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Abstract: The use of nanofluids in heat transfer applications has significantly increased in recent times
due to their enhanced thermal properties. It is therefore important to investigate the flow behavior
and, thus, the rheology of different nanosuspensions to improve heat transfer performance. In this
study, the viscosity of a BN-diamond/thermal oil hybrid nanofluid is predicted using four machine
learning (ML) algorithms, i.e., random forest (RF), gradient boosting regression (GBR), Gaussian
regression (GR) and artificial neural network (ANN), as a function of temperature (25–65 ◦C), particle
concentration (0.2–0.6 wt.%), and shear rate (1–2000 s−1). Six different error matrices were employed
to evaluate the performance of these models by providing a comparative analysis. The data were
randomly divided into training and testing data. The algorithms were optimized for better prediction
of 700 experimental data points. While all ML algorithms produced R2 values greater than 0.99, the
most accurate predictions, with minimum error, were obtained by GBR. This study indicates that ML
algorithms are highly accurate and reliable for the rheological predictions of nanofluids.

Keywords: artificial neural network; gradient boost regression; Gaussian regression; machine learn-
ing; nanofluids; random forest; rheology

1. Introduction

The increase in the significance and demand of thermal management for heat transfer
applications led to the introduction of nanofluids, owing to their exceptional thermal
properties. Nanofluids are colloidal suspensions formed by dispersing nanoparticles of
diameters less than 100 nm into base fluids such as water, ethylene glycol, water, etc. Hybrid
nanofluids can be prepared through the dispersion of two or more dissimilar nanoparticles
in the base fluid in the form of a composite or a mixture, and they are found to have
greater thermal, hydrodynamic, and rheological properties than unitary nanofluids [1,2].
Suspensions of metals, metal oxides, and other compound nanoparticles allow for the
enhancement of thermal conductivity. However, other thermophysical properties, such as
the nanofluid’s density, specific heat, and dynamic viscosity, also play an important role in
improving its heat transfer performance in several applications [3,4]. Nanofluids have been
utilized in heating and cooling systems, electronics, transportation, and power generation,
amongst other applications [5]. The flow behavior of several different nanofluids and the
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effect of other parameters such as magnetic field, solar energy, and entropy are now being
studied for more advanced applications [6–8].

Viscosity is an essential thermophysical property because of its direct influence on
the heat transfer characteristics of a nanofluid [9] and its effect on the pressure drop and
pumping power. There is a higher pumping work demand for nanofluids because of
their increased viscosity, in comparison to base fluids that do not contain nanoparticles.
Consequently, the operating cost of the system increases [10,11]. The viscosity of nanofluids
depends on several factors such as the type of base fluid and temperature, size and shape
of particles, pH value, shear rate, etc. [12,13].

Several conventional models have been investigated to predict the viscosity of nanoflu-
ids. These include the Einstein [14], Brinkman [15], Wang [16], Krieger and Dougherty
(K-D) [17], and Batchelor [18] models, among others. However, due to certain limitations,
these models do not accurately predict the viscosity of nanofluids [19]. Researchers have
also developed mathematical or empirical correlations for viscosity predictions with con-
sideration of more parameters [20]. Recently, there has been a surge in the use of artificial
intelligence (AI) and machine learning (ML) algorithms, particularly supervised learning
techniques for the prediction of different thermophysical properties [21–23]. Despite being
black-box models, the use of AI and ML is found to be fairly useful due to the challenges of
processing data for the characterization of nanofluids [24]. Moreover, these predictions are
also found to be highly accurate, granted that enough data points are available in the form
of experimental data [25].

Amongst the many models available, artificial neural network (ANN) has been the
most popular among researchers so far. Studies show that ANN is more accurate than
conventional models and empirical correlations for viscosity predictions of nanofluids [26].
Li et al. [27] investigated the thermal performance of Al2O3/ethylene glycol nanofluids via
a proposed correlation and ANN. The values for the coefficient of determination (R2) for
ANN predictions were found to be 0.9984 and 0.9997 for viscosity and thermal conductivity,
respectively, showing more precise results than the correlation used. Davood et al. [28] used
ANN to predict the viscosity of (WO3)-MWCNTs/engine oil hybrid nanofluids as a function
of the volume fraction of nanoparticles, shear rate, and temperature. The ANN results
showed acceptable accuracy. In another study [29], the ANN prediction for the viscosity
of CuO-MWCNT/engine oil hybrid nanofluids with inputs of temperature and volume
fraction was found to be accurate and in good agreement with the experimental data.
Similar results in favor of the accuracy of ANN compared to data fitting in an empirical
correlation for MCWNT/water nanofluids were obtained in another study; ANN produced
a maximum deviation of 0.28%, where solid volume fraction and temperature were used as
inputs [30]. Thermophysical properties besides viscosity have also been predicted via ANN.
Vafaei et al. [31] determined the thermal conductivity ratio of MgO-MWCNT/ethylene
glycol hybrid nanofluids with a maximum deviation of 0.8% from the best ANN model.
The ANN-predicted results in another study also provided good accuracy in comparison to
experimental results for thermal conductivity ratios, density, viscosity ratio, and specific
heat [32].

