkar, J.B.; Chakma, S.; Moholkar, V.S. Mechanistic features of oxidative desulfurization using sono-fenton-peracetic acid (ultrasound/Fe2+-CH3COOH-H2O2) system. Asia-Pac. J. Chem. Eng. 2013, 52, 9038–9047. [Google Scholar] [CrossRef]
- Bhasarkar, J.B.; Singh, M.; Moholkar, V.S. Mechanistic insight into phase transfer agent assisted ultrasonic desulfurization. RSC Adv. 2015, 5, 102953–102964. [Google Scholar] [CrossRef]
- Mei, H.; Mei, B.W.; Yen, T.F. A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization. Fuel 2003, 82, 405–414. [Google Scholar] [CrossRef]
- Mello, P.D.A.; Duarte, F.A.; Nunes, M.; Alencar, M.S.; Moreira, E.M.; Korn, M.; Dressler, V.L.; Flores, E.M.M. Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock. Ultrason. Sonochem. 2009, 16, 732–736. [Google Scholar] [CrossRef]
- Collins, F.M.; Lucy, A.R.; Smith, D.J.H. Desulphurisation of Oil. European Patent Office EP-0482841-A1, 25 October 1992. [Google Scholar]
- Bolla, M.K.; Choudhury, H.A.; Moholkar, V.S. Mechanistic features of ultrasound-assisted oxidative desulfurization of liquid fuels. Ind. Eng. Chem. Res. 2012, 51, 9705–9712. [Google Scholar] [CrossRef]
- Suryawanshi, N.B.; Bhandari, V.M.; Sorokhaibam, L.G.; Ranade, V.V. Developing techno-economically sustainable methodologies for deep desulfurization using hydrodynamic cavitation. Fuel 2017, 210, 482–490. [Google Scholar] [CrossRef]
- Dai, Y.; Qi, Y.; Zhao, D.; Zhang, H. An oxidative desulfurization method using ultrasound/Fenton’s reagent for obtaining low and/or ultra-low sulfur diesel fuel. Fuel Process. Technol. 2008, 89, 927–932. [Google Scholar] [CrossRef]
- Mahmood, L.H.; Abid, M.F.; Mohammed, M.I. Study on ultrasound assisted desulfurization of light gas oil using inorganic liquid. Environ. Protection. Eng. 2019, 45, 5–19. [Google Scholar] [CrossRef]
- Tang, Q.; Lin, S.; Cheng, Y.; Liu, S.; Xiong, J.-R. Ultrasound-assisted oxidative desulfurization of bunker-C oil using tert-butyl hydroperoxide. Ultrason. Sonochem. 2013, 20, 1168–1175. [Google Scholar] [CrossRef]
- Zhakirova, N.; Salakhov, R.; Sassykova, L.; Khamidullin, R.; Deberdeev, T.; Yalyshev, U.; Khamidi, A.; Seilkhanov, T. Increasing the Yield of Light Distillates by Wave Action on Oil Raw Materials. Eurasian Chem. Technol. J. 2021, 23, 125–132. [Google Scholar] [CrossRef]
- GlobeCore Apparatus of the Vortex Layer of Ferromagnetic Particles AVEP (ABC). Available online: https://globecore.ru/products/intensif/avs.html (accessed on 3 April 2023).
- Gil, N.A.; Zharov, V.P.; Smekhunov, E.A. Factors of constructive optimization of processes in vortex layer apparatuses. Adv. Eng. Res. 2015, 3, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Terentyeva, V.B.; Peshnev, B.V.; Nikolaev, A.I. Hydrodynamic activation of heavy oil residues. Fine Chem. Technol. 2021, 16, 390–398. [Google Scholar] [CrossRef]
- Austin, D.P. Method to Liberate Hydrocarbon Fractions from Hydrocarbon Mixtures. WIPO (PCT) WO2002103322, 18 June 2001. [Google Scholar]
- Coutier-Delgosha, O.; Devillers, J.; Leriche, M.; Pichon, T. Effect of Wall Roughness on the Dynamics of Unsteady Cavitation. J. Fluids Eng. Trans. Asme 2005, 127, 726–733. [Google Scholar] [CrossRef]
- Zheng, H.; Zheng, Y.; Zhu, J. Recent Developments in Hydrodynamic Cavitation Reactors: Cavitation Mechanism. Reactor Design, and Applications. Engineering 2022, 19, 180–198. [Google Scholar] [CrossRef]
- Ando, K.; Liu, A.Q.; Ohl, C.D. Homogeneous nucleation in water in microfluidic channels. Phys. Rev. Lett. 2012, 109, 044501. [Google Scholar] [CrossRef]
- Mørch, K.A. Cavitation inception from bubble nuclei. Interface Focus 2015, 5, 20150006. [Google Scholar] [CrossRef]
- Estrada Gonzalez, O.A.; Rojas-Nova, O.A.; Gonzalez-Silva, G. Effect of Temperature on a Vortex Reactor for Hydrodynamic Cavitation. Ing. Y Univ. 2022, 42, e93419. [Google Scholar] [CrossRef]
- Petkovšek, M.; Dular, M. IR measurements of the thermodynamic effects in cavitating flow. Int. J. Heat Fluid Flow 2013, 44, 756–763. [Google Scholar] [CrossRef]
- He, J.; Zhou, X.; Zhang, N.; Nie, M.; Mao, W.; Lu, Z. Study of surface tension effects on near-wall cavitation bubble collapse with a pseudopotential lattice Boltzmann model. AIP Adv. 2022, 12, 035219. [Google Scholar] [CrossRef]
