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Abstract: This is a comprehensive overview on our research work to link interdisciplinary modeling and
simulation techniques to improve the predictability and reliability simulations (PARs) of compressible
turbulence with shock waves for general audiences who are not familiar with our nonlinear approach. This
focused nonlinear approach is to integrate our “nonlinear dynamical approach” with our “newly developed
high order entropy-conserving, momentum-conserving and kinetic energy-preserving methods” in the
quantification of numerical uncertainty in highly nonlinear flow simulations. The central issue is that
the solution space of discrete genuinely nonlinear systems is much larger than that of the corresponding
genuinely nonlinear continuous systems, thus obtaining numerical solutions that might not be solutions of
the continuous systems. Traditional uncertainty quantification (UQ) approaches in numerical simulations
commonly employ linearized analysis that might not provide the true behavior of genuinely nonlinear
physical fluid flows. Due to the rapid development of high-performance computing, the last two decades
have been an era when computation is ahead of analysis and when very large-scale practical computations
are increasingly used in poorly understood multiscale data-limited complex nonlinear physical problems
and non-traditional fields. This is compounded by the fact that the numerical schemes used in production
computational fluid dynamics (CFD) computer codes often do not take into consideration the genuinely
nonlinear behavior of numerical methods for more realistic modeling and simulations. Often, the numerical
methods used might have been developed for weakly nonlinear flow or different flow types other than
the flow being investigated. In addition, some of these methods are not discretely physics-preserving
(structure-preserving); this includes but is not limited to entropy-conserving, momentum-conserving and
kinetic energy-preserving methods. Employing theories of nonlinear dynamics to guide the construction
of more appropriate, stable and accurate numerical methods could help, e.g., (a) delineate solutions of
the discretized counterparts but not solutions of the governing equations; (b) prevent numerical chaos or
numerical “turbulence” leading to FALSE predication of transition to turbulence; (c) provide more reliable
numerical simulations of nonlinear fluid dynamical systems, especially by direct numerical simulations
(DNS), large eddy simulations (LES) and implicit large eddy simulations (ILES) simulations; and (d) prevent
incorrect computed shock speeds for problems containing stiff nonlinear source terms, if present. For
computation intensive turbulent flows, the desirable methods should also be efficient and exhibit scalable
parallelism for current high-performance computing. Selected numerical examples to illustrate the genuinely
nonlinear behavior of numerical methods and our integrated approach to improve PARs are included.

Keywords: nonlinear dynamics; discrete dynamics; dynamics of numerics; numerics of dynamics;
uncertainty quantification; chaotic transients; direct numerical simulations; nonlinear approach to
uncertainty quantification; high-order shock-capturing methods; entropy-conserving methods; physics-
preserving (structure-preserving) methods; hybrid methods; nonlinear filter methods; momentum-conserving
methods; kinetic-energy-preserving methods; compressible turbulence; gas dynamics; MHD
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1. Introduction

This paper presents an overview on our continuing long-term effort in reliable and
accurate high-order numerical method development by integrating our earlier work on
the application of nonlinear dynamical systems theory to improve the understanding
of global nonlinear behavior of finite discretization and their connection to numerical
uncertainties in CFD and computational physics. See [1–3] and the references cited therein
for more details. Our approach is to use interdisciplinary knowledge gained from nonlinear
studies to aid the construction of more appropriate and to improve high-order numerical
methods for the simulation of compressible turbulent flows. The areas of application
are the modeling and simulation of turbulence combustion, supersonic turbulence and
computational astrophysics, and aiding the design of the next-generation spacecrafts
and high-speed civil transports. Supersonic turbulence occurs in, e.g., scramjet engines,
re-entry spacecrafts, black hole accretions, star formations, stellar winds and volcanic
eruptions. We also employ these guiding principles as a nonlinear approach for uncertainty
quantification (UQ) of multiscale CFD simulations. Due to the fact that our integrated
multi-disciplinary nonlinear approach is not well known in the CFD community, the intent
of this comprehensive overview is for general audiences who are not familiar with our
nonlinear approach. It is hoped that the long overview will be helpful.

This nonlinear approach is particularly vital to improve the predictability and reliabil-
ity for numerical simulation (PARs) of time-accurate, long-time integration of compressible
turbulence with shock waves by DNS, LES and ILES computations. One of the many
key contributing factors is that even though the numerical methods were designed to be
stable and accurate for rapidly developing flows, they are either too dissipative, encounter
nonlinear instability or exhibit aliasing error and other anomalies that drastically deviate
from linear or linearized analyses in long-time integration of the aforementioned genuinely
nonlinear multiscale fluid flows. For compressible turbulence with shock waves, designing
methods with the minimal amount of numerical dissipation while maintaining numerical
stability and accuracy is an intricate balancing act. Proper adaptive numerical dissipation
control in high-order methods would provide accurate and stable solutions and play an
integral role in the success of PARs. See our numerical method development for a variety
of flow types and characteristics presented in [1,2,4–30]. See also a recent article by Glimm
et al. concerning the nonlinear phenomena in turbulence simulations [31].

For definitions of linear, weakly nonlinear, moderately nonlinear and strongly nonlin-
ear/genuinely nonlinear continuum systems and their discretized counterparts, see [31–39]
for some definitions. Oversimplified definitions for weakly, moderately and strongly non-
linear systems are as follows: Consider a nonlinear system. Loosely speaking, a weakly
nonlinear theory keeping only the first term of the Taylor series expansion as a function
of the considered system variable/parameter would provide the behavior of a weakly
nonlinear system as a function of the chosen variable/parameter. A moderately nonlinear
system keeps the first two terms or the first three terms of the Taylor series expansion.
A strongly nonlinear system keeps the high-order terms or all terms of the Taylor series
expansion.

1.1. Central Issues

Often, numerical methods based on solution performance behavior for model linear or
weakly nonlinear systems are employed by some practitioners to simulate highly coupled
genuinely nonlinear systems. For example, we found in the open literature that some
claims of computed turbulence are NOT turbulence of the chosen governing equations.
In addition, some claims of transition to turbulence for a considered Reynolds number
are numerical transitions to turbulence. Some of the causes are as follows: (a) employing
diffusive methods, (b) lacking sufficient grid points, (c) trapping into a long numerical
chaotic transient phase and mistakenly identifying as turbulence transitions that have al-
ready occurred, (d) introducing spatial nonlinearity by nonlinear shock-capturing schemes,
(e) introducing nonlinearity by time discretizations, (f) introducing nonlinearity by grid
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adaptations, (g) insufficient amount of numerical dissipation by low-dissipative high-order
methods, (h) exhibiting wrong propagation speed of discontinuities by standard conserva-
tive shock-capturing methods for flows containing stiff source terms and discontinuities,
(i) employing wrong numerical methods for flows with source terms and (j) employing en-
tropy violating methods for external hypersonic blunt-body flows. Additional causes also
exist but are beyond the scope of this overview. Examples to illustrate some of the causes or
combined causes can be found in [1,2,4,6–8,18–24,40–42] and the references cited therein.

The central issue is that the solution space of discrete genuinely nonlinear systems is
much LARGER than that of the corresponding genuinely nonlinear continuous systems,
thus resulting in numerical solutions that are not solutions of the physical systems. A
nonlinear method can introduce incorrect solutions when solving a linear system. Different
numerical methods resulting from discretizing the same governing equations are separate
discrete nonlinear dynamical systems as a function of the finite (non-zero) time step, finite
grid spacing and tunable scheme parameter aside from the inherent physical parameters
of the continuum governing equations. The traditional uncertainty quantification (UQ)
approaches in numerical simulations often employ linearized analysis that might not pro-
vide the true behavior of the genuinely nonlinear physical flows. Linearized analysis relies
on local behavior, and the convergence criterion is based on “as the time step and grid
spacing approach to zero”. In all computational physics practices, finite (not extremely
small) time steps and grid spacings are used. Unlike the linear model equations used
for conventional stability and accuracy considerations in time-dependent partial different
equations (PDEs), there is no equivalent unique nonlinear model equation for nonlinear
hyperbolic and parabolic PDEs for fluid dynamics. A numerical method behaving in a
certain way for a particular nonlinear differential equation (DE) (PDE or ordinary differen-
tial equation (ODE)) might exhibit a different behavior for a different nonlinear DE even
though the DEs are of the same type. The need to guarantee PARs of genuinely nonlinear
systems becomes acute when computations offer the ONLY way of generating this type of
data-limited simulations; the lack of reliable observable data and/or experimental means is
unfeasible for any of a number of possible reasons.

At the same time, due to the rapid advancement of high-performance computing,
the last two decades have been an era when computation is far ahead of analysis and
when very large-scale practical computations are increasingly used in poorly understood
multiscale data-limited complex nonlinear physical problems and non-traditional fields.
This is compounded by the fact that some of the numerical schemes used in production
that applied CFD computer codes for modeling and simulations do not take into account
the genuine nonlinear behavior of numerical methods. In addition, most of the numerical
methods in use are not discretely physics-preserving (structure-preserving) methods. This
includes but is not limited to entropy-conserving, momentum-conserving, and kinetic
energy-preserving methods. For example, a well known non-physical solution exhibited by
entropy-violating numerical methods raises concerns with the computation on grid-aligned
blunt-body hypersonic external flow. Some key points are explained below.

Entropy-Violating Methods Relating to Carbuncle Effect in Hypersonic Blunt Body
Simulations: Take, for example, in hypersonic modeling and simulations, the issue of
“the carbuncle effect and hypersonic CFD simulations” has attracted numerical method
developers for forty years, even before the term “carbuncle” was born [9,43–46]. There
were many heated debates at some of the CFD conferences. This is due partially to some of
the developers not being aware of earlier related work or due to the disconnect between
entropy-violating numerical method development and applied CFD physical insights, and
much more. Actually, these numerical anomalies are related to entropy-violating methods
for one dimension (1D) flows, multidimensional (multi-D) flows and much more. They are
also due to the added nonlinearity introduced by flux limiters by shock-capturing methods,
the computation of external flow involving dimension-by-dimension approaches and the
scaling of the eigenvector if Roe’s Riemann solver or the local Lax–Friedrichs flux is used
in the construction of the resulting numerical method. Some proposed cures to multi-D
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high-speed blunt body simulation were presented as grid-aligned shock instability at the
stagnation point. Some of these proposed cures did not provide the full picture or were
not aware of earlier published work, e.g., [21,22,47]. In our work, we include integrated
cures on the inaccuracy, stability and convergence issues aside from a multi-D entropy fix
to cure the grid-aligned instability by entropy-violating methods. Our works preceded
the heavily cited work of R. Sanders and J.J. Quirk [48,49]. See samples of later published
works [43,50–52] on the subject. Private communication with D.K. Prabhu of NASA Ames
Research Center in 2018 indicated that some of the CFD hypersonic production computer
codes, e.g., DPLR and their unstructured version, continue to use a non-grid-aligned grid
to avoid grid-aligned shock instability. Section VII will include excerpts from our 1980s
published work [21,22,47,53], illustrating our enhancement of reliable numerical simulation
for both steady and unsteady hypersonic blunt-body flows using entropy-violating methods.

Below, we expand our introductory discussion on the fundamentals of nonlinear
behavior of numerical simulations further.

1.2. Treating Fluid Dynamics Equations as Dynamical Systems

Traditional fluid dynamics and CFD-related texts and reference books consider the
Euler and Navier–Stokes equations in differential forms as coupled systems of nonlinear
PDEs consisting of physical parameters. These equations are rarely classified as dynamical
systems. Basically, fluid flow occurs in three possible regimes: turbulent, laminar and a
transition region. The conditions that lead to each type of flow behavior are system-specific.
Fluid dynamicists are interested in how the flow behaves as a function of one or more
physical parameters. Of particular importance to fluid dynamicists is locating the critical
value of the physical parameter where the fluid undergoes drastic changes in the flow
behavior. Some examples are the prediction of transition to turbulence or laminar instability
as a function of the Reynolds number; flow separation and stall as a function of Reynolds
number and angle of attack; rotorcraft vibration as a function of rotation speed and flight
speed; the occurrence of shock waves as a function of the body shape and/or Mach number;
and the formation of vortices, flutter and other flow phenomena as a function of the angle
of attack or other physical parameters.

One the other hand, one also can recast the study of admissible shock wave solutions
of hyperbolic conservation laws as the study of the dynamics of heteroclitic orbits of a
system of nonlinear ODEs [54] Another application is in the area of aiding the under-
standing of the topology of flow patterns (flow visualizations) of laboratory experiments,
observable physical phenomena and numerical data. An additional important topic for
CFD is the control and optimization of dynamical systems. This involves the application
of optimization and control theory to dynamical systems. Some researchers use these
interdisciplinary ideas to study, for example, the control of turbulence, the control of vortex
generation and/or shock waves, the control of vibration in rotorcraft and the control of
aerodynamic noise such as sonic boom and jet noise.

One historical note, the application of dynamical system theory to the study of spa-
tiotemporal instabilities of aerodynamic and hydrodynamic flows and chaotic systems in
fluid dynamics was discussed, respectively, in the 1994 and 1996 von Karman Institute for
Fluid Dynamics Lecture Series. How the solution behaves as one or more of the system pa-
rameters is varied precisely belongs to the discipline of dynamical systems and bifurcation
theory in applied mathematics. According to Ian Stewart (1990) [38],

“Bifurcation theory is a method for finding interesting solutions to nonlinear equa-
tions by tracking dull ones and waiting for them to lose stability”.