Researchers have also employed ML algorithms such as random forest (RF), multilayer
perceptron (MLP), support vector regression (SVR), least-squared support vector machine
(LSSVM), gradient boosting regression (GBR), extreme gradient boost (XGBoost), boosting
regression trees (BRT), Gaussian regression (GR), decision tree regression (DTR), etc., and
have drawn a comparison to determine which of these models exhibits a better performance
for that particular nanosuspension. Ilyas et al. [33] employed ANN, RF, and GBR to
predict the viscosity of diamond–graphene/mineral oil hybrid nanofluids based on input
parameters of temperature, shear rate, and concentration. RF produced more accurate
predictions than ANN and GBR. Gholizadeh et al. [34] assessed the predictive performance
of RF against that of MLP and SVR, using five input parameters i.e., solid volume fraction,
viscosity of the base fluid, temperature, density, and size of nanoparticle. The RF model
provided the best prediction for the viscosity of nanofluids (R = 0.989). Bhanuteja et al. [35]
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developed viscosity prediction models via four ML algorithms: GBR, RF, Adaboost, and
voting regression. RF and GBR models demonstrated the best fit, with an R2 greater than
0.99 and a maximum deviation of ±4.2%.

A recent study [30] estimated the specific heat capacity of water-based hybrid nanoflu-
ids considering the influence of several parameters using the GR, XGBoost, and SVR models.
While all three algorithms showed excellent results, XGBoost outperformed the other two
models, suggesting a much more feasible alternative to experimental approaches to deter-
mine the specific heat capacity of nanofluids. Ning et al. [36] used ANN and LSSVM for the
prediction of filtration loss and shear stress of SiO2/water drilling fluid. Both the models
achieved R2 values greater than 0.99, which demonstrated excellent accuracy. Similar
results were obtained through ANN modeling to predict thermal conductivity (with the
input parameters being temperature and concentration) and zeta potential (with the inputs
being pH and concentration) of Fe3O4/water [37]. In another study [38], a GBR predictive
model was developed to estimate the density of Al2N3, Si3N4, and TiN, suspended in
ethylene glycol based on mass fraction, size and molecular weights of nanoparticles, and
temperature. The proposed model exhibited high precision and was in good agreement
with the experimental results. The results of some other studies that utilized ML algorithms
for the prediction of thermophysical properties are given in Table 1.

Table 1. Use of ML techniques for high-accuracy predictions.

Nanofluid Parameters Inputs Ranges ML
Techniques Remarks Ref.

TiO2/water
Thermal

Conductivity

Size 10–51.87 nm
ANN, GBR,

SVR, DTR, RF

GBR was found to be the most
accurate, with an R2 value of

0.99 for both testing and
training data.

[39]Volume Fraction 0.002–4%
Temperature 10–90 ◦C

Thermal Conductivity 0.6–1.455 W/mK

rGO-Fe3O4-
TiO2/ethylene

glycol

Density
Viscosity

Temperature 25–50 ◦C
BRT, SVR,

ANN

R value of BRT for both
density (0.9989) and viscosity
(0.9979) was higher than that

of SVR and ANN.

[40]
Nanoparticle

Concentration 0.01–0.25%

Shear Rate 1–1000 s−1

20 different
Nanofluids

Thermal
Conductivity

Temperature 20–70 ◦C

MLP-ANN,
SVR

R2 values of 0.99997 and
0.99788 were obtained by

ANN and SVR, respectively.
[41]

Volume Concentration 0–3.5
Particle Size 1.5–70 nm

Mixture Ratio 0.15–0.85
Acentric Factor of

Base Fluid 0.343–0.659

Thermal Conductivity 0.16–1.44 W/mK
Nanoparticle Density 1000–10,500 kg/m3

ZrO2/water Viscosity Temperature 10–65 ◦C
MLP-ANN

R2 value of 0.99858 was
obtained by ANN,

demonstrating high-accuracy
predictions.

