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Abstract: This paper presents a fundamental study of electro-thermo-convective flows within a layer
of dielectric liquid subjected to both an electric field and a thermal gradient. A low-conductivity
liquid enclosed between two horizontal electrodes and subjected to unipolar charge injection is
considered. The interplay between electric and thermal fields ignites complex physical interactions
within the flows, all governed by a set of coupled electro-thermo-hydrodynamic equations. These
equations include Maxwell, Navier–Stokes, and energy equations and are solved numerically using
an in-house code based on the finite volume method. Electro-thermo-convective flows are driven by
two dimensionless instability criteria: Rayleigh number Ra and the stability parameter T, and also by
the dimensionless mobility parameter M and Prandtl number Pr. The electric Nusselt number (Ne)
analogue to the Nusselt number (Nu) in pure thermal problems serves as an indicator to monitor the
shift from a thermo- to an electro-convective flow and its eventual evolution into unsteady, and, later,
chaotic flow. This change in regime is observed by tracking the electric Nusselt number’s behavior as
a function of the stability parameter (T), for different values of the non-dimensional parameters (M,
Ra, and Pr). The important role of mobility parameter M for the development of the flow is shown.
The flow structure during different development stages in terms of the number of convective cells is
also discussed.

Keywords: electrodynamics; electro-thermo-convection; dielectric liquids; numerical analysis charge
injection

1. Introduction

The combined effects of an electric field and a thermal gradient applied simultaneously
to a dielectric liquid containing a space charge lead to very complex physical interactions
in the flow. The electroconvection (EC) and electro-thermo-convection (ETC) in dielectric
liquids are problems that have been intensively investigated in recent years [1–4]. Their
study is essential for applications with electric fields in heat transfer and flow stability
control processes, as well as for a thorough understanding of systems subjected to various
natural convective forces (atmospheric convection, solar magneto-convection).

The space charge in a dielectric liquid can be created by unipolar injection that induces
EC under the action of the Coulomb force. In the case of a planar electrode geometry, EC
presents an analogy with the classical Rayleigh–Benard problem of a horizontal fluid layer
heated from below. In both cases, the flow is driven by the body force (thermal buoyancy
force for Rayleigh–Benard convection (RBC) and Coulomb force for EC). In the stability
analysis, for weak driving forces, both systems remain at rest due to the viscous damping.
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Above some critical values, Rac and Tc, the flow motion takes place and evolves into a
regular pattern of convective cells.

It is well known that the linear bifurcation of RBC is supercritical, while the linear
bifurcation of EC is subcritical [4,5]. The subcritical bifurcation was first explained by Fe-
lici [6] for weak injection, later for SCL (space-charge-limited) injection in [7] and confirmed
experimentally in [8,9]. The subcritical bifurcation is a representative characteristic of EC,
featured by a linear stability criterion Tc, a non-linear stability criterion Tf, and a hysteresis
loop between these two criteria [8,10]. Recently, Luo et al. showed that a lattice Boltzmann
model (LBM) could predict the linear and finite amplitude stability criteria of the subcritical
bifurcation in the EC flow [11–13] for both 2D and 3D flow scenarios.

In order to explain the different regimes of instability in a pure EC problem, it is
convenient to introduce the electric Nusselt number (Ne), which is defined as the ratio of
the effective current and the current existing without liquid motion. It can be considered as
the analog of the Nusselt number (Nu) for a pure thermal problem but has not been studied
yet in an ETC problem.