Figure 1 shows a schematic diagram of stability of steady-state solutions arising
through three types of bifurcation phenomena as a function of the system parameter α. The
phenomenon of generating spurious steady-state numerical solutions (or other spurious
asymptotes) by certain numerical schemes is often confused with the non uniqueness (or
multiple steady states) of the governing equation. Actually, the existence of non-unique
steady-state solutions of the continuum can complicate the numerics tremendously and
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is independent of the occurrence of spurious asymptotes of the associated scheme. For
example, assuming the governing equation has a unique steady-state solution as a function
of the system parameter α for a bracketed interval, a numerical method can introduce
non-unique spurious steady-state (and asymptotes) numerical solutions as time step ∆t
increases within the bracketed interval. Referring to the same figure for the discretized
counterpart, the system parameter α of Figure 1 in this case would be α∆t, indicating
the possible spurious steady-state phenomena portion of the bifurcation diagram with a
reduced bracketed interval of α than the allowable unique steady state for the continuum.
The full bifurcation diagram as a function of system parameter will be illustrated later
for some of the commonly used time discretizations. The occurrence of possible spurious
steady-state solutions, e.g., spurious zero wave speed standing wave phenomena by some
numerical method, can influence the reliability of unsteady (time-accurate) simulations. See
Yee et al., Yee and Sweby, Lafon and Yee, Griffiths et al. and Sullivan et al. [6,23,24,35,55]
for some examples and discussion.

Figure 1. Stability of steady-state solutions arising through three types of bifurcation phenomena as a
function of the system parameter α (- stable, - - unstable).

1.3. Isolation of the Sources of Numerical Uncertainties

In order to isolate the sources of numerical uncertainties, we need to set aside the
possible discrepancy between the chosen model and the real physics and/or experimental
data. Therefore, to gain first-hand insight into the “dynamics of numerics”, we concentrate
only on how well numerical schemes can mimic the solution behavior of the underlying
governing PDEs for finite time steps and grid spacings. Even with this restriction, the study
of the PARs of genuinely nonlinear compressible turbulence with shock waves encompasses
elements and factors far beyond what is discussed here. The basic idea is to have a very
clear distinction of numerical uncertainties from each source. These include but are not
limited to the following:

• Stability and well-posedness of the governing PDEs;
• Type, order of accuracy, nonlinear stability and convergence of finite discretizations as

functions of finite grid spacing, time steps and system parameters;
• Limits and barriers of existing finite discretizations for highly nonlinear stiff problems

with source terms and forcing, and/or for long-time wave propagation phenomena;
• Numerical boundary condition (BC) treatments;
• Finite representation of infinite domains;
• Solution strategies in solving the nonlinear discretized equations;
• Procedures for obtaining the steady-state numerical solutions;
• Grid quality and grid adaptations;
• Multigrids;
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• Domain decomposition (zonal or multicomponent approach) in solving large problems.

Although some of the numerical uncertainties can be explained and minimized by
traditional numerical analysis and standard CFD practices, especially for weakly nonlinear
and non-stiff governing PDEs, such practices might not be sufficient for strongly nonlinear
and/or stiff problems. The need of a better understanding of the nonlinear behavior of
numerical schemes being used as an integral part of computer code verification, validation
and certification is needed.

1.4. Lack of Unique Nonlinear Model for Nonlinear Hyperbolic and Parabolic PDEs

As briefly mentioned earlier, a major stumbling block in genuinely nonlinear studies
is that unlike the linear model equations used for conventional stability and accuracy
considerations in time-dependent PDEs, there is no equivalent unique nonlinear model
equation for nonlinear hyperbolic and parabolic PDEs for fluid dynamics. On one hand, a
numerical method behaving in a certain way for a particular nonlinear continuum equation
might exhibit a different behavior for a different nonlinear continuum equation even
though they are of the same PDE type. On the other hand, even for simple nonlinear model
continuum equations with known solutions, the discretized counterparts can be extremely
complex to analyze, depending on the numerical methods. Except in special cases, there
is no general theory at the present time to characterize the various nonlinear behaviors of
the underlying discretized counterparts. Our strategy is based on the knowledge gained
for nonlinear model problems with known analytical solutions to identify and explain the
possible sources and remedies of numerical uncertainties in practical computations.

Throughout the discussion, the term “discretized counterparts” is used to mean the
finite difference equations resulting from finite discretizations of the underlying DEs. The
term “dynamics” is used loosely to mean the dynamical behavior of nonlinear dynamical
systems (continuum or discrete), and “numerics” is used loosely to mean the numerical
methods and procedures in solving dynamical systems. We would like to emphasize that
in our study of the dynamics of numerics, unless otherwise stated, we always assume the
continuum (governing equations) is nonlinear.

Although this overview paper is intended primarily for computational fluid dynami-
cists, the approaches should be useful for computational scientists, physicists, engineers
and computer scientists who have a need for reliable numerical simulations.

1.5. Objective and Outline

DNS, LES, ILES and turbulence modelings are traditional methods for the simulation of
compressible turbulence. The DNS, LES and ILES computations of compressible turbulence
require time-accurate, nonlinearly stable methods suitable for long-time integration with
minimal use of numerical dissipation, as such flows consist of the disparity of space
and time scales during different stages of turbulence development. They are usually
characterized by very large Reynolds numbers and even larger magnetic Reynolds numbers
for magnetized turbulence in magnetohydrodynamics (MHD). In order to improve reliable
compressible turbulence simulations, our interdisciplinary design of new numerical methods
(a) employs quantification of numerical uncertainty via a nonlinear dynamical approach;
(b) mimics and preserves physical properties of the chosen governing equations as much as
possible; (c) is high order, low dissipative, low dispersive and suitable for a wide range of flow
speeds within the same computational domain; (d) is suitable for flows consisting of disparity
of space and time scales during different stages of turbulence development; (e) possesses
high-order stable summation-by-parts (SBP) numerical boundary operators for non-periodic
boundaries [56–58]; (f) is applicable for 3D spatial and time-varying deforming grids with
geometric conservation law property (GCL); and (g) is nonlinear, stable, efficient and exhibits
scalable parallelism for current high-performance computing.

The specific background and motivation are presented in Section 2. Sources of nonlin-
earities and knowledge gained from nonlinear model problems are discussed in Section 3.
Section 4 discusses spurious numerics by time discretizations. Section 5 discusses the
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nonlinear behavior of adaptive numerical methods. Section 6 gives a brief description on
source term treatments in reacting flows to obtain the correct propagation speed of discon-
tinuities for flows containing stiff source terms, shocks and shear layers. Section 7 devotes
a large section to illustrate spurious numerics relevant to turbulent flow computations,
especially relevant to false turbulent flow transitions (numerical transitions). Due to a
large volume of disjoint proposed carbuncle cures devoted to the simulations of hypersonic
blunt-body flows, we devote a complete Section 8 to include excerpts from [21,22] for the
cures. We believe our early work presents an integrated cure related to the simulation of
multi-D hypersonic blunt body and its relations with the carbuncle phenomena than some
of the last thirty years of studies reported in the open literature. In particular, nonlinearity
introduced by the nonlinear shock-capturing method that creates more spurious numeric
than mere carbuncle cures will be discussed. Section 9 illustrates some test cases in spurious
numerics related to problems with stiff source terms and our methods to minimize them.
The test cases include simple scalar, simple system cases to a very complex 13 species of
non-equilibrium reacting flow simulations. Section 10 gives a brief description of our high-
order physical-preserving nonlinear filter methods. It discusses how numerical dissipation
affects the predictability and reliability of turbulence simulation of compressible turbu-
lence with shock waves. Several numerical examples illustrating our physical-preserving
seventh-order nonlinear filter methods compared with standalone standard high-order
shock-capturing methods will be included. In Section 11, we illustrate a comparison of
eighth-order physical-preserving methods for several gas dynamics simulations, while
Section 12 presents some concluding remarks.

2. Background, Motivation and Integrated Approach

The period of the 1970s and 1980s was an era of explosion of new numerical method
developments in CFD, new theories of nonlinear dynamical systems and the beginning
of increasing computer speed to aid numerical simulations of increases in complexity for
modeling and simulation of fluid flows. Routinely, numerical methods were used to under-
stand the dynamics of highly nonlinear continuum dynamical systems without analyzing
the global nonlinear behavior of the numerical methods as the discrete dynamical system
being used. Fast forward to three decades later, with more sophisticated developments
in CFD, many new theories in nonlinear dynamical systems and quantum jumps in the
computation speed of high-performance computing appeared, yet these two disciplines of
“Dynamics of Numerics” and “Numerics of Dynamics” are still lacking close interactions.

This work consisted of a culmination of over 35 years of continuing research work by
the authors and collaborators in bridging some of the gaps of interaction between these
disciplines as a pairing to aid the development of more reliable and accurate simulations
of genuinely nonlinear fluid flows. Some of the key concepts and our earlier efforts in
bridging the gaps are reported in the lecture notes/long overview paper by Yee and Sweby,
Yee and Sjögreen [1–3], and the references cited therein.

The dynamics of numerics work of Yee and Sweby [1,2] summarized the global
nonlinear behavior of finite discretizations for constant or variable time steps and fixed
or adaptive grid spacings using tools from dynamical systems theory. Detailed analysis
of commonly used temporal and spatial discretizations for simple model problems was
presented. The role of dynamics in the understanding of long-time behavior of numerical
integration and the nonlinear stability, convergence and reliability of using time-marching
approaches for obtaining steady-state numerical solutions in CFD was explored. Their study
is complemented with examples of spurious behavior observed in steady and unsteady
CFD computations. Numerically induced chaos and numerically induced chaotic transient
can be mistaken as turbulence transitions. The CFD examples were chosen to illustrate
non-apparent spurious behavior that was difficult to detect without extensive grid and
temporal refinement studies, and some knowledge from dynamical systems theory. These
studies revealed the various possible dangers of misinterpreting the numerical simulation
of realistic complex flows. The details of published work related to Yee and Sweby [1,2]
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encompass several dozens of their peer-reviewed publications and conference proceedings
papers. See, e.g., [1,6–8,23,35,59–63].

The work of Yee and Sjögreen [3] presents their recent adaptive numerical dissipation
control development for long-time integration of DNS, LES and ILES computations of
compressible turbulence for gas dynamics and MHD. Their approach uses adaptive blend-
ing of high-order physics-preserving non-dissipative methods (classical central, Padé
(compact) and dispersion relation preserving (DRP)) with high-order shock-capturing
methods in such a way that high-order shock-capturing methods are active only in the
vicinity of shock/shear waves, and high gradient and spurious high-frequency oscillation
regions guided by flow sensors. Typically, the adaptive blending of more than one method
falls under two categories: hybrid methods and nonlinear filter methods. By examining
the construction of these two approaches, the authors’ nonlinear filter approach is more
efficient and less CPU intensive while obtaining similar accuracy. The different stages of our
high-order nonlinear filter method’s development are also encompassed in several dozens
of peer-reviewed publications and conference proceedings. See [3] and the references cited
therein for more details. For some of the details, see [4,5,9–11,13–16,26–30,64,65].

Here, the key concepts of our work [1–3,6,7,23,24,35,66] are discussed first before
the discussion of our integrated nonlinear approach in the quantification of numerical
uncertainty and our high-order physics-preserving methods for more reliable simulation of
compressible turbulence with shock waves.

2.1. Quantification of Numerical Uncertainty in the 1980s and 1990s

Since the late 1980s, many CFD-related journals imposed an editorial policy statement
on numerical uncertainty, which pertained mainly to the accuracy, computer code and
solution verification under the linearized analysis guidelines. See the book of Oberkampf
and Roy [67] for a broader development and Glimm et al. [31] concerning the nonlinear
phenomena in turbulence simulations.

However, the study of numerical uncertainties in practical modeling and simulation in
computational physics and scientific computing encompasses very broad subject areas. At
present, some of the numerical uncertainties can be explained and minimized by traditional
numerical analysis and standard CFD practices. However, such practices might not be
sufficient for strongly nonlinear and/or stiff problems. Examples of this type of problem are
combustion, turbulent combustion, high speed and reacting flows, and certain turbulence
models in Navier–Stokes computations. A good understanding of the nonlinear behavior
of numerical schemes being used is a conduit to the quantification of numerical uncertainty
and should be an integral part of code verification and validation. See [36] for the definition
of highly (or genuinely) nonlinear problems.

2.2. Interaction of Dynamical Systems and Numerical Methods

During the late 1970s and 1980s, a new area of applied mathematics emerged from
the interaction of dynamical system theory and numerical analysis. These developments
addressed mainly mathematical principles and their applications of numerics in the under-
standing of the dynamics of differential equations (DEs) without discussing the connection
between dynamics and numerics for initial value problems (IVPs) and initial boundary
value problems (IBVPs). There was, however, some discussion on this connection for
boundary value problems (BVPs) [32,68–74]. Studies of BVPs of the elliptic type continue to
the present day. See, for example, the early four SIAM Conferences on Dynamical Systems
(1990, 1992, 1995, 1997) and the Proceedings of IMA Conference on Dynamics of Numerics
and Numerics of Dynamics, 31 July–2 August 1990, Bristol, England.

In the late 1980s, developments concerned with the connection between dynamics
and numerics for IVPs and IBVPs slowly emerged. See, for example, [37,75–81]. These
developments raised many interesting and important issues of concern that are useful
to practitioners in computational sciences. Some of the issues are as follows: (a) Can ad-
vances in dynamical systems provide new insights into better understanding of numerical
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algorithms and the construction of new ones? (b) Can these advances aid in the determi-
nation of a more reliable criterion on the use of existing numerical schemes for strongly
nonlinear problems? (c) What is the influence of finite time steps and grid spacings rather
than time steps and grid spacings approaching zero on the overall nonlinear behavior
and stability of the scheme in terms of allowable initial data and discretized parameters?
In the early 1990s, the use of dynamics to address the long-time behavior of numerical
schemes for IVPs and IBVPs began to flourish. The 1990s work includes the Conference
on Dynamics of Numerics and Numerics of Dynamics (University of Bristol, 31 July–2
August 1990), the Chaotic Numerics Workshop (Deakin University, Geelong, Australia,
12–16 July 1993), the Conference on Dynamical Numerical Analysis (Georgia Institute of
Technology, Atlanta, Georgia, 14–16 December 1995) and the “Innovative Time Integrators
Workshop” (Center for Mathematics and computer Science, Amsterdam, 6–8 November
1996, the Netherlands). These conferences were devoted almost entirely to dynamical
numerical analysis. See the proceedings and references cited therein. See also [39,44,82–88].
The majority of the later developments concentrated on the long-time behavior of ODE
solvers using variable step size based on local error controls [89]. This type of local error
control in time enjoyed much success in controlling accuracy and stability for transient
computations for ODEs. For time-dependent PDEs, the caveat is that regardless of whether
finite difference (and finite volume) or finite element spatial discretization methods are
employed, when time-marching approaches are used to obtain steady-state numerical
solutions, local error controls similar to those used in ODE solvers that were designed for
accuracy purposes are neither practical nor appropriate to use since such local step size
error control methods might prevent the solution from reaching the correct steady-state
solutions within a reasonable number of iterations. We note that the standard practice
of using “local time step” (varied from grid point to grid point with the same CFL) in
time-marching to the steady state is not the same as the variable step size based on local
error controls.