[42]

Concentration 0.0125–0.2%

ZnO-MWCNT
(30:70)/W30

engine oil
Viscosity

Volume Fraction 0.05–1%
ANN

ANN produced high-accuracy
predictions (compared to

correlations), with an R2 value
of 0.9973.

[43]Temperature 5–55 ◦C
Shear Rate 50–1000 rpm

ML algorithms have also been utilized for other applications besides evaluating the
thermal performance of nanofluids, e.g., in the energy and environment sectors. Nie
et al. [44] proposed a prediction model for electrical energy consumption in buildings
using GBR. In another study [45], GR performed well compared to BRT in evaluating the
performance of a small-scale solar organic Rankine cycle system. Cai et al. [46] used GBR
for the prediction of net ecosystem carbon exchange (NEE), and RF for identifying the
significant parameters influencing NEE. Comparison with three other models concluded
that GBR performed high-accuracy predictions.

There is scarcely any literature available using some of the more recent ML algorithms,
let alone on the predictions of thermophysical properties, particularly viscosity, despite be-
ing significantly influential to thermal transfer, which is the value added by this research. In
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this study, the viscosity of a boron nitride (BN)–diamond (1:1)/thermal oil hybrid nanofluid
was predicted via four models, i.e., random forest (RF), gradient boosting regression (GBR),
Gaussian regression (GR), and artificial neural network (ANN), using 700 experimental
data points. The rheological properties of BN-diamond nanofluids have not been subjected
to any prior predictive investigation via machine learning techniques or otherwise. A
comparative analysis of the four algorithms is presented to evaluate the performance and
the accuracy of each model.

2. Methodology
2.1. Experimental Dataset

A BN-diamond/thermal oil hybrid nanofluid was employed as the experimental
dataset for the prediction of viscosity in this study [47]. The nanomaterials included
spherical diamond nanoparticles with a diameter of 3–10 nm and purity > 98.3%, as well
as hexagonal BN with a size of 70–80 nm and 99.8% purity. The nanomaterials were
mixed in equal-mass proportions (1:1) to form a hybrid system. The base fluid used was
commercial thermal oil, used to disperse the hybrid nanomaterials. The details are included
in reference [47].

The nanofluid was prepared using the two-step method, which involved the formation
of a homogeneous suspension by adding the nanoparticles in thermal oil, i.e., the base fluid,
in a 1:1 ratio, as it was stirred continuously. An inorganic surfactant (Span-85) was added
to stabilize the nanofluids [47]. In reference [47], the rheology of BN-diamond/thermal
nanosuspensions was evaluated as a function of temperature, particle concentration, and
shear rate ranging from 25 to 65 ◦C, 0.2 to 0.6 wt.%, and 1 to 2000 s−1, respectively.

In this study, BN-diamond/thermal oil was subjected to rheological predictions via
four machine learning techniques i.e., random forest (RF), gradient boosting regression
(GBR), Gaussian regression (GR), and artificial neural network (ANN), using 700 exper-
imental data points, with inputs of temperature, particle concentration, and shear rate.
The distribution of the 700 data points used, with respect to the three input parameters
over their experimental ranges (25–65 ◦C, 0.2–0.6 wt.%, and 1–2000 s−1), is illustrated in
a violin plot (Figure 1). The distribution of data points was even for temperature and
particle concentration, while shear rate and viscosity (the output of the models) showed
more variation, with medians in the lower region. Experimental results showed that there
was a significant change in viscosity for shear rates under 100 s−1 (where the data points
are largely concentrated), and a Newtonian behavior was observed [47].
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The accuracy of these predictions was evaluated by comparison with the measured
viscosity from the aforementioned study. (An overview of the methodology is presented
in Figure 2.) Six error matrices i.e., coefficient of determination (R2), mean absolute error
(MAE), root mean square error (RMSE), bias, Legate and McCabe Index (EL,M) and Willmot
Index of Agreement (IA), were used for this purpose, and they are given in Equations (1)–(6),
respectively [33].