In this article, we consider the convective phenomena in an insulating liquid layer
enclosed between two parallel electrodes and subjected to the combined effects of an electric
field and a thermal gradient. The effects of both fields simultaneously applied to the fluid
layer leads to very complex physical interactions in the flow; these have received much
attention by many authors [14–16]. When the space charge only results from ion injection,
the coupling between the conservation equations of momentum, electric charge, and energy
is ensured via the Coulomb and buoyancy forces. This coupling results from the direct
interaction between the velocity, temperature, and charge perturbations as well as from
the interaction between the velocity and the electric field. Due to the complexity of the
mathematical model, the problem of ETC flows can be investigated mainly by numerical
simulations; different methods have been developed and are shown in Refs. [17–20]. For
example, an ETHD system with solid–liquid phase change in both rectangular and annular
cavities have been analyzed by LBM simulations in Ref. [20]. For SCL injection, EC produces
a significant increase in charge transfer [21]. Additional studies on ETHD deal with the
evaluation of heat transfer enhancement from numerical [21–24] and experimental [25,26]
point of view.

The transition from laminar to chaotic flow in the electro-thermal convection of a
dielectric fluid for different Rayleigh numbers Ra was investigated in Ref. [27], using a
lattice Boltzmann method. By increasing Ra, the different means of transition to chaos were
observed and the chaotic behavior was quantitatively analyzed.

Some preliminary results of electro-thermo-convective flow and its eventual evolution
into unsteady and later chaotic flow from the point of view of the electric Nusselt number
were obtained in Ref. [28]. Here, we present a detailed and extended study of the behavior
of the electric Nusselt number (Ne) on a large time scale as a function of the stability
parameter T at various values of the following non-dimensional parameters: M = 5, 10,
20, 40; Ra = 0, 2.103, 5.103, 104 and for Pr = 10. The main purpose of the present study is
to explore the subcritical feature of ETC from the point of view of the electrical Nusselt
number Ne and to investigate the effect of mobility M on Ne. The entire set of ETC equations
is solved by a direct numerical simulation based on the finite volume method [29,30].

2. Statement of the Problem
2.1. Basic Equations and Parameters

We consider an incompressible and perfectly insulating liquid of density ρ, permittivity
ε, the ionic mobility K, constant kinematic viscosity υ and constant thermal diffusivity κ,
enclosed between two parallel planar electrodes of length L. The liquid layer of depth H is
subjected to a potential difference ∆V = V0 − V1 and a thermal gradient ∆θ = θ1 − θ0 (see
Figure 1).
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Figure 1. Physical model of ETHD convection in a planar dielectric liquid layer between two parallel
electrodes where the lower electrode is a hot ions emitter and the upper one is a collector.

The z-axis is taken perpendicular to the electrodes and the gravity is considered as
acting in the negative z-direction. In this study, as the liquid is perfectly insulating, we
do not take into account the ion creation due to the dissociation process that can occur in
conductive liquids. Here, only the homogeneous and autonomous injection of the unipolar
charge at the emitter electrode is considered. This means that q = q0 at z = 0 at all times, i.e.,
that the injector and, therefore, the injection rate are not influenced by the electric field nor
by the liquid motion. These injected ions are supposed to have a given ionic mobility K.
The lower electrode is chosen as the source of the ions, which are then injected into the fluid
and collected at the upper electrode. The liquid is heated from below. The general set of
equations for an incompressible fluid expressing the conservation of mass and momentum
(Navier–Stokes equations) including electrical and buoyancy effects, the energy balance
under Boussinesq assumption, the charge density conservation, Gauss theorem, and the
definition of the electric field towards electric potential V, takes the following form:
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force. The following non-dimensional scales are introduced: H for length, the applied
voltage ∆V = V0 − V1 for electric potential, ∆V/H for the electric field, q0 for the charge
density, ε0K∆V2/H3 for the current density, υ/H for the velocity, ρ0υ2/H2 for the pressure, θ
for the temperature and H2/υ for time (ρ0, K0 and ε0 are, respectively, the density, the ionic
mobility and the permittivity at the reference temperature θ0).