Our studies indicated that the understanding of the dynamics of numerics for constant
step size is necessary as many CFD practitioners employ the constant step size approach.
Besides, the study of the dynamics of ODE solvers using variable step size based on local
error control requires knowledge of the constant step size case [82]. In a series of papers,
Yee et al. [23], Yee and Sweby [24,61,62], Sweby et al. [60], Sweby and Yee [59], and Lafon
and Yee [6,7] studied the dynamics of finite discretization for constant time steps. The
examples used in these papers were deliberately kept simple to permit explicit analysis.
The approach was to take nonlinear model ODEs and PDEs with known explicit solutions
(the most straightforward way of being sure of what is ‘really’ happening), discretize them
according to various standard numerical methods and apply techniques from discrete
dynamics to analyze the behavior of the discretized counterparts. To set the stage for later
discussion, next, we discuss the connection of dynamical systems with CFD. Yee et al.,
Yee and Sweby, and Lafon and Yee [1,6,7,23,62,90] divide their studies into two categories,
steady-state and time-accurate computations. Within each category, they further divide
the governing PDEs into homogeneous and inhomogeneous (i.e., with or without source
terms), and rapidly/slowly developing and long-time integration problems. The following
subsections list outstanding issues of numerical uncertainties in CFD in which the tools of
dynamical systems theory can play a role.

3. Sources of Nonlinearities and Knowledge Gained from Nonlinear Model Problems

One of the primary building blocks for the PAR of numerical simulations is to identify
sources of nonlinearities (from the continuum governing equations and their discretized
counterparts) and to isolate the elements and issues of numerical uncertainties due to
these nonlinearities.
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3.1. Nonlinearities Due to the Governing Equations vs. Nonlinearity Due to the Numerics

Typical sources of nonlinearities in CFD due to the physics are convection, diffusion,
forcing, turbulence source terms, reacting flows, turbulence combustion, gravity in black
holes, turbulence in magnetic clouds related problems or any combination of the above.
Nonlinearities due to the numerics are less familiar. There are generally three major sources:

• Nonlinearities due to time discretizations: The discretized counterpart is nonlinear
in the time step. Examples of this type are Runge–Kutta methods. If fixed time steps
are used, spurious steady-state or spurious asymptotic numerical solutions can oc-
cur, depending on the initial condition (IC). Linear multistep methods (LMMs) [89]
are linear in the time step; they do not exhibit spurious steady states, but implicit
LMMs can stabilize unstable steady states. See Yee and Sweby [1,6,7,23,62,90] and
the references cited therein for the dynamics of numerics of standard time discretiza-
tions. However, unconditionally stable LMMs can stabilize unstable steady states and
much more.

• Nonlinearities due to spatial discretizations: The discretized counterpart can be non-
linear in the grid spacing and/or the scheme. Examples of nonlinear schemes are the
total variation diminishing (TVD), essentially nonoscillatory (ENO) and weighted
ENO (WENO) schemes and spatial schemes consisting of flux limiters. The resulting
discretized counterparts are nonlinear (in the dependent variables) even though the
governing equation is linear. See Yee [21] and the references cited therein for some
forms of these nonlinear schemes.

• Nonlinearities due to complex geometries, boundary interfaces, grid generation, grid
refinements and grid adaptations [59]: Each of these procedures can introduce nonlin-
earities even though the governing equation is linear.

3.2. Discrete Dynamical Systems and CFD

When we try to use numerical methods to gain insight into the fluid physics, there
is an added new dimension to the overall problem. Even though we freeze the physical
parameters of the governing equations, the resulting discretized counterparts are not just a
nonlinear system of difference equations but also a nonlinear but discrete dynamical system
as functions of the discretized parameter on their own. Depending on the scheme, the
discretized counterparts usually preserve the steady states of the continuum. In addition,
the discretized counterparts possess their own dynamics, which is usually richer than the
continuum [23,24,37,76]. These resulting discrete dynamical systems are a function of all of
the discretized parameters that are not present in the governing equations. This is one of
the key factors in influencing the numerical solution to depart from the physical one if the
governing equations are strongly nonlinear and stiff. It is important that before analyzing
the dynamics of numerics, it is necessary to analyze (or understand) as much as possible
the dynamical behavior of the governing equations and/or the physical problems using
theories of DEs (ODEs and PDEs), dynamical systems of DEs and also physical guidelines.
See, e.g., [91,92] for two specialized studies.

3.2.1. Nonlinear Numerical Methods

We define nonlinear numerical methods for time-dependent PDEs in the sense that the
final algorithm is nonlinear even for the constant-coefficient linear PDE. It is well known
that all of the TVD, total variation bounded (TVB), ENO and WENO schemes and related
later shock-capturing methods development are nonlinear schemes. These types of schemes
are known to have a slower convergence rate than classical shock-capturing methods
and can occasionally produce nonphysical solutions for certain combinations of entropy-
satisfying parameters and flux limiters (in spite of the fact that entropy-satisfying TVD,
TVB and ENO schemes can suppress nonphysical solutions). See Yee [21] for a summary of
the subject in the late 1980s. The second aspect of these nonlinear schemes is that even if the
numerical method is formally of more than first order and if the approximation converges,
the rate may still be only first order behind the shock (not just around the shock). This can
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happen for systems where one characteristic may propagate part of the error at a shock into
the smooth domain. See, e.g., Engquist and Sjögreen [93], which illustrated this phenomena
with examples. Different designs of flux limiters to improve the time-marching to the
steady states have been ongoing for the last 40 years, e.g., see two recent works [94,95].
Numerical Methods that are Linear vs. Nonlinear in ∆t: In CFD, the usual classification
of time-accurate schemes for time-marching approaches to the steady state are explicit,
implicit and hybrid explicit and implicit methods. A less commonly known classification
of numerical schemes for time-marching approaches is the identification of schemes that
are linear or nonlinear in the time step (∆t) parameter space when applied to nonlinear
DEs. All linear multistep methods (LMMs) of explicit or implicit type are linear in ∆t,
and all multistage Runge–Kutta methods are nonlinear in ∆t. Lax–Wendroff/MacCormick
and ADER [96,97] type of non-separable full discretizations also are nonlinear in ∆t. For
non-separable discretization methods and multistage Runge–Kutta time discretizations,
the accuracy of the steady-state numerical solutions depends on ∆t. A desirable property
for a scheme that is linear in ∆t is that, if the numerical solution converges, its steady-state
numerical solutions are independent of the time step. Unconditional stable implicit LMMs’
time integrators can stabilize unstable steady states. See [1,2,66] for some examples. For a
representative fluid simulation example on stabilizing unstable steady states with implicit
time integrators, see, e.g., Poliashenko and Yee 1995, an unpublished joint work. This
unpublished work was presented at the 10th International Conference in Finite Element
Methods, 5–8 January 1998, Tucson, Arizona. A summary is included in [1,2].

3.2.2. Dynamical Behavior of Numerical Approximations of ODEs vs. Time-Dependent PDEs

From our analyses and studies, we have shown that spurious numerical solutions can
be independently introduced by time and spatial discretizations. Take the case where the
ODEs are obtained from semi-discrete approximations of PDEs. The resulting system of
ODEs contains more parameters (due to spatial discretizations) than those in the physical
problems governed by ODEs. The parameters due to spatial discretizations for the semi-
discrete approximation become the system parameter (instead of the discretized parameter)
of the resulting system of ODEs. Depending on the differencing scheme, the resulting
discretized counterparts of a PDE can be nonlinear in ∆t, the grid spacing and the numerical
dissipation parameters, even though the PDEs have only one parameter or none. One
major consideration is that one might be able to choose a “safe” numerical method to
solve the resulting system of ODEs to avoid spurious stable numerical solutions due to
time discretizations. However, spurious numerical solutions, especially spatially varying
spurious steady states introduced by spatial discretizations in nonlinear hyperbolic and
parabolic PDEs for CFD applications, appear to be more difficult to avoid due to the use
of a fixed mesh. In the case of the semi-discrete approach, such as methods of lines or
finite element methods, if spurious numerical solutions due to spatial discretizations exist,
the resulting ODE system has already inherited this spurious feature as part of the exact
solution of the semi-discrete case. Thus, care must be taken in using the ODE solver
computer packages for PDE applications. See Lafon and Yee [6,7] for a discussion.

3.2.3. Dynamics of Time-Marching Approaches to Obtain Steady-State Solutions

The use of time-marching approaches to obtain steady-state numerical solutions has
been considered the method of choice in CFD for five decades since the pioneering work
of Crocco [98] and Moretti and Abbett [99]. Moretti and Abbett used this approach to
solve the inviscid supersonic flow over a blunt body without resorting to solving the
steady form of PDEs of the mixed type. The introduction of efficient CFD algorithms of
MacCormack [100], Beam and Warming [101], Briley and McDonald [102], and Steger [103]
marked the beginning of numerical simulations of 2D and 3D Navier–Stokes equations for
complex configurations. It enjoyed much success in computing a variety of weakly and
moderately nonlinear fluid flow problems. For strongly nonlinear problems, the situation
is more complicated. In addition to the understanding of the sources of nonlinearities,
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it is necessary to isolate all elements and issues of numerical uncertainties due to these
nonlinearities in time-marching to the steady state.

The following isolates some of the key elements and issues of numerical uncertainties
in time-marching to the steady state.

Solving an IBVP with Unknown Initial Data: When time-marching approaches are em-
ployed to obtain steady-state numerical solutions, a BVP is transformed into an IBVP with
unknown initial data. The time differencing in this case acts as a pseudo time. Linearized
stability analysis indicates that a subset of the numerical solutions for certain ranges of
the discretized parameters and numerical boundary conditions mimic the true solution
behavior of the governing equation. However, it is less known that there exist asymptotic
numerical solutions (including spurious steady states) that are not solutions of the contin-
uum inside as well as outside the safe regions [23,61,62,104], depending on the initial data.
Unlike nonlinear problems, the numerical solutions of linear or nearly linear problems
are “independent” of the discretized parameters and initial data as long as the discretized
parameters are inside the stability limit (or the Courant–Friedrich–Lewy (CFL) condition)—
that is, the topological shapes of these solutions remain the same within the stability limit
and accuracy of the scheme for linear behavior. It turns out that if constant step sizes are
used, the stability, convergence rate and occurrence of spurious numerical solutions are
intimately related to the choice of initial data (or start up solution).
Reliability of Residual Test: It is a common practice in time-marching approaches to
obtaining the steady-state numerical solutions by the “local time step” (using the same
CFL) via, e.g., time relaxation and multigrid. The criterion or guideline to measure the
speed of convergence to the steady state is to monitor the residual of the computed solution
if the quantity approaches (computer) machine zero. The danger is that if the computed
solution is a spurious steady state, the residual would still approach machine zero as well.
Influence of Spurious Steady-State Numerical Solutions and Time-Accurate Simulations:
The occurrence of spurious steady-state solutions by some numerical method can influence
the true behavior of unsteady (time-accurate) simulations. For example, the spurious
zero wave speed standing wave phenomena can interfere with the reliability of unsteady
simulations. See Yee et al. and Griffiths et al. [23,35] for some discussion. Another issue is
on the simulation of turbulence flows riding on top of a steady flow. See Sullivan et al. [55]
for a practical physical example.

3.2.4. Non-Unique Steady-State Solutions of Nonlinear DEs vs. Spurious Asymptotes of
the Numerical Methods

In the literature, the phenomenon of generating spurious steady-state numerical
solutions (or other spurious asymptotes) by certain numerical schemes is often confused
with the non-uniqueness (or multiple steady states) of the governing equation. In fact,
the existence of non-unique steady-state solutions of the continuum can complicate the
numerics tremendously and is independent of the occurrence of spurious asymptotes
of the associated scheme. If possible, an analysis of the chosen nonlinear ODEs and
PDEs and their dynamical behavior would help the study of the dynamics of numerical
methods for nonlinear PDEs. A full understanding of the subject can shed some light on the
controversy about the “true” existence of multiple steady-state solutions through numerical
experiments for certain flow types of the Euler and/or Navier–Stokes equations. See, for
example, Gimperlein et al. [105] for some discussion on the non-uniqueness in fluid flows.

3.3. Dynamics of Numerics via Tools from Bifurcation Theory

In many fluid problems, the solution behavior is well known for certain values of
the physical parameters but unknown for other values. For these other values of the
parameters, the problem might become very stiff and/or strongly nonlinear, making
the available numerical schemes (or the scheme in use) intractable. In this situation,
continuation methods in bifurcation theory can become very useful. If possible, one should
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start with the physical parameter of a known or reliable steady state (e.g., flow behavior
is usually known for low angles of attack but not for high angles of attack). One can then
use a continuation method such as the improved pseudo arclength continuation method of
Keller [106] (or the recent developments in this area) to solve for the bifurcation curve as a
function of the physical parameter. See, e.g., early development by Doedel [32,69], Shroff
and Keller [107], and Davidson [108]. The equations used are the discretized counterpart of
the steady PDEs or the time-dependent PDEs. See Stephens and Shubin [74,109] for earlier
related work.

If time-marching approaches are used, a reliable steady-state numerical solution (as a
starting value on the correct branch of the bifurcation curve for a particular value of the
physical parameter) is assumed. This starting steady-state numerical solution is assumed
to have the proper time step and initial data combination and to have a grid spacing fine
enough to resolve the flow feature. The continuation method will produce a continuous
spectrum of the numerical solutions as the underlying physical parameter is varied until
it arrives at a critical value pc such that it either experiences a bifurcation point or fails
to converge. Since we started on the correct branch of the bifurcation curve, the solution
obtained before that pc should be more reliable than if one starts with the physical parameter
in question with unknown initial data and tries to stretch the limitation of the scheme.
Note that by starting a reliable solution on the correct branch of the bifurcation curve, the
dependence of the numerical solution on the initial data associated with time-marching
methods can be avoided before a spurious bifurcation occurs.