R2= 1 − ∑n
1 (yi − ŷi)

2

∑n
1 (yi − yi)

2 . (1)

MAE =
1
N

n

∑
1
|yi − ŷi| (2)

RMSE =

√
∑n

i=1(yi − ŷi)
2

N
(3)

bias
(
θ̂
)
= Eµ

(
θ̂
)
− θ (4)

EL,M= 1 − ∑i=N
i=1 |yi − ŷi|

∑i=N
i=1 |yi − yi|

(5)

IA= 1 − ∑i=N
i=1 (yi − ŷi)

2

∑i=N
i=0 (|yi − yi|+ (ŷi − yi))

2 (6)

where yi is the given data point, yi is the mean of all the data points, ŷi denotes the predicted
values, and N is the number of observations.
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2.2. Predictions via Random Forest (RF)

Random Forest (RF) is a fast and reliable model that makes decisions based on the
characteristics of several decision trees. The more diverse these trees are, the more consistent
the RF model is [39]. It utilizes a statistical technique called bagging.
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2.3. Predictions via Gradient Boosting Regression (GBR)

In gradient boosting regression, the learning procedure sequentially and consecutively
adds new models to the ensemble, which produces an accurate prediction of the response
variable [48]. Gradient boosting regression utilizes an algorithm that minimizes the amount
of loss that occurs [49] by fitting a regression tree on the negative gradient of a specified loss
function [39]. The loss function applied can be arbitrary, which allows GBR to be flexible
for a particular dataset.

2.4. Predictions via Gaussian Regression (GR)

GR is a probabilistic regression-based model, i.e., it is associated with learning a
continuous function from training data. Several covariance functions can be integrated
with GR to obtain optimized results from testing data. The relationship between inputs
and outputs in GR can be described as shown in Equation (7) [50].

y = f (x) + ξξ ∼ N
(

0, vn
2
)

(7)

where N is the number of pairs of feature vectors and ξ is distributed with zero mean noise.

2.5. Predictions via Artificial Neural Network (ANN)

ANN models contain a hidden layer which includes the number of neurons, the acti-
vation function, the number of layers, and a training algorithm. ANN finds the connection
between the data provided to the model; the output depends on the back propagation of the
randomly initialized weights of the input data [39]. The neural network in this study was
modeled using the Levenberg–Marquardtt training algorithm with three hidden layers. It
was modeled using a number of neurons ranging from 2 to 12. For proper optimization, the
errors were all generated for different numbers of neurons. As demonstrated in Figure 3,
the least error (in accordance with all error matrices) was detected at 12 neurons.
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3. Results and Discussion

The rheology of BN-diamond/thermal oil nanosuspensions was predicted via random
forest (RF), gradient boosting regression (GBR), Gaussian regression (GR), and artificial
neural network (ANN) machine learning algorithms as a function of three input parameters:
temperature, particle concentration, and shear rate.
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The data points were randomized and divided into testing and training data. It is
important to note that all data points were used for modeling the algorithms. The original
experimental data (taken from [47]) were not refined or normalized and no data points
were excluded for rheological predictions. This signifies that the errors generated also
include data points which may show a certain degree of deviation.

3.1. Random Forest (RF)

RF showed the most deviation in data and the least accurate predictions amongst the
four ML algorithms. The distribution of the data points for RF against absolute difference,
which is the relative error between the testing and training data, is shown in Figure 4. Data
far from the origin represent more deviation. It is noticeable from the figure that data
points are significantly scattered for the both training and testing sets, and they are less
concentrated around nil absolute difference.
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One of the key matrices used to validate the performance of the algorithms is the
coefficient of determination (R2), which represents the relationship between the predicted
and the experimentally measured viscosity; an R2 value close to 1 indicates accuracy in
the predictions. Although all four ML algorithms produced good predictions, with an
R2 greater than 0.99 for the testing and training data, the least effective of them is RF, i.e.,
R2

train = 0.994368 and R2
test = 0.99258 (Figure 5).
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3.2. Gradient Boosting Regression (GBR)

GBR training and testing data, illustrated in Figure 6, both show high accumulation of
data at absolute difference of zero. Very few data points lie outside the ranges of −0.00025
up to 0.00025 and −0.0005 up to 0.0005 for the training and testing data, respectively. The
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most accurate predictions for the viscosity of the BN-diamond/thermal oil nanofluid were
obtained by GBR, with R2 values of R2

train = 0.999939 and R2
test = 0.99953. The plots in

Figure 7 are well accumulated to the 45◦ reference, exhibiting an excellent fit to the model.
Predicted data scarcely show any deviation from the experimentally measured viscosity,
demonstrating the high precision and accuracy of the rheological behavior predictions and
the reliability of the GBR model. This was enabled by the iterative boosting of a weaker
learner into a stronger learner.
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3.3. Gaussian Regression (GR)

Rheological predictions via GR were good, but not the most accurate out of the algo-
rithms used. More convergence of data was observed in the training set (plots accumulated
between −0.001 and 0.001) than in the testing set, as seen in Figure 8. This reflects on the
greater deviation shown in Figure 9, where the R2 value of the testing set, i.e., 0.994911 was
lower than that of the training set, i.e., 0.998587. This result of GR may be attributed to its
potential to not scale very well with an increased number of data points.