The system is essentially governed by the following non-dimensional parameters:
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where Ra is the Rayleigh number (β thermal expansion coefficient), T is the electric in-
stability parameter, defined as the ratio of the driving force and the damping viscous
force, C is a measure of the injection level (q0 the injected charge), g is the gravity, Pr is
the Prandtl number, and R is the electrical Reynolds number. M is the non-dimensional
mobility parameter and it only depends on the physical properties of the fluid. The name
“mobility”, given by Felici in 1969 [6], considering the conversion of the electrical energy
(1/2εE2) into mechanical energy (1/2ρw‘), developed the concept of an electrohydrody-
namic mobility (ε/ρ)1/2. Experimental measurements showed that w’~1/3 (ε/ρ)1/2/E [3].
The ratio between the EHD mobility and the true ion mobility K is the parameter M; for
dielectric liquids its typical values are greater than three [4].

2.2. Initial and Boundary Conditions

The boundary conditions on velocity, temperature, electric potential, and charge
density are chosen, as shown in Figure 2. On the horizontal and lateral walls, we apply
no-slip boundary conditions. We consider here the fluid initially at rest with simultaneous
heating and injection at t = 0.
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Figure 2. Boundary conditions in the rectangular cavity.

The no-slip condition at the impermeable, thermally, and electrically perfectly con-
ducting electrodes is assumed and the horizontal metallic electrodes are assumed to be
rigid. The injection at the emitter is autonomous, which means that the injection rate is not
influenced by any perturbation in the bulk and, therefore, that q = 1 at z = 0.

2.3. Numerical Method

The set of coupled partial differential Equations (1)–(5) are integrated using the finite
volume method [29]. The numerical procedure based on the augmented Lagrangian
method. The calculation is fully transient. Special care is taken for the transport Equation (4)
for charge density q (because of its hyperbolic nature). The SMART algorithm was utilized
in this way.

The boundary condition of the charge density on the collector requires some comments
because of the hyperbolic nature of the charge conservation equation. From a mathematical
point of view, this implies that a boundary condition on the injector is enough to determine
the solution. However, in the numerical procedure, the discretized charge density transport
equation involves the value of q at some neighboring nodes so that interior nodes next to
the boundaries will require the value of q at those boundaries. This is where boundary
conditions come into play, as they provide pre-defined values of q on the boundaries to
close the system.
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In summary, boundary conditions play a crucial role in solving the charge density
transport equation by providing the necessary values of q at the boundaries. They ensure
the closure of the system and enable accurate modeling and simulation of the behavior of
the system near the boundaries. The selection and implementation of appropriate boundary
conditions are important considerations in numerical simulations and modeling studies.

The overall algorithm ensures that nothing originates from the collector, which is
both physically and mathematically consistent with the principle of the charge conserva-
tion equation.

The code has been thoroughly validated and numerical results have been compared
with the analytical solution (hydrostatic solution) as well as with some results from linear
and non-linear stability analyses [29,30]. Grid independency tests were conducted in order
to select the optimal grid to undertake the computation.

3. Results and Discussion

The electro-thermo-convective flow depends on two instability criteria: the Rayleigh
number Ra and the electrical parameter T, as well as on the non-dimensional parameters
Pr and M number. By changing the governing parameters Ra and T, we investigate the
influence of the mobility parameter M on the electro-thermo-convective flow from the point
of view of the electric Nusselt number. The transition from steady to unsteady flow is
also analyzed.

The global effect of convective heat transfer is usually presented by the Nusselt number
Nu, which is the ratio of the mean heat flux to the flux that would exist without convection
for the same temperature difference. In analogy with Nu, we introduce the electric Nusselt
number Ne, given as Ne = I/I0, where I is the electric current and I0 is the electric current
without flow motion (note that the current is transported mainly by electro-convection
induced by the ion injection from the electrode at z = 0 and the dependence between the
current I and the typical liquid velocity is non-linear).

