

Correction: Sachhin et al. Darcy–Brinkman Model for Ternary Dusty Nanofluid Flow across Stretching/Shrinking Surface with Suction/Injection. *Fluids* **2024,** *9***, 94**

Sudha Mahanthesh Sachhin 1,* [,](https://orcid.org/0009-0006-4101-1074) Ulavathi Shettar Mahabaleshwar 1,*, David Laroze [2](https://orcid.org/0000-0002-6487-8096) and Dimitris Drikakis [3](https://orcid.org/0000-0002-3300-7669)

- ¹ Department of Studies in Mathematics, Shivagangothri, Davangere University, Davangere 577 007, India
- 2 Instituto de Alta Investigacion, Universidad de Tarapacá, Casilla 7 D, Arica 1000000, Chile; dlarozen@uta.cl 3
	- Institute for Advanced Modelling and Simulation, University of Nicosia, Nicosia CY-2417, Cyprus; drikakis.d@unic.ac.cy
- ***** Correspondence: sachinsm030@gmail.com (S.M.S.); u.s.m@davangereuniversity.ac.in (U.S.M.)

Figures: In Section 5, we aligned Figures 14–18 by consistently adding all the modelling parameters inside the labels [\[1\]](#page-5-0). We also revised the captions for Figures 14–18 to clearly state what they represent [\[1\]](#page-5-0). The correct Figures $14-18$ $14-18$ appears below.

 Figure 14. Temperature profiles for the dusty and fluid phases versus similarity variable for *S* = −2.

Correction

Citation: Sachhin, S.M.; Mahabaleshwar, U.S.; Laroze, D.; Drikakis, D. Correction: Sachhin et al. Darcy–Brinkman Model for Ternary Dusty Nanofluid Flow across Stretching/Shrinking Surface with Suction/Injection. *Fluids* 2024, *9*, 94. *Fluids* **2024**, *9*, 241. [https://doi.org/](https://doi.org/10.3390/fluids9100241) [10.3390/fluids9100241](https://doi.org/10.3390/fluids9100241) Ì

Received: 27 September 2024 Revised: 29 September 2024 Accepted: 8 October 2024 Published: 17 October 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$).

Figure 15. Temperature profiles for the dusty and fluid phases versus similarity variable for $S = 0$.

Figure 16. Temperature profiles for the dusty and fluid phases versus similarity variable for $S = 2$.

Figure 17. Temperature profile versus similarity variable for a shrinking boundary.

Figure 18. Velocity profile versus similarity variable variation in Da^{-1} .

Text Correction: In Section 2, the following text was added: "Similar to previous Text Correction: In Section 2, the following text was added: "Similar to previous text appears below. studies [2]", "b is a parameter that is $b > 0$ for heated and $b < 0$ for cooled plate". The correct

Similar to previous studies [2], here, u, v, u_p, and v_p are the velocity components of a fluid and dusty fluid phase along the x - and y -directions, respectively; the dusty and fluid phase temperatures are Tp and T ; μ is the dynamic viscosity; ρ is the effective density; κ is the thermal conductivity; *b* is a parameter that is $b > 0$ for heated and $b < 0$ for cooled σ is the electrical conductivity; C_p and C_p are the specific heat coefficients; τ_T is the plate; σ is the electrical conductivity; C_p and C_m are the specific heat coefficients; τ_T is the heat equilibrium time; *L*¹ is the Stokes drag/resistance term; *ν* is the kinematic viscosity of nanoparticles *N*; *k*₁ is the flow permeability; and $\tau_v = \frac{m}{L_1}$ is a relaxation time parameter, where *m* denotes the mass of dusty particles [2].

In Section 2, we corrected the typographical error in the definition of the Prandtl number. The correct one is $Pr = \frac{\mu C_p}{\kappa_c}$ $\frac{\kappa_{\mathcal{L}p}}{\kappa_f}$.

In Section 5, we revised the text to avoid ambiguity regarding the results of Figures [14](#page-0-0)[–16](#page-1-0) [\[1\]](#page-5-0). The correct text appears below.

Figures [14–](#page-0-0)[16](#page-1-0) show the temperatures for the fluid and dusty phases for different values of *S* = −2, 0 and 2, respectively. Increasing *S* value increases the thermal boundary layer thickness of the fluid phase. The dusty phase exhibits an increase in the thermal boundary layer when *S* increases from −2 to 0, while decreases for *S* = 2.