3.4. Artificial Neural Network (ANN)

ANN produced the second most accurate predictions, after GBR. The absolute differ-
ence ranged from −0.001 to 0.003, with plots more concentrated up to 0.001, as illustrated
in Figure 10; a higher level of convergence of data was observed in comparison to GR and
RF. From the regression plot depicted in Figure 11, a little more deviation from the reference
line in the testing set is observed. However, the R2 values for both the training and testing
data (R2

train = 0.999193 and R2
test = 0.998561) were found to be satisfactory. ANN is a highly

reliable model owing to its ability to optimize data by selecting the number of neurons
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by trial and error. Optimization techniques reduce error, thus increasing the accuracy of
the predictions.
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These results were further verified by using five other error matrices, i.e., mean
absolute error (MAE), root mean square error (RMSE), bias, the Legate and McCabe Index
(EL,M), and the Willmot Index of Agreement (IA). The comparison of these error matrices
(and R2) with RF, GBR, GR, and ANN for testing and training data is presented in Figure 12.
MAE is the average variance between the significant and projected values of the same
dataset, RMSE is the average difference between the experimentally measured and the
predicted values, and bias refers to the error between the average predictions and the
measured values. EL,M and IA are measures of how well the model fits. Higher values of
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MAE, RMSE, and bias errors and lower values of EL,M and IA indicate less accuracy in the
predictions obtained by the ML algorithms. It can be observed from Figure 12 that errors in
RF were much greater in number than those in GR, ANN, and GBR (in the same order),
and GBR had the least errors and the highest values of EL,M and IA, i.e., 0.9952 and 0.99998
for training data and 0.98755 and 0.99988 for testing data, respectively.
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Figure 12. Comparison of error matrices between testing and training data of RF, GBR, GR, and
ANN. (a) Coefficient of determination (R2); (b) mean absolute error (MAE); (c) root mean square
error (RMSE); (d) bias; (e) Legate and McCabe Index (EL,M); (f) Willmot Index of Agreement (IA).
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4. Conclusions

In light of the limited studies available on the rheological behavior predictions of
hybrid nanofluids, especially via machine learning (ML) algorithms, this study aimed to
predict the viscosity of BN-diamond/thermal oil using four different ML algorithms, i.e.,
random forest (RF), gradient boosting regression (GBR), Gaussian regression (GR), and
artificial neural network (ANN). Temperature, particle concentration, and shear rate were
the three input parameters of the models, with the output being viscosity. The performance
of these models was evaluated using six error matrices, namely, coefficient of determination
(R2), mean absolute error (MAE), root mean square error (RMSE), bias, the Legate and
McCabe Index (EL,M), and the Willmot Index of Agreement (IA). Results showed that all
R2 values were greater than 0.99; the highest R2 was obtained using GBR, followed by
ANN, GR, and RF (which showed the most deviation from the experimentally measured
viscosity). Overall, ML algorithms were found to be highly accurate and reliable for
rheological predictions, specifically in comparison to conventional and empirical models.
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Nomenclature

Symbols
ELM Legate and McCabe Index, LM Index (-)
IA Willmot Index of Agreement, W Index (-)
N Number of observations in Equations (1)–(7)
R2 Coefficient of determination (-)
T Temperature (◦C)
yi Given data point in Equations (1)–(6)
ŷi Predicted values in Equations (1)–(6)
yi Mean of the given values in Equations (1)–(6)
Greek Symbols
φ Nanomaterial concentration (%)
γ Shear rate (1/s)
µ Viscosity (Pa·s)
Abbreviations
AI Artificial intelligence
ANN Artificial neural network
BRT Boosting regression trees
DTR Decision tree regression
GBM Gradient boosting machine
GR Gaussian regression
LSSVM Least squared support vector machine
MAE Mean absolute error
ML Machine learning
MLP Multilayer perceptron
RF Random forest
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RMSE Root mean square error
R2

test Coefficient of determination for testing set
R2

train Coefficient of determination for training set
SVR Support vector regression
XGBoost Extreme gradient boost
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