In this section, we present the electro-thermo-convection (ETC) in the classical geome-
try of a dielectric liquid layer lying between two parallel planar electrodes and subjected to
a strong unipolar injection of charges (C = 10). We consider a rectangular cavity of height
H = 1 and length L = 2 in the case of heating and a strong charge injection from the lower
electrode. The electric current can be computed by integrating the current density on the
entire emitter or the collecting electrodes. Here, Ne is calculated on the injecting electrode.

The time evolution of the electrical Nusselt number for the lower instability parameter
value (T = 120) is given in Figure 3a. At the beginning of the injecting and heating, we
observe a brusque increase in the Ne number, which reaches an asymptotic value that
shows a steady-state behavior. The steady state does not depend on the initial conditions.
For Tc < T < 300, Ne reaches stationary values, whereas for T > 300, Ne fluctuates around
the average values (Figure 3b), which is the sign of the existence of a transition in the flow
from a steady laminar regime to an unsteady periodic one.

The flow moves from a motionless state to a convective flow and finally to a periodic
one once the system loses its linear stability. This change in regime foreshadows the later
appearance of chaotic flow for certain high values of T. It can be explained by the fact that
the system with higher T values (T > 300) is essentially in the inertial state of motion and
that the flow will probably never reach a steady state.

The results in the next paragraphs are presented for C = 10, Pr = 10 and for the values
of Ra above the critical Rayleigh number (Rac~1708).
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3.1. Influence of Rayleigh Number Ra on Electric Nusselt Number Ne

Figure 4 shows the evolution of the electric Nusselt number Ne with T in the case of
ETC for different values of the Ra number (one is slightly above the critical value Ra = 2000
and the others are for higher Ra values Ra = 5000 and 10,000) and for the pure EC (Ra = 0).
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It can be seen that the Ne number does not depend significantly on the Ra number
for high enough values of T. We have already demonstrated a similar behavior for the
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Nusselt number (Nu) in Refs. [31,32]; for large values of T, the electrical forces dominate the
buoyancy forces. In the case of pure EC, when T < Tc (Tc = 163.4 [11]), the perturbation does
not trigger the flow instability; the perturbed flow reverses to the hydrostatic state. If T
decreases after the EC vortices are formed, they are maintained until T = Tf (Tf = 108.5 [11]),
when the system returns to the hydrostatic state. As soon as T is greater than Tc (T > Tc)
there is a sudden jump in the Ne for EC due to the motion of the liquid initially at rest, with
a maximum velocity that exceeds the ion drift velocity. For ETC, when T < Tc we observe
greater values for the Ne, which can be explained by the non-linear coupling phenomena
between the buoyancy and Coulomb forces; the motion of the liquid induced by thermo-
convection drags more electric charge and then causes an increase in the electric current.
This means that the increase in the electric Nusselt number Ne is due to thermo-convection.
For Ra = 2000 and T > 300, the Ne values are close to the ones obtained in the case of pure EC.
At Ra = 10,000 the situation is different; in the initial stage, the flow is thermo-convective
with a two-roll structure, (it does not change), but later, at high values of T (T > 280), it
changes drastically. There is a jump, and it becomes an electro-thermo-convective flow
structure with four rolls.

3.2. Influence of Mobility Parameter M and T

In this section, we study the electro-thermo-convection driven by buoyancy and
Coulomb forces for a large set of M parameter values. Numerical simulations are made
for larger values of T to those corresponding with the saturation zone and to the fully
developed turbulence flows. Figure 5 presents the variation in the electric Nusselt number
Ne as a function of T under different mobility parameters.
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10, 20, 40.

The shape of the curve for M = 5 is similar to those obtained in Ref. [9] for pure
electro-convection; Ne grows with T then reaches its saturation value. For other values
of M, we can see that Ne increases with T until T~350 but does not reach the saturation
value because of the influence of thermo-convection. For high values of T (T > 350), Ne
decreases due to the transition from viscous to non-linear flow. For a high value of M
(M > 40), i.e., liquids with very low ion mobility, the influence of T seems less important
and the flow remains thermo-convective. For higher values of T (T > 450), Ne increases
again. The increases in velocity and turbulent mixing can explain this.