Finally, when one is not sure of the numerical solution, the continuation method
can be used to double check it. This approach can even reveal the true limitations of the
existing scheme. In other words, the approach can reveal the critical physical parameter for
which the numerical method breaks down. On the other hand, if one wants to find out the
largest possible time step and/or grid spacing that one can use for a particular problem
and physical parameter, one can also use continuation methods to trace out the bifurcation
curve as a function of the time step and/or grid spacing. In this case, one can start with a
small time step and/or grid spacing with the correct steady state and observe the critical
discretized parameter as it undergoes instability or spurious bifurcation. Of course, this
method for minimizing spurious steady states can still suffer from spurious behavior due
to an under-resolved grid because of limited computer resources for complex practical
problems. Practical guidelines to avoid under-resolved grids are yet another important
building block toward reliable numerical simulations. The efficient treatment of solving
the extremely large set of eigenvalue problems to study the type and stability of bifurcation
points is yet another challenge. See, e.g., Fortin et al. [110], Davidson [108], and Shroff
and Keller [107] for some discussions. Consequently, further development in numerical
bifurcation analysis and new concepts in adaptive methods for time-marching to steady
state hold a key to the minimization of spurious numerics.

3.4. A Primary Step to Minimize Spurious Numerics via Knowledge Gained from Nonlinear
Model Problems

A straightforward first step of being sure of what is “really” happening with the
nonlinear behavior of numerics is with the aid of elementary examples. Yee et al., Yee
and Sweby (1991–1997), Sweby and Yee (1994–1995) and Griffiths et al. (1992a,b) [1,2,23,
35,61,62,66,66,90] discuss the fundamentals of spurious behavior of commonly used time
and spatial discretizations in CFD. Details of these examples can be found in their earlier
papers. These examples consist of nonlinear model ODEs and PDEs with known analytical
solutions. They illustrate the danger of employing fixed (constant) time steps and grid
spacings. They were selected to illustrate the following different nonlinear behavior of
numerical methods:

• Strong dependence of numerical solutions on initial data (numerical basins of attrac-
tion);

• Global asymptotic behavior of super-stable time discretizations;
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• Occurrence of stable and unstable spurious asymptotes above the linearized stability
limit of the scheme (for constant time steps);

• Occurrence of stable and unstable spurious steady states below the linearized stability
limit of the scheme (for constant time steps);

• Stabilization of unstable physical steady states by implicit and semi-implicit methods;
• Interplay of initial data and time steps on the occurrence of spurious

numerical asymptotes;
• Interference with the dynamics of the underlying implicit scheme by procedures in

solving the nonlinear algebraic equations (resulting from implicit discretizations of
the continuum equations);

• Dynamics of the linearized implicit Euler scheme solving the time-dependent equa-
tions to obtain steady states vs. Newton’s method solving the steady equation;

• Spurious numerics independently introduced by spatial and time discretizations;
• Convergence problems and spurious behavior of high-resolution shock-

capturing methods;
• Numerically induced and suppressed (spurious) chaos, and numerically induced

chaotic transients;
• Spurious numerics generated by grid adaptations;
• Effect of spurious numerical standing wave in unsteady computations;
• Wrong propagation speed of discontinuities for problems containing stiff source terms.

We denote “spurious numerical solutions (and asymptotes)” to mean numerical so-
lutions (asymptotes) that are solutions (asymptotes) of the discretized counterparts but
are not solutions (asymptotes) of the underlying DEs. We also include steady-state solu-
tions, periodic solutions, limit cycles, chaos and strange attractors as part of asymptotic
solutions of the DEs and the corresponding discretized counterparts. See [111,112] for
the definition of chaos and strange attractors. Super-stable scheme here refers to the re-
gion of numerical stability enclosing the physical instability of the true solution of the
governing equation.

Aside from earlier studies by the authors and us, the aforementioned investigator,
some later work carried out by Alicia Serfaty de Markus and Ronald E. Mickens [113,114]
discussed the suppression of numerically induced chaos and reduction of computational
errors. Their work was independently studied in 1999 and 2005 for different applications.

4. Dynamics of Numerics of Time Discretizations and Representative Examples

In this section, we briefly include the procedures we used for the study and select
basic numerical examples on the dynamics of numerics by time discretizations.

4.1. Basin of Attraction of the Continuum vs. Basin of Attractions of the Discretized Counterparts

Strong dependence of solutions on initial data by the continuum and its discretized
counterparts can be best analyzed by comparing the basin of attraction of the continuum
and its discretized counterparts. The definition of basin of attraction will be defined
shortly. It is one of the key tools to the understanding of spurious numerics. Unconditional
stable time discretizations might have the property of a “numerical basin of attraction”
that is larger than the underlying “exact basin of attraction” of the continuum as it can
stabilize unstable steady states. Multistage Runge–Kutta methods can contribute to extra
spurious steady states and asymptotes. In order to have a basic understanding of dynamical
behavior of numerical methods for constant time steps, we take continuum models with
known explicit solutions, discretize them according to various standard numerical methods
commonly used in CFD and apply techniques from discrete dynamics to analyze the
behavior of the resulting systems and to compare the nonlinear behavior of these schemes.
Consequently, some of the schemes used for illustration might obviously not be suitable
for that particular nonlinear model or spurious dynamics could have been avoided easily
under that environment.
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In our series of published work [1,2,23,35,61,62,66,90], we performed studies to gain a
better understanding of the global asymptotic nonlinear behavior of (a) multistage Runge–
Kutta type time discretizations and (b) explicit and implicit linear multipstep (LMM) time
discretizations, including super-stable implicit LMMs. Examples of nonlinear effect caused
by grid adaptation and super-stable implicit total variation diminishing (TVD) schemes
on the overall performance of the numerical procedures were given. Some methods
to minimize spurious steady-state numerical solutions were discussed. Here, only the
fundamental concepts of strong dependence of computed solutions on initial data, basins
of attraction of the continuum vs. basins of attraction of the corresponding numerical
basins of attractions for two simple nonlinear scalar ODEs are shown. Here, “Exact” Basin
of Attraction is a set of all initial data asymptotically approaching that asymptote for
the continuum-governing equations. We use the terms “exact” basin of attraction and
“numerical” basin of attraction to mean the basin of attraction of the DE and basin of
attraction of the underlying discretized counterpart for the considered numerical method.

Consider the simple scalar autonomous ODE,

du/dt = S(u). (1)

Here, autonomous ODEs are for S(u) not explicitly dependent on t, i.e., not S(u, t).
The two scalar first-order autonomous nonlinear ODEs are

du/dt = S(u) = αu(1 − u) (2)

du/dt = S(u) = αu(1 − u)(b − u), 0 < b < 1. (3)

Equation (2) is the simplified form of the heavily studied logistic ODE with an appli-
cation in biology and applied mechanics. The fixed points (steady states) u∗ for (2) with
α > 0 are when S(u∗) = 0—that is, u∗ = 0 (unstable) and u∗ = 1 (stable), and no additional
periodic solutions or asymptotes exist. The basin of attraction for the stable fixed point u is
the entire positive half-plan for all values of α > 0.

The fixed points for Equation (3) with α > 0 are u∗ = 0 (unstable), u∗ = 1 (unstable)
and u∗ = b (stable), and no additional periodic solutions or asymptotes exist. The basin of
attraction for the stable fixed point u∗ = b is 0 < u < 1 for all α > 0.

Denoting ∆t as the time step, and considering α > 0, Figure 2 shows the full bifurcation
diagram of the explicit Euler method for the logistic ODE. Note that the explicit Euler
applied to the logistic ODE resulted in the famous logistic map un+1 = αun(1 − un).
Unlike the underlying logistic ODE, it is well known that the logistic map possesses very
rich dynamical behavior such as period-doubling (of period 2n for any positive integer
n) cascades resulting in chaos (Feigenbaum [34]). One can find Figure 2 in most of the
elementary dynamical systems text books. The exact values of r = α∆t for all of the
period-doubling bifurcation points and chaotic windows (intervals of r) were discovered by
Feigenbaum in the late 1970s. Interested readers should consult these elementary textbooks
for details. In other words, one can obtain the analytical (exact) behavior of the spurious
asymptotes and numerical (spurious) chaos of the logistic map. Next, we look at more time
discretizations used to solve these two different ODEs, where we present full bifurcation
diagrams overlaid on top of their corresponding numerical basin of attractions.
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Figure 2. Full bifurcation diagram of the explicit Euler method for the logistic ODE with α > 0.

4.2. Strong Dependence of Solutions on Initial Data by Examining Their Corresponding Basin
of Attraction

It is possible that for the same ∆t but two different initial data or vice versa, the scheme
can converge to two different distinct numerical solutions of which one or neither of them
is the true solution of the underlying ODE. Thus, in a situation where there is no prior
information about the exact steady-state solution, and where a time-marching approach
is used to obtain the steady-state numerical solution when initial data are not known, a
stable spurious steady-state could be computed and mistaken for the correct steady-state
solution. We need the corresponding “full” bifurcation diagram using this numerical
approach, and we must over-plot all of the individual bifurcation diagrams of existing
asymptotes of any period and chaotic attractors obtained by using the entire domain of u
values as starting initial data. Thus, a better method in numerically approximating the full
bifurcation diagram is dividing the domain of interest of the u axis into equal increments
and using these u values as initial data. The “full” bifurcation diagram is obtained by
simply over-plotting all of these individual diagrams on one. Figure 2 shows the “full”
bifurcation diagrams for the corresponding fixed point diagrams of the logistic ODE using
the explicit Euler method for α > 0. Note that the full bifurcation diagram computed this
way might miss some of the windows of bifurcations that occur inside the intervals of the
adjacent r and/or the initial data values.

The commonly used time discretizations in CFD are multistage Runge–Kutta methods,
implicit Euler/linearized implicit Euler, trapezoidal/linearized trapezoidal, three-level
backward differentiation formula (BDF) and their linearized versions. Figures 3–12 illus-
trate selected full bifurcation diagrams with the corresponding basins of attraction overlaid
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on top for the two scalar ODE models. One can see how the different methods exhibit
spurious steady states and asymptotes. The complexity of the different basins of attraction
and their differences in comparing with the two ODE models are also shown.

Figure 3 shows the bifurcation diagrams and basins of attraction for the logistic ODE
using four different Runge–Kutta methods (Modified Euler, Improved Euler, Kutta and the
classical fourth-order Runge–Kutta (R-K 4)).

Figure 3. Full bifurcation diagram and basin of attraction for the logistic ODE using four different
Runge–Kutta methods (Modified Euler, Improved Euler, Kutta and the classical fourth-order Runge–
Kutta (R-K 4)), α > 0.
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Figure 4. Full bifurcation diagram and basin of attraction for the logistic ODE using linearized
implicit Euler, α > 0.

Figure 5. Full bifurcation diagram and basin of attraction for the logistic ODE using implicit Euler,
α > 0.
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Figure 6. Full bifurcation diagram and basin of attraction for the logistic ODE using linearized
trapezoidal, α > 0.

Figure 7. Full bifurcation diagram and basin of attraction for the logistic ODE using trapezoidal,
α > 0.
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Figure 8. Full bifurcation diagram and basin of attraction for the logistic ODE using linearized 3-level
BDF, α > 0.

Figure 9. Full bifurcation diagram and basin of attraction for the logistic ODE using 3-level BDF,
α > 0.
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Figure 10. Full bifurcation diagram and basin of attraction for ODE (3) using linearized implicit Euler,
α > 0.

Figure 11. Full bifurcation diagram and basin of attraction for ODE (3) using linearized trapezoidal,
α > 0.
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Figure 12. Full bifurcation diagram and basin of attraction for ODE (3) using linearized 3-level BDF,
α > 0.

It is interesting to note that the corresponding bifurcation diagrams of the respective
discrete maps produced by the studied schemes consist of unions of “logistic-map-like”
bifurcations and/or ”inverted logistic-map-like” bifurcations with similar yet slightly com-
plicated period-doubling cascades resulting in chaos. In all of the fixed point diagrams
shown, the majority of the bifurcation phenomena can be divided into three kinds: flip,
supercritical and transcritical bifurcations (Seydel [115]). The global asymptotic behavior
of super-stable implicit LMMs indicates that unconditional stable LMMs can stabilize
unstable physical steady states. From these illustrations, one can conclude that all of the
studied explicit methods eventually undergo “period doubling bifurcations” leading to
the “logistic-map-type bifurcations”. The birth of the logistic-map-type bifurcations can
occur below or beyond the linearized stability limit of the true steady state of the govern-
ing equation. Besides the regular logistic-map-type bifurcations, some of these methods
undergo the so-called “inverted logistic-map-type” of period-doubling bifurcations. The
above example explains the role of initial data in the generation of spurious steady-state
numerical solutions, stable and unstable spurious numerical chaos and other asymptotes.
Readers are referred to our work [1,66] for the forms of these studied ODE methods.

Although the basin of attraction for the stable fixed point u is the entire positive
half-plan for all values of α > 0 for the logistic ODE, the role of initial data in the occurrence
of stabilizing unstable steady states of the governing equation and the introduction of
stable and unstable spurious numerical chaos and other asymptotes by implicit LMMs are
illustrated. See our previous papers [1,66,90] for more discussions.

It is noted that the computed bifurcation diagram cannot distinguish between the
types of bifurcation and the periodicity of the spurious fixed points of any order. With the
numerical basins of attraction and their respective bifurcation diagrams superimposed on
the same plot, the type of bifurcation and the determination of which initial data lead to
which stable asymptotes become apparent. In order to obtain the corresponding numerical
basins of attraction for the schemes discussed above, one immediately realizes that, in most
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cases, a numerical approach is the only recourse until more theoretical tools for searching
for the basin boundaries of general discrete maps become available. We would like to add
that there are isolated theories or approximate methods to locate some basin boundaries
for simple discrete maps or special classes of discrete maps. Even in this case, these
methods are neither practical nor are there fixed guidelines for the actual implementation
of discrete maps for more complex ones of similar type. See early work by Hsu [116]
for an approximate method and Friedman [117] for numerical algorithms that compute
connecting orbits.

