

Correction: Sachhin et al. Darcy–Brinkman Model for Ternary Dusty Nanofluid Flow across Stretching/Shrinking Surface with Suction/Injection. *Fluids* 2024, 9, 94

Sudha Mahanthesh Sachhin ^{1,*}, Ulavathi Shettar Mahabaleshwar ^{1,*}, David Laroze ², and Dimitris Drikakis ³

- ¹ Department of Studies in Mathematics, Shivagangothri, Davangere University, Davangere 577 007, India
- ² Instituto de Alta Investigacion, Universidad de Tarapacá, Casilla 7 D, Arica 1000000, Chile; dlarozen@uta.cl
 ³ Institute for Advanced Modelling and Simulation University of Nicosia Nicosia CV-2417, Cyprus
- ³ Institute for Advanced Modelling and Simulation, University of Nicosia, Nicosia CY-2417, Cyprus; drikakis.d@unic.ac.cy
- * Correspondence: sachinsm030@gmail.com (S.M.S.); u.s.m@davangereuniversity.ac.in (U.S.M.)

Figures: In Section 5, we aligned Figures 14–18 by consistently adding all the modelling parameters inside the labels [1]. We also revised the captions for Figures 14–18 to clearly state what they represent [1]. The correct Figures 14–18 appears below.

Figure 14. Temperature profiles for the dusty and fluid phases versus similarity variable for S = -2.

Correction

Citation: Sachhin, S.M.; Mahabaleshwar, U.S.; Laroze, D.; Drikakis, D. Correction: Sachhin et al. Darcy–Brinkman Model for Ternary Dusty Nanofluid Flow across Stretching/Shrinking Surface with Suction/Injection. *Fluids* 2024, *9*, 94. *Fluids* 2024, *9*, 241. https://doi.org/ 10.3390/fluids9100241

Received: 27 September 2024 Revised: 29 September 2024 Accepted: 8 October 2024 Published: 17 October 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Figure 15. Temperature profiles for the dusty and fluid phases versus similarity variable for S = 0.

Figure 16. Temperature profiles for the dusty and fluid phases versus similarity variable for S = 2.

Figure 17. Temperature profile versus similarity variable for a shrinking boundary.

Figure 18. Velocity profile versus similarity variable variation in Da^{-1} .

Text Correction: In Section 2, the following text was added: "Similar to previous studies [2]", "*b* is a parameter that is b > 0 for heated and b < 0 for cooled plate". The correct text appears below.

Similar to previous studies [2], here, u, v, u_p , and v_p are the velocity components of a fluid and dusty fluid phase along the x- and y-directions, respectively; the dusty and fluid phase temperatures are Tp and T; μ is the dynamic viscosity; ρ is the effective density; κ is the thermal conductivity; b is a parameter that is b > 0 for heated and b < 0 for cooled plate; σ is the electrical conductivity; C_p and C_m are the specific heat coefficients; τ_T is the

heat equilibrium time; L_1 is the Stokes drag/resistance term; ν is the kinematic viscosity of nanoparticles N; k_1 is the flow permeability; and $\tau_v = \frac{m}{L_1}$ is a relaxation time parameter, where m denotes the mass of dusty particles [2].

In Section 2, we corrected the typographical error in the definition of the Prandtl number. The correct one is $Pr = \frac{\mu C_p}{\kappa_f}$.

In Section 5, we revised the text to avoid ambiguity regarding the results of Figures 14–16 [1]. The correct text appears below.

Figures 14–16 show the temperatures for the fluid and dusty phases for different values of S = -2, 0 and 2, respectively. Increasing *S* value increases the thermal boundary layer thickness of the fluid phase. The dusty phase exhibits an increase in the thermal boundary layer when *S* increases from -2 to 0, while decreases for S = 2.