In Figure 6, the variation of the electric Nusselt number Ne with M is presented for
different values of the instability criteria T. We can see the fast linear growth of Ne, which
is similar to the results obtained in Ref. [9].
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Fom theoretical predictions and experimental observations [9], the saturation value of
Ne depends on the physical property of the liquids and is given as a function of parameter
M by the following expression:

Ne =
I
I0

≈
(

M
3

)1/2
(6)

Figure 7 presents the numerical results for the saturation value of Ne taken from
Figure 5 and those obtained from formula (6) for pure electrohydrodynamic problems [9].
As one can see, the shape of both curves is similar, the difference between them being due
to the influence of thermo-convection.
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3.3. Flow Transition Process Described by the Maximum Fluid Velocity

Figure 8 presents the bifurcation diagram for thermo- and electro-convection expressed
with the maximum fluid velocity in the bulk Vmax versus T for different values of parameter
M. Initially, Vmax increases slowly with T. Then, for certain values of T, the slope of the
curve changes and continues to increase. The change in slope depends on the values of M
and corresponds to the transition from thermo- to electro-convection. For smaller values of
M (M = 5 and M = 10, see Figure 8a), the values of Vmax are much higher than for the other
represented M (see Figure 8b), but the behavior of the curves is similar.
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Figure 9 shows the evolution of the maximum velocity magnitude in time for different
driving parameters M and T and Ra = 2000 and Pr = 10. Figure 9a plots the velocity
magnitude for M = 10 and three different electric Rayleigh numbers, T = 150, 220 and
380. For T = 150 the flow remains inactive at the early stage; the velocity magnitude then
grows quickly with an exponentially growing rate. Finally, the system reaches a steady
state with two thermo-convective roll patterns. The curve for T= 220 has a slightly different
behavior; it first develops as for T = 150 but after a certain time (~10) there is a sudden
upward jump and it reaches a steady state with four convective cells. This means that the
electro-convection dominates, but the flow rests in a steady state. For T = 380, the Vmax
curve grows rapidly; the flow becomes strongly unsteady and looks periodic.

Figure 9b depicts the evolution in time of the maximum velocity magnitude at different
settings of the driving parameters M and T corresponding to the values at which the slopes
of the curves change (see Figure 8). The evolution of peak velocity Vmax also experiences
two different stages after the initial disturbance. The first one is the exponential growth
stage, which is the same for the smaller values of T (see Figure 9a). However, the second
stage is quite different; Vmax grows rapidly, the flow becomes strongly unsteady and looks
chaotic. In simpler terms, the flow transitions from a stationary state to a thermo-convective
flow, followed by an electro-convective flow, and eventually reaches a chaotic state once
the system loses its linear stability. This means that the system with high T is essentially in
the inertial state of motion. Due to the electric force and destabilizing buoyancy force, the
system exhibits electro-thermo-convective vortices and transitions to a chaotic flow field,
where the flow fluctuates irregularly in time.
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Figure 9. Time evolution of the maximum velocity magnitude for Ra = 2000, Pr = 10: (a) for M = 10;
T = 150, 220 and 380; and (b) electro-thermo-convection at different driving parameters M and T in
an unsteady regime.

In Figure 10, we present the charge density distribution and the stream function at a
steady convective state for the values of the electrical instability parameters T, in which the
flow passes from a thermo-convective pattern with two rolls to an electro-convective one
with four rolls.

Fluids 2024, 9, x FOR PEER REVIEW 10 of 13 
 

 
(a) 

(b) 

Figure 9. Time evolution of the maximum velocity magnitude for Ra = 2000, Pr = 10: (a) for M = 10; 
T = 150, 220 and 380; and (b) electro-thermo-convection at different driving parameters M and T in 
an unsteady regime. 