Local Error Control vs. Suppression of Spurious Numerics The previous sections dis-
cussed mainly the spurious behavior of long-time integrations of initial value problems of
nonlinear ODE solvers for constant step sizes. The use of adaptive step size based on local
error control for implicit methods was studied by Dieci and Estep [85]. Dieci and Estep
concluded that for super-stable LMMs with local step size error control and depending on
the procedure for solving the resulting nonlinear algebraic equations, spurious behavior
can occur. Our preliminary study on the two variable step size control methods indicated
that one shortcoming is that the size of ∆t needed to avoid spurious dynamics is impractical
(too small) to use, especially for needing more than one ODE method for error control.
Theoretical studies on the adaptive explicit Runge–Kutta method for long-time integration
have been gaining more attention. Early work by Stuart [39,88], Humphries [44], Higham
and Stuart [118] and Aves et al. [82] showed that local error control offers benefits for
long-term computations with certain problems and methods. Aves et al. addressed the
heart of the question of whether local error control confers global properties of steady
states of the IVP of autonomous ODEs using adaptive Runge–Kutta type methods. Aves
et al.’s work is concerned with long-time behavior and global quantities of general explicit
Runge–Kutta methods with step size control for autonomous ODEs. They studied spuri-
ous fixed points that persist for arbitrarily small error tolerances. This type of adaptive
Runge–Kutta method usually consists of primary and secondary Runge–Kutta methods of
different orders. Their main result is positive. When standard local error control is used,
the chance of encountering spuriosity is extremely small. For general systems of ODEs,
the constraints imposed by the error control criterion make spuriosity extremely unlikely.
Recent development on this subject is beyond the scope of this overview paper.
Spurious Steady States and Nonphysical Wave Speeds: The possible connection of
the numerical phenomenon of incorrect propagation speeds of discontinuities with the
existence of some stable spurious steady states introduced by the spatial discretization was
discussed in [1,2,8,25,42]. The topic will be discussed in more detail in Sections 6 and 9.

5. Adaptive Numerical Methods in Space and Time

Another important building block for PARs is adaptive numerical methods. This
includes adaptive temporal and spatial schemes and grid adaptation as an integral part
of the numerical solution process. For adaptive temporal discretization, it includes using
more than one time integrator for error control and/or time step control, adaptive grid
refinement (AMR) and, most of all, adaptive numerical dissipation controls by blending
of more than one scheme based on smart flow sensors. Nearly three decades ago, using
tools from dynamical systems, Yee et al. (1991–1997), Yee and Sweby (1993–1997), Griffiths
et al. (1992a,b) and Lafon and Yee (1991, 1992) ([1,6,7,23,62,90]) showed that adaptive
temporal and adaptive spatial schemes are important in minimizing numerically induced
chaos, numerically induced chaotic transients and the false prediction of flow instability
by direct numerical simulation (DNS). Their studies further indicated the need in the
development of practical adaptive temporal schemes based on error controls to minimize
spurious numerics due to the full discretizations. In addition, the development of adaptive
temporal and spatial schemes based on error controls to minimize numerical artifacts due
to the full discretizations is also needed. This is due to the fact that adaptive temporal or
adaptive spatial schemes alone will not be able to provide an accurate and reliable process
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to minimize numerical artifacts for time-accurate computations. Guided by the theory of
nonlinear dynamics, Yee et al. [63] and Yee and Sweby [119] presented practical examples
that illustrated the danger of using nonadaptive temporal and spatial schemes for studying
flow instability.

Another important numerical method development is accurate, stable and reliable sim-
ulations of compressible turbulence with shock waves by adaptive numerical dissipation
controls. It is well known that reliable, accurate and efficient direct numerical simulation
(DNS) of turbulence in the presence of shock waves represents a significant challenge for
numerical methods. Standard TVD, ENO, WENO and discontinuous Galerkin (DG) types
of shock-capturing methods for the Euler equations has been routinely used for over three
decades in high-speed blast wave simulations with virtually non-oscillatory, crisp resolu-
tion discontinuities. For the unaveraged unsteady compressible Navier–Stokes equations,
it was observed that these schemes are still too dissipative for turbulence and transition pre-
dictions. On the other hand, hybrid schemes, where spectral and/or higher-order compact
(Padé) schemes are switched to higher-order WENO or ENO schemes when shock waves
are detected, have their deficiencies for complex turbulence and shock interaction. One
shortcoming of this type of hybridization is that the numerical solution might experience a
non-smooth transition at the switch to a different type of scheme. For 2D and 3D complex
shock wave and shear surface interactions, the switch mechanism can become non-trivial
and frequent activation of shock-capturing schemes is possible.

The early work of Yee et al. [26,63], Sjögreen and Yee [10,120], and Yee and Sjögreen [121,122]
indicates that appropriate adaptive numerical dissipation control is essential to control
nonlinear instability in general and particularly for long-time integration. A more recent
integrated design approach on the construction of adaptive numerical dissipation controls
can be found in Yee and Sjögreen [3] and the references cited therein. An earlier, excellent
overview paper on hybrid methods for high-speed flows was presented by Pirozzoli in
2011 [123]. The nonlinear filter methods of Yee et al., which blended more than one method
using a high-order entropy-conserving method [9,10,26–28], were not included in [123].

6. Numerical Source Term Treatments in Reacting Flows

We devote this section to source term treatments in reacting flows as there is a wide
area of CFD, computational astrophysics and the next-generation spacecrafts and high-
speed civil transport design applications. Examples of application areas are combustion,
turbulence combustion, scramjet engine designs and black hole accretion. In the modeling
of problems containing finite-rate chemistry or combustion, a wide range of space and
time scales is often present due to the reacting terms, over and above the different scales
associated with turbulent flows, leading to additional numerical difficulties. This stems
mainly from the fact that the majority of widely used numerical algorithms in reacting
flows were originally designed to solve non-reacting fluid flow problems. Fundamental
studies on the behavior of these schemes for reacting model problems by the author and
collaborators were reported in Yee and Sweby [119] and the references cited therein. In
the majority of these studies, theories from dynamical systems were used to gain a better
understanding of the nonlinear effects on the performance of these schemes. The main
findings of this report and our recent development are as follows:

• It was shown in LeVeque and Yee [8] that, for stiff reactions containing shock waves, it
is possible to obtain stable solutions that look reasonable and yet are completely wrong
because the discontinuities are in the wrong locations. Stiff reaction waves move at
nonphysical wave speeds, often at the rate of one grid cell per time step, regardless of
their proper speed. There exist several methods that can overcome this difficulty for a
single reaction term. For more than a single reaction term in fully coupled nonlinear
systems, more research is needed. One impractical way of minimizing the wrong
speed of propagation of discontinuities is to demand orders of magnitude grid size
reduction compared with what appears to be a reasonable grid spacing in practice.
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• It was shown in Lafon and Yee [6,7] that the numerical phenomenon of incorrect
propagation speeds of discontinuities may be linked to the existence of some stable
spurious steady-state numerical solutions.

• It was also shown in Lafon and Yee[6,7] that various ways of discretizing the reaction
term can affect the stability and convergence of the spurious numerical steady states
and/or the exact steady states. Pointwise evaluation of the source terms appears to be
the least stable.

• It was shown in Yee et al. [23] and Griffiths et al. [35,124] that spurious discrete
traveling waves can exist, depending on the method of discretizing the source term.
When physical diffusion is added, it is not known what type of numerical difficulties
will surface.

• Our later work with Chi-Wang Shu, Wei Wang and Dmitry V. Kotov [18–20,40–42]
developed new methods to minimize spurious numerics for combustion and nonequi-
librium reacting flows.

Reaction-Convection Model: Based on the work of [6–8,23,35,119], in addition to the
incorrect propagation speed of discontinuities, other spurious numerics that are directly
tied to the amount of numerical dissipation contained in the chosen scheme and the
numerical treatment of source terms may result in possible spurious steady-state numerical
solutions and spurious standing waves [6,7,23,35]. It was shown in Lafon and Yee [6,7]
and in Griffiths et al. [35] that various ways of discretizing the nonlinear reaction terms
can affect the stability of, and convergence to, the spurious numerical steady states and/or
the exact steady states. Pointwise evaluation of the source terms appears to be the least
stable. The studies of Lafon and Yee [6,7] indicated that numerical phenomena of incorrect
propagation speeds of discontinuities may be linked to the existence of some stable spurious
steady-state numerical solutions. More importantly, the different combination of time step,
grid spacing and initial condition plays a major role in obtaining the correct solution. In
addition, it was shown in Yee et al. [23] and Griffiths et al. [35] that spurious discrete
traveling waves can exist, depending on the method of discretizing the source term.

The effect of spatial as well as time discretizations on the existence and stability of
spurious steady-state solutions was illustrated with examples in LeVeque and Yee and in
Lafon and Yee (1991, 1992) [6–8,18–20,40,42]. This phenomenon is due to the smearing of
the discontinuity caused by the spatial discretization of the advection term. This introduces
a nonequilibrium state into the calculation. Studies linking spurious numerical standing
waves for a nonlinear reaction model by first- and second-order spatial and temporal
discretizations can be found in Lafon and Yee [6,7] and in Griffiths, Stuart and Yee [2,35].
The possible wrong prediction of transition point Reynolds number by DNS due to spurious
bifurcation that created a false transition point was discussed in [2]. Inaccuracy of the
scheme or insufficient grid points might lead to possible spurious bifurcation as well as
creating wrong propagation speed of discontinuities and smearing of turbulent fluctuations.
See [2] for a discussion. For various project methods to minimize wrong propagation speed
of discontinuities, see [125–128] and the references cited therein.

Section IX is devoted to illustrating selected test cases on spurious numerics related to
problems with stiff source terms and our recent methods to minimize wrong computed
solutions.

7. Spurious Numerics Relevant to Turbulent Flow Computations [1,2]

Four numerical examples that exhibit spurious numerics relevant to turbulent flow
computations were illustrated together with other CFD examples and can be found in [1,2].
This section illustrates two examples: (a) Chaotic transients near the onset of turbulence in
DNS of channel flow (Keefe 1992, Keefe and Yee 1997, [129,130]); (b) false flow transition
simulation on a 2D incompressible flow over a backward-facing step as a function of
Reynolds number. The numerical transition is due to a lack of grid refinement, not long
enough time integration and/or lack of sufficient numerical dissipation for high-order
methods. If care is not taken, spurious bifurcation of the discretized counterpart and/or a
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numerically induced chaotic transient can be mistaken for the onset of physical turbulence
of the governing equation. These simple examples are useful in modeling and simulations
of turbulence combustion, supersonic turbulence, computational astrophysics and the
next-generation spacecrafts and high-speed civil transport design. See Figure 13 for a
schematic of the flow pattern of a scramjet engine. The figure source is from https://en.m.
wikipedia.org/wiki/File:ScramjetDiagram.gif. This figure is in the public domain in the
United States because it was solely created by NASA. See also Moura et al. [131] on the
characterization of supersonic turbulent combustion in a Mach-10 scramjet combustor.

Figure 13. Schematic of flow pattern of a scramjet engine. Source: https://en.m.wikipedia.org/wiki/
File:ScramjetDiagram.gif. This figure is in the public domain in the United States because it was
solely created by NASA.

7.1. Chaotic Transients Near the Onset of Turbulence in Direct Numerical Simulations of Channel
Flow (Keefe 1988, Keefe and Yee 1997 (Unpublished))

In addition to the inherent chaotic and chaotic transient behavior in some physical
systems, numerics can independently introduce and suppress chaos as well as chaotic
transients. Loosely speaking, a chaotic transient behaves like a chaotic solution ([132]). A
chaotic transient can occur in a continuum or a discrete dynamical system. One of the major
characteristics of a numerically induced chaotic transient is that if one does not integrate
the discretized equations long enough, the numerical solution has all the characteristics
of a chaotic solution. The required number of integration steps might be far beyond those
found in standard CFD simulation practice before the numerical solution can get out of
the chaotic transient mode. Furthermore, standard numerical methods, depending on the
initial data, usually experience drastic reductions in step size and convergence rate near
a bifurcation point of the continuum in addition to the bifurcation points due solely to
the discretized parameters. See Yee and Sweby [1,62,90] for a discussion. Consequently, a
possible numerically induced chaotic transient is especially worrisome in direct numerical
simulations of the transition from laminar to turbulent flows. Except for special situations,
it is extremely difficult to bracket closely the physical transition point by mere DNS of
the Navier–Stokes equations. Even away from the transition point, this type of numerical
simulation is already very CPU intensive and the convergence rate is usually rather slow.
Due to limited computer resources, the numerical simulation can result in chaotic transients
indistinguishable from sustained turbulence, yielding a spurious picture of the flow for a
given Reynolds number. Consequently, it casts some doubt on the reliability of numerically
predicted transition points and chaotic flows. It also influences the true connection between
chaos and turbulence. See also Moore et al. [133].

Assuming a known physical bifurcation or transition point, Figure 14 illustrates the
schematic of four possible spurious bifurcations due to constant time steps and constant

https://en.m.wikipedia.org/wiki/File:ScramjetDiagram.gif
https://en.m.wikipedia.org/wiki/File:ScramjetDiagram.gif
https://en.m.wikipedia.org/wiki/File:ScramjetDiagram.gif
https://en.m.wikipedia.org/wiki/File:ScramjetDiagram.gif
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grid spacings. Different examples to illustrate the occurrence of these scenarios can be
found in Sections 6.3 and 6.4 of our work [2]. Section 6.4 in [2] discusses the stability
of the steady state (as a function of the Reynolds number) of a 2D backward-facing step
problem using direct simulations. The present section is the computation by Laurence
Keefe performed in the late 1980s. In 1996, we made use of the knowledge from continuum
and discrete dynamical systems theory to interpret his result. We identified some of the
aforementioned numerical uncertainties in his computations. The result is reported in [1].