Equations: In Equations (35)–(39), there are typographical errors. We revised the subscript *thnf* to *tnf*. In Equation (38), we also revised the $κ_{nf}$ to $κ_f$. The correct equations appears below:

$$
\mu_{tnf} = \frac{1}{\left(1 - \phi_{Ag}\right)^{2.5} \left(1 - \phi_{Cu}\right)^{2.5} \left(1 - \phi_{TiO_2}\right)^{2.5}}.
$$
\n(35)

$$
\frac{\rho_{\text{tnf}}}{\rho_f} = (1 - \phi_{Ag}) \left\{ (1 - \phi_{Cu}) \left[\frac{(1 - \phi_{TiO_2})}{+\phi_{TiO_2}} \frac{\rho_{TiO_2}}{\rho_f} \right] + \phi_{Cu} \frac{\rho_{Cu}}{\rho_f} \right\}
$$
\n
$$
+ \phi_{Ag} \frac{\rho_{Ag}}{\rho_f}.
$$
\n(36)

$$
\frac{(\rho C_p)_{tnf}}{(\rho C_p)_f} = (1 - \phi_{Ag}) \left\{ \begin{bmatrix} (1 - \phi_{TiO_2}) \\ \begin{bmatrix} (1 - \phi_{TiO_2}) \\ + \phi_{TiO_2} \frac{(\rho C_p)_{TiO_2}}{(\rho C_p)_f} \end{bmatrix} \\ + \phi_{Ca} \frac{(\rho C_p)_{Cu}}{(\rho C_p)_f} \end{bmatrix} + \phi_{Ag} \frac{(\rho C_p)_{Ag}}{(\rho C_p)_f} . \tag{37}
$$

$$
\frac{\kappa_{tnf}}{\kappa_{hnf}} = \frac{\kappa_{Ag} + 2\kappa_{hnf} - 2\phi_{Ag} (\kappa_{hnf} - \kappa_{Ag})}{\kappa_{Ag} + 2\kappa_{hnf} + \phi_{Ag} (\kappa_{hnf} - \kappa_{Ag})},
$$
\n
$$
\frac{\kappa_{hnf}}{\kappa_{nf}} = \frac{\kappa_{Cu} + 2\kappa_{nf} - 2\phi_{Cu} (\kappa_{nf} - \kappa_{Cu})}{\kappa_{Cu} + 2\kappa_{nf} + \phi_{Cu} (\kappa_{nf} - \kappa_{Cu})},
$$
\n
$$
\frac{\kappa_{nf}}{\kappa_{f}} = \frac{\kappa_{TiO_2} + 2\kappa_{f} - 2\phi_{TiO_2} (\kappa_{f} - \kappa_{TiO_2})}{\kappa_{TiO_2} + 2\kappa_{f} + \phi_{TiO_2} (\kappa_{f} - \kappa_{TiO_2})}.
$$
\n
$$
\frac{\sigma_{tnf}}{\sigma_{hnf}} = 1 + \frac{3(\frac{\sigma_{Ag}}{\sigma_{hnf}} - 1)\phi_{Ag}}{(\frac{\sigma_{Ag}}{\sigma_{hnf}} + 2) - (\frac{\sigma_{Ag}}{\sigma_{hnf}} - 1)\phi_{Ag}},
$$
\n
$$
\frac{\sigma_{hnf}}{\sigma_{nf}} = 1 + \frac{3(\frac{\sigma_{Cu}}{\sigma_{nf}} - 1)\phi_{Cu}}{(\frac{\sigma_{Ca}}{\sigma_{nf}} - 1)\phi_{Cu}},
$$
\n(39)

$$
\sigma_{nf} \qquad \left(\frac{\sigma_{Cu}}{\sigma_{nf}}+2\right)-\left(\frac{\sigma_{Cu}}{\sigma_{nf}}-1\right)\phi_{Cu}
$$
\n
$$
\frac{\sigma_{nf}}{\sigma_{f}}=1+\frac{3\left(\frac{\sigma_{TiO_2}}{\sigma_{f}}-1\right)\phi_{TiO_2}}{\left(\frac{\sigma_{TiO_2}}{\sigma_{f}}+2\right)-\left(\frac{\sigma_{TiO_2}}{\sigma_{f}}-1\right)\phi_{TiO_2}}.
$$

Nomenclature: We added the units that were missing in several parameters and corrected the typographical errors in some of the parameters [\[1\]](#page-5-0). The correct Nomenclature appears below.

The authors state that the scientific conclusions are unaffected. These corrections were approved by the Academic Editor. The original publication has also been updated.

Nomenclature

Reference

1. Sachhin, S.M.; Mahabaleshwar, U.S.; Laroze, D.; Drikakis, D. Darcy–Brinkman Model for Ternary Dusty Nanofluid Flow across Stretching/Shrinking Surface with Suction/Injection. *Fluids* **2024**, *9*, 94. [\[CrossRef\]](https://doi.org/10.3390/fluids9040094)

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.