 

 
 

(a) (b) 

Figure 10. Distributions of charge density and stream function at a steady convective state for Ra = 
2000, Pr = 10: (a) T = 200 with two thermo-convective rolls; and (b) T = 220 with four electro-convec-
tive rolls. 

In Figure 10, we can observe the formation of electro-convective cells with charge-
depleted central regions. This absence of charges in the core of the cell is a consequence of 
the non-uniform distribution of the electric field and the rotational fluid motion induced 
by the Coulomb force. This well-established phenomenon is a hallmark of Coulomb-
driven electro-convective flows and has been consistently reported in numerous experi-
mental and numerical investigations [4,5,12,30]. 

In Figure 11, the transition from a thermo- to an electro-convective regime is shown 
in detail by the stream function. For M = 5 we see that the two-roll paĴerns for T < Tc 

change to four-roll paĴerns from T = 220, as in the pure electro-convective case. The same 
change in the roll paĴerns also occurs for M = 10, when four rolls appear at T approxima-
tively equal to 220 and for M = 20, in which the change appears at T = 250. For M = 40 and 

Figure 10. Distributions of charge density and stream function at a steady convective state for
Ra = 2000, Pr = 10: (a) T = 200 with two thermo-convective rolls; and (b) T = 220 with four electro-
convective rolls.

In Figure 10, we can observe the formation of electro-convective cells with charge-
depleted central regions. This absence of charges in the core of the cell is a consequence of
the non-uniform distribution of the electric field and the rotational fluid motion induced by
the Coulomb force. This well-established phenomenon is a hallmark of Coulomb-driven
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electro-convective flows and has been consistently reported in numerous experimental and
numerical investigations [4,5,12,30].

In Figure 11, the transition from a thermo- to an electro-convective regime is shown in
detail by the stream function. For M = 5 we see that the two-roll patterns for T < Tc change
to four-roll patterns from T = 220, as in the pure electro-convective case. The same change
in the roll patterns also occurs for M = 10, when four rolls appear at T approximatively
equal to 220 and for M = 20, in which the change appears at T = 250. For M = 40 and
M = 60, the two-roll pattern turns to a four-cell one at a higher level of T—T~320, and
T~380, respectively.
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The change in the number of rolls corresponds to a change in the slope of the curve
(see Figures 8 and 9a for T = 150 and 220). In all cases, the change in the slope of the curves
Ne(T) always occurs when the number of rolls passes from two to four; in all cases Ne
seems to saturate for the highest values of T. Such a transition from two to four convective
cells has already been observed [31,32] in another study. We must also note that a change
from two to four cells for M > 40 appears for higher values of T, which means that the flow
remains thermo-convective up to T > 320. In the last column, the patterns are already in an
unsteady and chaotic regime.

4. Conclusions

This work presents a numerical study of electro-thermo-convective phenomena in an
insulating liquid layer between two parallel plates from the point of view of the electric
Nusselt number. Numerical simulations for a large range of M and T values corresponding
to the saturation zone and a fully developed chaotic flow were performed. It was confirmed
once again that electrical forces dominate buoyancy forces as far as T > Tc. For higher
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values of T, and for a fixed M, the change in the number of rolls has an influence on the
shape of the Ne(T) curves. It can be clearly seen that when the number of rolls changes,
the slope of the maximum velocity with T changes as well. The transition from thermal to
electro-convective flow was found and studied. We show the transition from thermo- to
electro-convective flow, and, later, to unsteady flow as a function of parameter M and T
through the maximum fluid velocity. For lower values of M (M = 5 and M = 10), electro-
convection dominates for the values of T close to the linear instability criteria and Ne(T)
grows fast. For high values of M, the electrical forces exceed the buoyancy forces for high T
values. When T reaches the region in which the convective flow moves to the inertial state
of motion and finally to chaos, Ne increases with T for a fixed M. Some of the results on Ne
obtained here are in good agreement with the results presented in Ref. [9].
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