Figure 14. Schematic of possible spurious bifurcation for constant time steps and grid spacings.
(1) Different temporal discretizations ode1, ode2, ode3 and ode4 (same spatial discretization and the
same constant dt and dx). (2) Different constant time steps dt1, dt2, dt3 and dt4 (same temporal and
spatial discretizations, and the same constant dx). (3) Different constant grid spacings dx1, dx2, dx3

and dx4 (same spatial and temporal discretizations, and the same constant dt). (4) Different spatial
discretizations sde1, sde2 and sde3 (same temporal discretization and the same constant dt).

The physical problem that Keefe considered is depicted in Figure 15, where a flow is
confined between planes at y = ±1 and is driven in the x-direction by a mean pressure
gradient dp/dx. The flow is characterized by a Reynolds number Re = U∞L/ν, where
U∞ is the mean centerline velocity, L is the channel half-height and ν is the kinematic
viscosity. Within the channel, the flow satisfies the incompressible Navier–Stokes equations
and no-slip boundary conditions are applied at the walls. In the particular calculations
shown here, these equations have been manipulated into velocity–vorticity form, where
one integrates equations for the wall-normal velocity v and normal vorticity η, and recovers
the other two velocity components from the incompressibility condition and the definition
of η.
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Figure 15. Three-dimensional channel flow computation by Keefe (1997) [130].
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Here, the Hi contains the nonlinear terms in the primitive form of the Navier–Stokes
equations and the mean pressure gradient.

The velocity increases extremely rapidly normal to the wall, and turbulent channel
flows are essentially homogeneous in planes parallel to the wall. The first requires a
concentration of grid points near the wall, and the second suggests use of a doubly periodic
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domain in planes parallel to the wall. A spectral representation of the velocity field
(u, v, w) is

u⃗ = ∑
l

∑
m

∑
n

A⃗lmn(t)Tl(y)eimαx+inβz, (10)

where the Tl(y) are Chebyshev polynomials used for the spatial discretization. The nu-
merical problem then becomes dependent on α and β in addition to Re. For the time
discretization, mixed explicit–implicit methods are used. The nonlinear terms in the
equations are advanced using second-order Adams–Bashforth or a low-storage, third-
order Runge–Kutta scheme (Spalart et al. [134]), while the viscous terms are advanced by
Crank–Nicholson.

One of the central problems in studies of wall-bounded shear flows is the determi-
nation of when a steady laminar flow becomes unstable and transitions to turbulence. In
dynamical systems terms, the Navier–Stokes equations always have a fixed point solution
for low enough Reynolds numbers; but for each flow geometry, the Reynolds number at
which this fixed point bifurcates needs to be determined. In channel flow, the fixed point
solution (a parabolic velocity profile across the channel, u(y) = (1 − y2)) becomes linearly
unstable at Re = 5772 (Orszag [135]). However, since turbulence appears in experiments at
much lower Reynolds numbers, it was conjectured that this bifurcation must be subcriti-
cal. A subsequent numerical solution of the nonlinear stability equations (Herbert 1976,
Ehrenstein and Koch 1991) [33,136] demonstrated this to be true, showing that limit cycle
solutions with amplitude ϵ branch back to lower Reynolds numbers before subsequently
passing through a turning point and curving back toward higher Reynolds numbers. Thus,
for Reynolds numbers just above the turning point, the flow equations have at least four
solutions: the fixed point, two unstable limit cycles and a chaotic solution (experimentally
observed turbulence). Determining the location of the turning point in (α, β, ϵ, Re) space
is known as the minimum-critical-Reynolds-number problem, and its solution is by no
means complete.

One way to investigate the turning point problem is to perform DNS of channel flow
for conditions believed to be near this critical condition. Beginning with a known turbulent
initial condition from higher Reynolds number, one integrates in time at the target Reynolds
number to determine whether the flow decays back to the fixed point or sustains itself as
turbulence. Although this may not be the most efficient way to bracket the turning point, it
has the advantage that the peculiar dynamics of the flow near the turning point, whether
in decay or sustained turbulence, are observable. This yields information about the path
along which flows become turbulent at these low Reynolds numbers.

Unfortunately, the flow dynamics are very peculiar near the turning point, and ex-
tremely long chaotic transients are observed in the computations that make a fine deter-
mination of that point all but impossible by this method. This can be seen in Figure 15,
where a time history of the turbulent energy in a channel flow (energy above that in the
laminar flow) is plotted for a Reynolds number of 2191. To understand the time scale of
the phenomenon, some experimental facts need to be recalled. In typical experimental
investigations of channel flow, the infinite transverse and streamwise extent of the ideal
flow are approximated by studying flow in high aspect ratio (10–40) rectangular ducts that
are typically 50–100 duct heights long. If times are non-dimensionalized by the centerline
mean velocity U∞ and the duct half height L, then statistics on turbulence are gathered by
averaging hot-wire data over intervals ∆tU∞/L ∼ 200. In the simulations and figure, the
time scale is based on the friction velocity uτ and L, where typically 15–20 uτ ∼ U∞. Thus,
averaging over intervals ∆tuτ/L ∼ 10 should and does yield stable flow statistics that
compare well with experiments. The near-wall velocity profile, cross-channel turbulence
intensities, and Reynolds and shear stress distribution for the ∆tuτ/L ∼ 10 interval near the
end of the transient, delineated by the arrows in Figure 15, indicate the good comparison.
In each case, they correspond well to available experimental data. However, consider the
time scale of the transient; it spans ∆tuτ/L ∼ 300, thirty times longer than the time needed
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to obtain stable statistics that would convince most experimentalists that they are viewing
a fully developed turbulent channel flow. This is further complicated by the wide variation
of the transient length, depending upon both the grid resolution (number of modes in the
spectral representation) and the linearly stable time step of the integration. In fact, for fixed
(α, β, Re), it is possible to obtain sustained turbulence for one time step but see it rapidly
decay to laminar flow for another, lower value of the step.

Extended chaotic transients near bifurcation points are not an unknown phenomenon;
the “meta-chaos” of the Lorenz system is but one of many known examples. However, the
practicalities of numerical computation in fluid dynamics usually interfere with one’s ability
to discern whether transient, or sustained turbulence, is being calculated. The computations
required to obtain the transient plot in Figure 15 needed 40 h of single processor time on a
Cray XMP, some thirty years ago. Such a small amount of expended time was only possible
because the spatial resolution of the calculation was relatively coarse (32 × 33 × 32), in
keeping with the large scales of the phenomena expected at these flow conditions. Higher
resolution calculations (192 × 129 × 160) (Kim et al. [137]) at greater Reynolds numbers
typically have taken hundreds of hours (∼250) to barely obtain the ∆tuτ/L = 10 averaging
interval that is so inadequate for detecting transients. Because such calculations are so time
consuming, one typically chooses an integration time step that is a substantial fraction of
the linear stability limit of the algorithm so as to maximize the calculated “flow time” for
expended CPU time. However, it is clear from these transient results that this practice has
some dangers when close to critical points of the underlying continuous dynamical system.
Thus, it appears that just as pseudo-time integration to obtain steady solutions can result in
spurious results, genuine time integration can result in chaotic transients indistinguishable from
sustained turbulence and yield a spurious picture of the flow for a given Reynolds number.

7.2. Temporal and Spatial Refinement Studies of 2D Incompressible Flow over a Backward-Facing Step

The 2D incompressible flow over a backward-facing step has been addressed by many
authors using a wide variety of numerical methods. Figure 16 shows the flow geometry.
Fluid with constant density ρ and viscosity µ enters the upstream channel of height h with a
prescribed velocity profile (usually parabolic). After traveling a distance l, the fluid passes
over a backward-facing step of height s and enters the downstream channel of height
H = h + s. After traveling a distance L downstream of the step, the fluid exits the region
of interest. For Reynolds numbers considered here, the flow separates at the corner and
forms a recirculating region behind the step. Additional recirculating regions form on the
upper and, subsequently, lower walls of the downstream channel as the Reynolds number
is increased.

Results of sustained unsteady flow from various numerical simulations have been
reported for Reynolds numbers (Re) ranging from 250 up to 2500. The formulations
included the vortex method, unsteady equations in stream function form, steady equations
and the associated linear-stability problem, and the unsteady equations in primitive variable
form. The numerical methods used cover almost all of the existing schemes in the literature.
The majority of the numerical results are summarized in Gresho et al. [138]. The work of
Gresho et al. was an answer to a controversy concerning the stability of the stationary
solution at Re = 800. It was concluded by Kaiktsis et al. [139] computed by a high-
order spectral element method that transition to turbulent flow has occurred at Re = 800.
See [139] for the description of the numerical method. Kaiktsis et al. examined the long-time
temporal behavior of the flow and found that the flow is steady at Re = 500, time-periodic
at Re = 700 and chaotic at Re = 800. Gresho et al. conducted a detailed grid refinement
study using four different numerical methods and concluded that the backward-facing step
at Re = 800 is a stable steady flow.
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Figure 16. Schematic of the backward-facing step problem.

In addition to the study of Gresho et al., an extensive grid refinement study of this
flow using a spectral element method was conducted in Torczynski [140]. The simulated
geometry and the numerical method correspond to those of Kaiktsis et al. Flow was
examined at Reynolds numbers of 500 and 800. His systematic grid refinement study was
performed by varying both the element size and the order of the polynomial representation
within the elements. For both Reynolds number values with the transient computations
stopped at t = 800, it was observed that low-resolution grid cases exhibit chaotic-like
temporal behavior whereas high-resolution grid cases evolve toward asymptotically steady
flow by a monotonic decay of the transient. The resolution required to obtain asymptotically
steady behavior is seen to increase with Reynolds number. These results suggest that the
reported transition to sustained chaotic flow by Kaiktsis et al. at Reynolds numbers around
700 is an artifact of inadequate spatial resolution. Torczynski’s conclusion was further
confirmed by a subsequent study of Kaiktsis et al. [141] and Fortin et al. [110]. Fortin et al.
employed tools from dynamical systems theory to search for the Hopf bifurcation point
(transition point). They showed that the flow remains steady at least up to Re = 1600.

7.2.1. Grid Refinement Study of Torczynski (1993) [140]

In Torczynski (1993) [140], Re = ρu2h/µ is based on upstream conditions. The
variable u is the spatial average of the horizontal velocity u over h. The geometry is
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specified to match that of Kaiktsis et al. [139]. The upstream channel height h and step
height s have values of h = 1 and s = 0.94231, yielding a downstream channel height of
H = 1.94231. The corner of the step is at (x, y) = (1, 0). The channel extends a distance
L = 1 upstream from the step and a distance L = 34 downstream from the step to preclude
undue influence of the finite channel length on the flow at Re = 800. The following
conditions are applied on the boundaries of the computational domain: u = v = 0 on
the upper and lower channel walls, −p + µ∂u/∂n = 0 and ∂v/∂n = 0 on the outflow
boundary, and u = [tanh(t/16)]uB(y) + [1 − tanh(t/16)]uP(y) and v = 0 on the inflow
boundary and the step surface. Here, uB(y) = max[0, 3y(1 − y)] is the correct boundary
condition for flow over a backward-facing step and uP(y) = 3(1 − y)(s + y)/(1 + s)3 is the
Poiseuille flow observed infinitely far downstream whenever steady flow is asymptotically
obtained. The initial velocity field is set equal to u = uP(y) and v = 0 throughout the
domain. Here, v is the vertical velocity and p is the pressure. Thus, the above combination
of boundary and initial conditions initially allows flow through the step surface so that the
simulations can be initialized using an exact divergence-free solution of the Navier–Stokes
equations. Furthermore, since the inflow boundary condition is varied smoothly in time
from Poiseuille flow to flow over a backward-facing step, the flow experiences an order-
unity transient that is probably strong enough to excite sustained unsteady behavior, if that
is the appropriate asymptotic state for the numerical solution.

The simulations were performed using the commercial code NEKTON v2.8, which
employs a time-accurate spectral-element method with the Uzawa formulation (NEKTON,
1991). Let D be the dimensionality. Each element has ND velocity nodes located at Gauss–
Lobatto–Legendre collocation points, some of which are on the element boundaries, and
(N − 2)D pressure nodes located at Gauss–Legendre collocation points, all of which are
internal. Within each element, the velocity components and the pressure are represented by
sums of D-dimensional products of Lagrangian-interpolant polynomials based on nodal
values. This representation results in continuous velocity components but discontinuous
pressure at element boundaries. Henceforth, the quantity N is referred to as the element
order, even though the order of the polynomials used to represent the velocity is N − 1.
NEKTON employs mixed explicit and implicit temporal discretizations. To avoid solving
a nonlinear, nonsymmetric system of equations at each time step, the convective term is
advanced explicitly in time using a third-order Adams–Bashforth scheme. All other terms
are treated implicitly (implicit Euler for the pressure and for the viscous terms).

In our further investigation [63], Torczynski and the first author used three spectral-
element grids of differing resolution, denoted L (low), M (medium) and H (high). Detailed
investigation can be found in [2,63]. Here, we include selected results of those studies.
Figure 17 shows the computational domain and the grid distribution of the three spectral
element grids in which the distribution of nodes within each spectral element is not
shown. The L grid with N = 9 is identical to the grid of Kaiktsis et al. (1991) [139].
Four general classes of behavior are observed for the numerical solutions. First, “steady
monotonic” denotes evolution of the numerical solution toward an asymptotically steady
state. Second, “steady oscillatory” denotes evolution toward an asymptotically steady
state with a decaying oscillation superimposed on the monotonic decay. Third, “unsteady
chaotic” denotes irregular transient behavior of the numerical solution that shows no
indication of evolving toward steady behavior. Fourth, “diverge” denotes a numerical
solution terminated by a floating-point exception. In Figure 17, the first character denotes
the grid resolution L, M or H; the first digit indicates the Reynolds number 500 or 800; and
the last two digits indicate the order of the spectral element being used. For example, L807
means Re = 800 using the L grid with N = 7.
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Figure 17. Three different grids, and streamlines of H809 and L811 and their corresponding grids, by
the spectral element method.