Equations: In Equations (35)–(39), there are typographical errors. We revised the subscript *thnf* to *tnf*. In Equation (38), we also revised the κ_{nf} to κ_f . The correct equations appears below:

1 11

$$\mu_{tnf} = \frac{1}{\left(1 - \phi_{Ag}\right)^{2.5} \left(1 - \phi_{Cu}\right)^{2.5} \left(1 - \phi_{TiO_2}\right)^{2.5}}.$$
(35)

$$\frac{\rho_{tnf}}{\rho_f} = \left(1 - \phi_{Ag}\right) \left\{ \left(1 - \phi_{Cu}\right) \begin{bmatrix} \left(1 - \phi_{TiO_2}\right) \\ + \phi_{TiO_2} \frac{\rho_{TiO_2}}{\rho_f} \end{bmatrix} + \phi_{Cu} \frac{\rho_{Cu}}{\rho_f} \right\}$$

$$+ \phi_{L} \frac{\rho_{Ag}}{\rho_{Ag}}$$
(36)

 $+\phi_{Ag}\frac{1}{\rho_f}$

$$\frac{(\rho C_{p})_{tnf}}{(\rho C_{p})_{f}} = (1 - \phi_{Ag}) \begin{cases} (1 - \phi_{Cu}) \times \\ \left[(1 - \phi_{TiO_{2}}) \\ + \phi_{TiO_{2}} \frac{(\rho C_{p})_{TiO_{2}}}{(\rho C_{p})_{f}} \end{bmatrix} \\ + \phi_{Ag} \frac{(\rho C_{p})_{Ag}}{(\rho C_{p})_{f}}.$$
(37)

$$\frac{\kappa_{tnf}}{\kappa_{hnf}} = \frac{\kappa_{Ag} + 2\kappa_{hnf} - 2\phi_{Ag}\left(\kappa_{hnf} - \kappa_{Ag}\right)}{\kappa_{Ag} + 2\kappa_{hnf} + \phi_{Ag}\left(\kappa_{hnf} - \kappa_{Ag}\right)},$$

$$\frac{\kappa_{hnf}}{\kappa_{nf}} = \frac{\kappa_{Cu} + 2\kappa_{nf} - 2\phi_{Cu}\left(\kappa_{nf} - \kappa_{Cu}\right)}{\kappa_{Cu} + 2\kappa_{nf} + \phi_{Cu}\left(\kappa_{nf} - \kappa_{Cu}\right)},$$

$$\frac{\kappa_{nf}}{\kappa_{f}} = \frac{\kappa_{TiO_{2}} + 2\kappa_{f} - 2\phi_{TiO_{2}}\left(\kappa_{f} - \kappa_{TiO_{2}}\right)}{\kappa_{TiO_{2}} + 2\kappa_{f} + \phi_{TiO_{2}}\left(\kappa_{f} - \kappa_{TiO_{2}}\right)}.$$

$$\frac{\sigma_{tnf}}{\sigma_{hnf}} = 1 + \frac{3\left(\frac{\sigma_{Ag}}{\sigma_{hnf}} - 1\right)\phi_{Ag}}{\left(\frac{\sigma_{Ag}}{\sigma_{hnf}} + 2\right) - \left(\frac{\sigma_{Ag}}{\sigma_{hnf}} - 1\right)\phi_{Ag}},$$

$$\frac{\sigma_{hnf}}{\sigma_{hnf}} = 1 + \frac{3\left(\frac{\sigma_{Cu}}{\sigma_{nf}} - 1\right)\phi_{Cu}}{\left(\frac{\sigma_{Cu}}{\sigma_{nf}} - 1\right)\phi_{Cu}},$$
(39)

$$\sigma_{nf} = 1 + \left(\frac{\sigma_{Cu}}{\sigma_{nf}} + 2\right) - \left(\frac{\sigma_{Cu}}{\sigma_{nf}} - 1\right)\phi_{Cu}$$

$$\frac{\sigma_{nf}}{\sigma_{f}} = 1 + \frac{3\left(\frac{\sigma_{TiO_2}}{\sigma_{f}} - 1\right)\phi_{TiO_2}}{\left(\frac{\sigma_{TiO_2}}{\sigma_{f}} + 2\right) - \left(\frac{\sigma_{TiO_2}}{\sigma_{f}} - 1\right)\phi_{TiO_2}}.$$

Nomenclature: We added the units that were missing in several parameters and corrected the typographical errors in some of the parameters [1]. The correct Nomenclature appears below.