- Hobbs, J.M. Experience with a 20-kc Cavitation Erosion Test; ASTM: Philadelphia, PA, USA, 1967; pp. 159–185. [Google Scholar]
- Young, S.G.; Johnston, J.R. Effect of Temperature and Pressure on Cavitation Damage in Sodium. Charact. Determ. Eros. Resist. 2009, 67, 67–120. [Google Scholar] [CrossRef]
- Hammitt, F.; Rogers, D. Effects of Pressure and Temperature Variation in Vibratory Cavitation Damage Test. J. Mech. Eng. Sci. 1970, 12, 432–439. [Google Scholar] [CrossRef]
- Hattori, S.; Goto, Y.; Fukuyama, T. Influence of temperature on erosion by a cavitating liquid jet. Wear 2006, 260, 1217–1223. [Google Scholar] [CrossRef]
- Greenspan, M.; Tschiegg, C.E. Radiation-induced acoustic cavitation; apparatus and some results. J. Res. Natl Bur. Stand 1967, 71C, 299–312. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, J. Adrien Bussonnière, Guangyuan Xie, Qingxia Liu, Evaluation of wettability of mineral particles via cavitation thresholds. Powder Technol. 2020, 362, 334–340. [Google Scholar] [CrossRef]
- Yu, Z.; Li, J.; Zhang, X. A new hypothesis for cavitation nucleation in gas saturated solutions: Clustering of gas molecules lowers significantly the surface tension. Chin. J. Chem. Eng. 2022, 50, 347–351. [Google Scholar] [CrossRef]
Processed Product | Initial Sulfur Content | Type of Sulfur | Degree of Desulfurization | Processing Method |
---|---|---|---|---|
Hydrotreated Middle East Diesel [87] | 568.75 mcg/g | - | 93.3% | Ultrasonic device with 28 kHz ultrasound frequency, treatment time 15 min. US–Fenton reagent system with Fe+/H2O2 0.05 mol/mol. |
Synthetic fuel (n-octane number (Lobachemie, 98%), n-octanol (Lobachemie, 99%), toluene (Merck, >99%) and commercial diesel fuel (locally obtained)) [86] | n-Octanol—310 ppm; Toluene—290 ppm; Diesel—330 ppm. | - | n-Octanol—95%; Toluene—37%; Diesel—90%. | Diaphragm installation (one orifice, 3 mm). Differential pressure 5 bar. The content of the organic part relative to the water phase with sulfur—2.5%. |
Hydrotreated feedstock Hydrogen content (%) 13.6 Carbon content (%) 86.4 Sulfur (initial, mg kg−1) 3.6 Relative density 20 °C/4 (g/cm3) 0.8362 Viscosity (cst, 20 °C) 10.0100 [83] | 3.6 mg kg−1 | Dibenzothiophene (DBT, C1298 S, ≈98% purity, Merck, Darmstadt, Germany) | 95% | 20 kHz ultrasound machine. (9 min of treatment). Composition of the treated product: 15 mL acetic acid, 10 mL hydrogen peroxide, and 25 mL oil. The treated feedstock after irradiation was additionally extracted three times with polar solvent (MeCN, MeOH, or H2O) using a glass separating funnel by manual shaking. |
Diesel oil (fuel) (Sinclair Oil) [82] | 1. 0.7744 wt% (18 min irradiation); 2. 0.3011 wt% (10 min irradiation); 3. 0.1867 wt% (10 min irradiation). | - | 1. 0.0142 wt% (98.2%) 2. 0.0039 wt% (98.7%) 3. 0.0012 wt% (99.4%) | Ultrasound machine (VCX-600) (Sonics and Materials, Inc., Fleetwood, Pennsylvania, USA) 20 kHz. The polar solvent is acetonitrile. The temperature in the reactor is 75 ± 2 °C. Composition of the treated feedstock: Diesel fuel (oil); tetraoctylammonium bromide, phosphovol-tungstic acid, aqueous solution of H2O2. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuimov, D.; Minkin, M.; Yurov, A.; Lukyanov, A. Current State of Research on the Mechanism of Cavitation Effects in the Treatment of Liquid Petroleum Products—Review and Proposals for Further Research. Fluids 2023, 8, 172. https://doi.org/10.3390/fluids8060172
Kuimov D, Minkin M, Yurov A, Lukyanov A. Current State of Research on the Mechanism of Cavitation Effects in the Treatment of Liquid Petroleum Products—Review and Proposals for Further Research. Fluids. 2023; 8(6):172. https://doi.org/10.3390/fluids8060172
Chicago/Turabian StyleKuimov, Denis, Maxim Minkin, Alexandr Yurov, and Alexandr Lukyanov. 2023. "Current State of Research on the Mechanism of Cavitation Effects in the Treatment of Liquid Petroleum Products—Review and Proposals for Further Research" Fluids 8, no. 6: 172. https://doi.org/10.3390/fluids8060172
APA StyleKuimov, D., Minkin, M., Yurov, A., & Lukyanov, A. (2023). Current State of Research on the Mechanism of Cavitation Effects in the Treatment of Liquid Petroleum Products—Review and Proposals for Further Research. Fluids, 8(6), 172. https://doi.org/10.3390/fluids8060172