Our extensive grid refinement study resulted in grid-independent steady-state nu-
merical solutions for both Re = 500 and Re = 800. As the grid resolution is reduced
below the level required to obtain grid independent solutions, chaotic-like temporal be-
havior occurred. The degree of grid resolution required to obtain a grid-independent
solution was observed to increase as the Reynolds number is increased. Figure 17 shows
the streamlines for H809 (steady solution) and L811 (spurious time-periodic solution) and
the corresponding grids with the distribution of the nodes of the spectral elements shown.

7.2.2. Temporal Refinement Studies Using Knowledge from Dynamical Systems Theory

All of Torczynski’s numerical solutions integrate to t = 800. With the knowledge of
possible nonlinear behavior of numerical schemes such as long-time transients before a
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steady state is reached; numerically induced chaotic transients; numerically induced or
suppressed chaos; existence of spurious steady states and asymptotes; and the intimate
relationship among initial data, time step and grid spacing observed in discrete dynamical
systems theory, Yee et al. [63] examined the Torczynski cases in more detail.

In the Yee et al. (1997) study ([2,63]), in addition to grid refinement, temporal refine-
ments are made on all of the under-resolved grid cases to determine if these cases sustain
the same temporal behavior at a much later time or evolve into a different type of spurious
behavior. At t = 800, cases L506, L507, L508, L509, L811, M807 and M808 either exhibit
“unsteady chaotic” or “steady oscillatory” behavior. We integrate these cases to t = 2000
to determine if a change in solution behavior occurs. From the phenomena observed in
Keefe’s 3D channel flow computation and others, t = 2000 might not be long enough
for a long-time transient or long chaotic transient to die out. There is also the potential
of evolving into a different type of spurious or divergent behavior at a much later time.
However, for this study, it appears that t = 2000 is sufficient. For Re = 500, we also
recomputed some of these cases with a sequence of ∆t that bracketed the benchmark study
of Torczynski. The ∆t values are 0.02, 0.05, 0.10, 0.125, 0.2, 0.3, 0.4 and 0.5 for Re = 500. The
CFL number for all of these cases is above 1 for ∆t > 0.10. The reason for the investigation
of ∆t = 0.3, 0.4 and 0.5 is to find out, after the transients have died out, if the solution
converges to the correct steady state for ∆t that are a few times larger than 0.10.

For Re = 800, we integrate L811 and M808 with ∆t = 0.10 and M807 with
∆t = 0.02, 0.05 and 0.10 to t = 2000. Aside from integrating to t = 2000, five differ-
ent initial data were examined for cases M807, M809 and M811 for ∆t = 0.10 to determine
the influence of the initial data and the grid resolution on the final numerical solution. The
five initial data are as follows:

• Uniform: u, v = 0;
• Shear layer: u = uB(y) = max[0, 3y(1 − y)], v = 0;
• Solution from solving the steady Stokes equation (with no convection terms);
• Torczynski (1993) [140]: u = uP(y) = 3(1 − y)(s + y)/(1 + s)3, v = 0;
• Channel flow both upstream and downstream of step: Same as previous initial data

except the boundary conditions.

The boundary conditions for the first three and last initial condition were parabolic inflow
and no-slip at walls, whereas the boundary conditions for the fourth initial condition were
those of Torczynski [140]:

u = [tanh(t/16)]uB(y) + [1 − tanh(t/16)]uP(y); v = 0.

The CPU time required to run the above cases ranged from less than a day to several
days on a Sparc Center 2000 using one processor.

The chaotic-like behavior evolves into a time-periodic solution beyond t = 800 for
L506 and L507, whereas the chaotic-like behavior evolves into a time-periodic solution
beyond t = 800 for L811 and a divergent solution for M807. The “steady oscillatory”
case L508 slowly evolves to the correct steady state with an amplitude of oscillation of
10−5. The oscillation is not detectable within the plotting accuracy. The “steady oscillatory”
time evolution of M808 is similar to that of L508. The numerical solutions with “steady
oscillatory” and “steady monotonic” behavior at early stages of the time integration are
almost identical at later stages of the time integration. They all converge to the correct
steady state. The initial data study at Re = 800 with ∆t = 0.10 is summarized in Table 5.5
of Yee et al. [63], which illustrates the intimate relationship between initial data and
grid resolution.

Figure 18 shows the vertical velocity time histories at (x, y) = (30, 0) advanced to
a time of t = 2000 for M807 with ∆t = 0.02, 0.05 and 0.10, and for L811 with ∆t = 0.10.
Case M807 diverges at t = 1909.2 with ∆t = 0.02, at t = 972.4 with ∆t = 0.05 and at
t = 827.77 with ∆t = 0.10. The time histories for these three time steps appear to show
chaotic-like behavior if one stops the computations at t = 800. The bottom plot of Figure 18
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shows the vertical velocity time histories advanced to a time of t = 2000 for L811 with
∆t = 0.10. It shows the definite time-periodic spurious solution pattern. On the other hand,
the time history for this case appears to show an aperiodic-like pattern if one stops the
computation at t = 800. Note that the L809 grid case was used by Kaiktsis et al. [139], and
they concluded that “2-D transition” has already occurred at Re = 800.

Figure 18. Vertical velocity time histories for M807 with time steps 0.02, 0.05, 0.10 and L811 with time
step 0.01 for t = 2000.

In summary, without the temporal refinement study (longer time integration), the
L506, L507, L811 and M807 cases can be mistaken to be chaotic-like (or aperiodic-like)
flow. Although the time history up to t = 800 appears chaotic-like, one cannot conclude
it is chaotic without longer transient computations. One can conclude that with transient
computations that are 2.5 times longer than Torczynski’s original computations, what
appeared to be aperiodic-like or chaotic-like behavior at earlier times evolved toward either
a time-periodic or divergent solution at later times. These temporal behaviors appear
to be long-time aperiodic-like transients or numerically induced chaotic-like transients.
For Re = 800, five different initial data were examined to determine if the flow exhibits
strong dependence on initial data and grid resolution. Results showed that the numerical
solutions are sensitive to these five initial data. Note that the results presented pertain
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to the characteristic of the studied scheme and the direct simulations. However, if one
is certain that Re = 800 is a stable steady flow, a non-time-accurate method such as
time-marching to obtaining the steady-state numerical solution would be a more efficient
numerical procedure.

7.2.3. Spurious Bifurcation by Different Time Integrators (Henderson and Yee 1998,
Unpublished)

This was a joint work with Ronald Henderson in 1998. The unpublished work was
presented at the 10th International Conference in Finite Element Methods, 5–8 January
1998, Tucson, Arizona, and has also been presented at various invited lectures during the
last four years. Our joint work illustrates the situation where solving the nonlinear terms of
the Navier–Stokes equations by two different explicit time integrators (same implicit time
integrator for the linear terms) results in spurious bifurcation. This spurious bifurcation
is shown in Figure 19 as a function of the Reynolds number. These computations use the
implicit Euler time integrator for the linear terms. Also, the same spatial discretization
L809 is used with a fixed time step of t = 0.10. The two explicit time integrators are the
third-order Adams–Bashforth (AB3) and a second-order explicit stiffly stable method (SS2)
(Henderson [142]). The AB3 method experiences a spurious bifurcation near Re = 720,
whereas the SS2 method experiences a spurious bifurcation at a larger Reynolds number
near Re = 800. The method and the scaling for this figure can be found in Henderson [142].
Finding the exact location of these spurious bifurcation points requires more complicated
computation, which is not performed here. In addition, the exact representation of this
bifurcation plot is rather complicated to explain and is not important for the current
discussion as it is not the main illustration for this study. When an adaptive version of the
spectral element method (Henderson [142]) is used, the problem remains laminar up to
Re = 1800. Future work, which is indicated in Figure 19, is planned, but the case has not
been revisited thus far.

Figure 19. Different explicit time integrators (for the nonlinear terms of the Navier–Stokes equations)
exhibit distinct spurious bifurcation using the same spatial discretization L809 and a time step of 0.10.

7.2.4. Minimization of Spurious Bifurcation by a Suitable Filter (Fischer 2001, Unpublished)

A few year later, Fischer (2001) [143] computed the same L811 spectral element grid
using a time integrator based on the operator integration-factor splitting (OIFS) method
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developed by Maday, Patera and Rønquist [144]. This scheme decouples the convective
step from the Stokes update, thereby allowing CFL numbers in excess of unity. At the end
of each step, Fischer applies a filter to the velocity that effectively scales the Nth-order
Legendre modes within each element by (1 − α), where, typically, 0.05 ≤ α ≤ 0.30 (Fischer
and Mullen [143]. Because the filter is applied on each step, its strength is a function of ∆t
as well as α. The spurious behavior observed by Kaiktsis et al. [139] is cured by the filter,
and a stable steady-state numerical solution is obtained without further grid refinement.
Figure 20 illustrates the velocity time histories at (30, 0) by the filtered and unfiltered
spectral element methods with ∆t = 0.10.

Figure 20. Comparison of the filtered with the unfiltered solutions of L811 with time step dt = 0.10.
(Top) no filter; (Middle) filter (filter strength 0.05); (Bottom) filter (filter strength 0.3).

In summary, the above test cases illustrate all of the possible scenarios of spurious
bifurcations indicated on the schematic bifurcation diagram as a function of Reynolds
number by different temporal and spatial discretizations. See Gresho et al. [138] and the
references cited therein for some more examples.

8. Entropy-Violating Numerical Methods and Nonlinearity-Induced Spurious Numerics
by Shock-Capturing Methods

Among other spurious numerics discussed earlier, here, we would like to concentrate
on the topic of “the carbuncle effect and hypersonic blunt body CFD simulations”. Aside
from issues in employing entropy-violating numerical methods in 1D and multi-D flows,
there are added complications for the computation of external flow involving dimension-
by-dimension numerical approaches on high-speed blunt body simulations. The topic has
attracted numerical method developers for forty years, even before the term “carbuncle”
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phenomena was born. Since the mid 1990s until the present time, there have been many ex-
planations and proposed similar cures in the open literature. See, e.g., these later published
works [43,48,49,51,52].

Below, we summarize our earlier work in the late 1980s with extensive numerical
studies using our multi-D entropy fixes and other cures associated with this issue. Our key
work related to this topic can be found in [21,22,47]. Since the 1983 Harten and Hyman
entropy fixed by entropy violating methods [145], we have been using the various form
of entropy fixes since 1983 and continuing to the present time, including high-order ENO,
WENO and variants of ENO and WENO schemes. Our cure exhibits no grid-aligned shock
instability issue for the hypersonic blunt body simulation for both time-marching to steady
states or unsteady flows, including moving impinging shock of Types I–VI relating to the
Edney experiment [146].

8.1. Avoidance of Spurious Numerics, and Enhancement of Stability and Convergence Rate for
Hypersonic Flows Simulations

In [21,22,53], some elements and parameters that can affect the stability and conver-
gence rate in high Mach number cases but have a negligible effect in low Mach num-
ber cases for steady-state inviscid blunt-body flows were identified. The current study
indicated that the same elements and parameters can affect the stability and conver-
gence rate at hypersonic speeds for viscous computations as well. They are as follows:
(1) the choice of the entropy correction parameter δ1 for non-entropy conserving methods,
(2) the choice of the dependent variables on which the limiters are applied (related to proper
scaling of the eigenvectors for high-speed flows) and (3) the prevention of nonphysical
solutions during the initial transient stage. Our study indicated that these elements can
also improve the stability of unsteady as well as steady hypersonic flows. Here, we use the
same notation as in [21,22] for the TVD and MUSCL schemes entropy fix parameter. Their
finding by the TVD and MUSCL schemes using Roe’s approximate Riemann solver and
implicit LMM time discretization are discussed as follows. It is remarked that for all of our
later computations using high-order ENO and WENO methods, an analog entropy fix is
needed if the local Lax–Friedrich flux formulation is used.
1. For Mach numbers ranging from 1.2 to 15, numerical experiments for one and higher
dimensional unsteady flows containing unsteady shocks show that the second-order ex-
plicit TVD schemes are insensitive to the entropy correction for 0 ≤ δ1 ≤ 0.1. In most
cases, δ1 = 0 was used. For 0.1 ≤ δ1 ≤ 0.25, there is a possibility of improving stability
in the sense of allowing a higher CFL number at the expense of a slight smearing of the
discontinuities. However, for unsteady complex shock wave interactions, a small positive
δ1 or a variable δ1 can help stabilize the time-accurate implicit algorithm.