The authors state that the scientific conclusions are unaffected. These corrections were approved by the Academic Editor. The original publication has also been updated.

Nomenclature

A_1, A_2, A_3, A_4, A_5	Constants
а	Stretching coefficient (s^{-1})
B_0	Magnetic parameter (Tesla)
C_m, C_p	Specific heat coefficient $(JK^{-1}kg^{-1})$
d	Stretching/shrinking parameter
Da^{-1}	Inverse Darcy number
Ec	Eckert number
$f(\eta)$	Velocity function fluid phase
$F(\eta)$	Velocity function dusty phase
k_1	Permeability of porous medium (m ²)
1	Mass number
L_1	Stokes drag term (kg/s)
т	Mass of the dusty particles (kg)
М	dimensionless magnetic parameter
Ni	Heat source/sink parameter
Nr	Thermal radiation parameter
Ν	Quantity of nanoparticles (m^{-3})
Pr	Prandtl number
р	Pressure (Nm^{-2})
qr	Radiative heat flux (Wm^{-2})
Q_0	Heat source/sink $(Wm^{-3}K^{-1})$
S	Dimensionless mass suction/injection parameter
S > 0	Mass suction parameter
S = 0	No permeability
T_p	Dusty-phase temperature (K)
T_w	Surface temperature (K)
Т	Fluid temperature (K)
T_{∞}	Ambient temperature (K)
и, v	x, y-axis velocity of fluid phase (ms^{-1})
u_p, v_p	x, y-axis velocity of dusty phase (ms^{-1})
u_w	Wall velocity (ms^{-1})
v_w	Wall mass transfer velocity (ms^{-1})
x	Coordinate along the plate (m)
y	Coordinate normal to the plate (m)
Greek symbols	
α	Stretching speed of dust particles (ms^{-1})
β_T	Fluid–particle interaction parameters
β	Solution parameters
$\lambda_1, \lambda_2, \lambda_3$	Solution roots
<i>\$</i> 1, <i>\$</i> 2, <i>\$</i> 3, <i>\$</i> 4	Constants
η	Similarity variable
γ	Heat coefficient
Λ	Brinkman number
κ	Thermal conductivity $(Wm^{-1}K^{-1})$
κ^*	Absorption coefficient (m^{-1})
μ_{eff}	Effective dynamic viscosity $(kg(ms)^{-1})$
μ, μ_p	Dynamic viscosity of the fluid and dusty phase $(kg(ms)^{-1})$
ν, ν_p	Kinematic viscosity of fluid and dusty phase (m^2s^{-1})
ρ	Fluid density (kgm ⁻³)

$ ho_p$	Particle phase density (kgm ⁻³)
ψ	Stream function
σ, σ_p	Electrical conductivity (<i>Siemens</i> / $m = A^2 s^3 m^{-3} kg^{-1}$)
σ^*	Stephen–Boltzmann constant $(Wm^{-2}K^{-4})$
$ au_T$	Heat equilibrium time (s)
$ au_v$	Relaxation time parameter (s)
φ	Fluid nanoparticle volume fraction ratio
$\theta(\eta)$	Dimensionless temperature of fluid phase
$\Phi(\eta)$	Dimensionless temperature of dusty phase
Abbreviations	
HNF	Hybrid nanofluid
ODE	Ordinary differential equation
PDE	Partial differential equation
MHD	Magnetohydrodynamics
BCs	Boundary conditions
TNF	Ternary nanofluid

Reference

1. Sachhin, S.M.; Mahabaleshwar, U.S.; Laroze, D.; Drikakis, D. Darcy–Brinkman Model for Ternary Dusty Nanofluid Flow across Stretching/Shrinking Surface with Suction/Injection. *Fluids* **2024**, *9*, 94. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.