For subsonic to low supersonic steady-state NACA 0012 airfoil computations, the
resolution of the shock waves was found to be quite insensitive to 0.1 ≤ δ1 ≤ 0.25 and a
constant value seems to be sufficient. However, for hypersonic flows, especially for blunt-
body flows, a constant δ1 or a variable δ suggested by Harten and Hyman [145] was found
to be insufficient, but a variable δ1 depending on the spectral radius of the Jacobian matrices
of the fluxes is very helpful in terms of stability and convergence rate. For multi-D, a multi-
D entropy fix is needed. In fact, a proper choice of the entropy parameter δ1 for higher Mach
number flows not only helps in preventing nonphysical solutions but can act as a control
of the convergence rate and of the sharpness of shocks and slip surfaces (or shear layer in
viscous flows). The smaller the δ1 that is used, the slower the convergence rate. The larger
the δ1 ≤ 1 that is used, the larger the numerical dissipation being added. For the present
blunt-body steady-state calculations with Mach numbers M > 4, the initial flow conditions
at the wall are obtained using the known wall temperature in conjunction with pressures
computed from a modified Newtonian expression. Also, for implicit methods, a slow
start-up procedure from initial conditions is necessary. See [21,22] for additional details.
2. Higher order TVD-type schemes in general involve limiter functions. However, there are
options in choosing the types of dependent variables when applying limiters for systems
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of hyperbolic conservation law, particularly for systems in generalized coordinates. The
choice of the dependent variables on which limiters are applied can affect the stability
and convergence process. Due to the non-uniqueness of the eigenvectors, the choice of
the characteristic variables on which the limiters are applied play an important role in
the stability and convergence rate as the Mach number increases. For example, the path
to arrive to the steady states might get trapped into a spurious limit cycle or spurious
oscillations. This is directly related to proper scaling of the eigenvectors for high-speed
flows. For low and moderate Mach numbers, the different choices of the eigenvectors have
less effect on the stability and convergence rate. However, for large Mach number cases, the
magnitudes of all the variables at the jump of the bow shock are not the same. In general,
the jumps are much larger for the pressures than for the densities or total energy. Studies
have indicated that employing the form of the eigenvectors such that the variation of the
jump of the characteristic variables in transformed coordinates are of the same order of
magnitude as the jump in the pressure would be a good choice for hypersonic flows.
3. The entropy fix for multi-D case for curvilinear grids should use the transformed
variables, and the entropy variable parameter should include all dimensions’ effects. All of
our simulations for blunt body hypersonic simulations [21,22] use the multi-D entropy fix
in the transformed variables.
4. A less known property of Roe’s average state is that it allows the square of the average
sound speed c2

j+1/2 to lie outside the interval between c2
j and c2

j+1 for equilibrium real
gases. Roe’s average state cj+1/2 might be negative even though cj and cj+1 are positive
during the transient stage when the initial conditions are far from the steady-state physical
solution. In this case, we replace c2

j+1/2 by max (c2
j+1/2, min (c2

j, c2
j+1)). This latter

safety check is particularly helpful for the symmetric TVD algorithm but not necessary
for the upwind algorithm. Here, c2

j+1/2 is the square of the sound speed evaluated at
Roe’s average state. In addition, due to the large gradients and to the fact that the initial
conditions are far from the steady-state physical solution, the path used by the implicit
method can go through states with negative pressures if a large time step is employed. A
convenient way to overcome this difficulty is to fix a minimum non-negative allowed value
for the density and the pressure. With this safety check, the scheme allows a much larger
time step and converges several times faster.
Choice of Limiters: Unlike flows with transonic and low supersonic shock waves, problems
containing strong hypersonic shock waves are more sensitive to the treatment of limiters.
Using the more diffusive limiter turns out to be more stable than other more compressive
limiters. The more compressive limiters have a very low stability and slow convergence
rate for steady flows. The same conclusion applies for unsteady flows where the more
compressive limiters have a very restricted time step limit. Using a different limiter that
is more appropriate for different linear and nonlinear characteristic fields would help.
See [21,22] for more details. For over four decades, different designs of flux limiters to
improve the time-marching to the steady states have been ongoing; see, e.g., two recent
works [94,95,147].

Below, hypersonic blunt body simulations from [21,22] have been selected to illustrate
our work in the 1980s to avoid spurious numerics and to enhance stability and convergence
rates for hypersonic blunt body simulations. In [21,22], many types of blunt body test cases
were conducted and all types of Edney shock-impingement on the blunt body [146] were
considered. They include inviscid, perfect and real gas, non-interfering blunt-body steady
and unsteady flows. In addition, test cases also include steady and unsteady inviscid,
perfect gas blunt-body flow with an impinging shock.

8.2. Inviscid Blunt Body Steady Computations for a Real Gas

The freestream conditions for the current illustration are M∞ = 25, p∞ = 1.22 ×
103 N/m2, ρ∞ = 1.88 × 10−2 kg/m3 and T∞ = 226 K. Figure 21 shows half of the 61 × 33
grid used for the blunt-body problem. The shock standoff distance is at approximately 14
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points from the wall on the symmetry axis. See [21,22] for details of the numerical method
and simulations.

Figure 22 shows the Mach number, density, pressure and κ contours for Mach number
M∞ = 25. Here, κ = (∂p/∂ϵ)ρ, where ϵ = ρϵ and ϵ is the specific internal energy.

Figure 21. Blunt body grid: 31 × 33 grid points.

8.3. Inviscid Blunt Body with an Impinging Shock Steady Computations for a Perfect Gas

Take an example of a 2D inviscid steady blunt-body flow with an impinging shock
for a perfect gas with M∞ = 4.6 computation. The freestream conditions for this flow field
are the freestream temperature T∞ = 167K and γ = 1.4 for a perfect gas. This flow field is
typical of what may be experienced by the inlet cowl of a hypersonic aerodynamics vehicle.
Figures 23 and 24 show the schematic of the computational domain, the Mach contours
and the L2-norm residual of an inviscid shock-on-shock interaction on a blunt body with
radius Rl and thickness D = 2Rl . An oblique shock with an angle of 20.9◦ relative to the
free stream impinges on the bow shock. Various types of interactions occur depending
on where the impingement point is located on the bow shock. As shown by the Mach
contours ranging from 0 to 4.55 in increments of 0.05, the impinging shock has caused the
stagnation point to move away from its undisturbed location at the symmetry line. The
surface pressures at the new stagnation point can be several times larger than those at the
undisturbed location of the stagnation point. In addition, a slip surface emanates from the
bow shock and impinging shock intersection point and is intercepted by a shock wave that
starts at the upper kink of the bow shock. The interacting shock waves and slip surfaces are
confined to a very small region and must be captured accurately by the numerical scheme
if the proper surface pressures are to be predicted correctly. The 77 × 77 grid used and the
convergence rate computed by the implicit TVD scheme are shown in Figure 24. Though
the pattern of the flow is significantly more complicated than for the previous cases, the
convergence rate remains quite satisfactory.
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Figure 22. Blunt body steady computation with M∞ = 25: the Mach contours (a), density contours
(b), pressure contours (c) and (d) κ computed by an implicit scheme for an equilibrium real gas.

Figure 23. Schematic of the computational domain for a blunt-body flow with an impinging shock.
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Figure 24. Two-dimensional inviscid steady blunt-body flow with an impinging shock for a perfect
gas with M∞ = 4.6.

8.4. Viscous Steady and Unsteady M∞ = 15 Hypersonic Perfect Gas Computations with
Impinging Shock

Figure 25 illustrates the shock resolution of unsteady and steady thin-layer Navier–
Stokes computations by a second-order implicit time-accurate TVD scheme. The steady
test case is similar to the previous impinging shock study except that the freestream Mach
number is 15, the impingement shock angle is 22.75◦, the free stream temperature is
T∞ = 255.6 K and the Reynolds number based on the diameter is 186,000. Shown are
the Mach contours from 0 to 15 in increments of 0.1. For the unsteady computation, the
impingement shock at the same angle relative to the freestream moves downward across
the bow-shock of the blunt body. The impingement shock velocity is 10% of the freestream
velocity (M∞ = 15). Although the impingement shock locations for the unsteady and
steady computations are similar, the shock patterns are very different. A 241 × 141 non-
adaptive grid is used for both computations. A time step of 0.002 ( equivalent to a maximum
CFL of 48) is used for steady-state computations, whereas a time step of 0.0005 (equivalent
to a maximum CFL of 10–12 at the vicinity of the boundary layer and a CFL of 1 for the
rest of the flow field) is used for the unsteady computations. The steady-state solution can
be reached in 1200 steps with a three order of magnitude drop in the L2-norm residual.
Extra iterations are needed to bring the residual to a lower level; however, no change in the
contour plots or surface pressures at least to within 3–4 digits of accuracy is observed.

Figure 25. The Mach contours of a 2D viscous steady and unsteady hypersonic perfect gas with
M∞ = 15 and Re0 = 186,000.
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9. Numerical Examples: Spurious Numerics Related to Problems with Stiff Source
Terms and Methods to Overcome the Issues

For nearly four decades, the wrong speed phenomenon has attracted a large volume
of research work; see, e.g., [2,6–8,18–20,40,42,148–155]. In combustion and reacting flows,
various strategies have been proposed to overcome this wrong speed difficulty for one
to two species cases with a single reaction. Since numerical dissipation that spreads the
discontinuity front is the cause of the wrong propagation speed of discontinuities, a natural
strategy is to avoid any numerical dissipation in the scheme. In combustion, level set
and front tracking methods were used to track the wave front to minimize this spurious
behavior [149,152,153]; see Wang et al. [20] for a comprehensive overview of the last two
decades of development. Wang et al. also proposed a new high-order finite difference
method with subcell resolution for advection equations with stiff source terms for a single
species to overcome the difficulty. For a subcell resolution method for multi-species, see
Wang et al. [41]. See [18–20,40–42] for various examples in our effort to minimize the wrong
propagation speed of discontinuities. For various project methods to minimize the wrong
propagation speed of discontinuities, see [125–128] and the references cited therein.

9.1. One-Dimensional Scalar Reaction-Convection Test Case

This numerical phenomenon was first observed by Colella et al. [156] in 1986, who
considered both the reactive Euler equations and a simplified system obtained by coupling
the inviscid Burgers equation with a single convection/reaction equation. LeVeque and Yee
(1990) [8] showed that a similar spurious propagation phenomenon can be observed even
with scalar equations, by properly defining a model problem with a stiff source term. They
introduced and studied the simple one-dimensional (1D) scalar conservation law with an
added inhomogeneous parameter-dependent source term

ut + ux = S(u), (11)

S(u) = −µu(u − 1
2
)(u − 1). (12)

Between the time frame of 2010–2013, the authors revisited the LeVeque and Yee
test case, and combustion and nonequilibrium reacting flows coupled system
cases [18–20,40,42]. Here, we include the study of the LeVeque–Yee scalar test case using
the subcell-resolution method reported in [42]. Figure 26 shows the shock location error
as a function of the CFL number using 128 discrete CFL values between (0.001, 8) with
6.291338583 × 10−3 equal increment by WENO5 and WENO5/SR. WENO5/SR is the origi-
nal Shu and Jiang fifth-order WENO using Wang et al.’s subcell-resolution method. Three
grid refinements using 50, 150, 300 uniform grid points and for three stiffness coefficients
of the source term µ = 1, 100, 1000 are compared. “Err” represents number of grid points
away from the reference solution on the figure. Figure 26 indicates a general trend of the
scheme behavior by WENO5/SR for the 1D scalar test case conducted by LeVeque and Yee
(1990) [8]. In this case, WENO5 behaves differently from the system test case. In this case,
all the nonlinearity and stiffness contained in the governing equation are due to the source
term as the convection term in the LeVeque and Yee’s scalar model PDE is linear. It ap-
pears that the nonlinearity due to the convection terms does not alter the general spurious
behavior pattern.
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Figure 26. LeVeque and Yee linear advection and nonlinear stiff source term test case [8]. Number of
grid points away from the reference shock solution (Err) as a function of the CFL number (128 discrete
CFL values between (0.001, 8) with 6.291338583× 10−3 equal increment) by WENO5 and WENO5/SR
using 50, 150, 300 uniform grid points (across) and for stiffness coefficients µ = 1, 100, 1000 (top
to bottom).

When the parameter µ is very large, a wrong propagation speed of discontinuity
phenomenon by dissipative numerical methods is observed in coarse grids. In reacting
flows, 1

µ can be described as the reaction time. In order to isolate the problem, LeVeque and
Yee solved (11) and (12) by the fractional step method using Strang splitting [157]. For this
particular source term, the reaction (ODE) step of the fractional step method can be solved
exactly. In their study using pointwise evaluation of the source term (S(u) is evaluated at the
j grid point index, i.e., S(uj) for each time evolution, the phenomenon of wrong propagation
speed of discontinuities is connected with the smearing of the discontinuity caused by
the spatial discretization of the advection term. They found that the propagation error is
due to the numerical dissipation contained in the scheme, which smears the discontinuity
front and activates the source term in a nonphysical manner. The smearing introduces
a nonequilibrium state into the calculation. Thus, as soon as a nonequilibrium value is
introduced in this manner, the source term turns on and immediately restores equilibrium,
while at the same time shifting the discontinuity to a cell boundary. By increasing the
spatial resolution by an order of magnitude, they were able to improve towards the correct
propagation speed. It is remarked here that in a general stiff source term problem, a
sufficient spatial resolution is as important as temporal resolution when the reaction step
of the fractional step method cannot be solved exactly. Moreover, employing finite time
steps and grid spacings that are below the standard Courant–Friedrich–Levy (CFL) limit on
shock-capturing methods for compressible Euler and Navier–Stokes equations containing
stiff reacting source terms and discontinuities reveals surprising counter-intuitive results.
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9.2. Minimization of Wrong Propagation Speed of Discontinuities for Problems Containing Stiff
Source and Discontinuities

Our studies in [42] found that using the Strang form of the operator splitting between
the homogeneous part of the system of governing equations (without the source term) and
the nonlinear stiff source terms is more stable than solving the fully coupled fluid-reaction
equations. Here, Strang operator splitting is different from the skew-symmetric splitting of
the inviscid flux derivatives. Strang operator splitting is commonly used in the combustion
community to solve reacting flow problems. Figure 27 shows the schematic of Strang operator
splitting. For the subcell resolution method, the subsequent two Figures 28 and 29 show the
schematic of subcell-resolution methods. For problems with source terms employing any
higher than first-order methods, we need to use methods that are well-balanced. See [18,19]
for a well-balanced WENO method for chemical reacting flows.

On the Strang operator splitting approach, all of the aforementioned numerical meth-
ods (physics-preserving methods, shock-capturing methods and blending of more than
one method) can be used to solve the reacting equations portion without the source terms
first. Then, the source term is solved using an ODE (ordinary differential equations) solver,
as indicated in Figures 28 and 29.

Figure 27. Schematic of Strang operator splitting on the homogeneous portion and the source term
portion of the governing equations.
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Figure 28. Subcell- resolution method in solving equations containing nonlinear source terms.

Figure 29. Subcell resolution using three staggered steps.

9.3. One-Dimensional Chapman–Joguet (C-J) Detonation Containing Stiff Source Terms
and Discontinuities

The second example illustrates the effect of numerical dissipation on the propagation speed
of a discontinuity for a 1D system in the presence of a stiff source term. We compute a 1D
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C-J detonation for a one-reaction Arrhenius source term. This example, which was considered
in [20], has been extensively studied, e.g., in [20,40,42,151,155]. See [20,42,151,155] for the initial
flow conditions and additional results.

Figure 30 shows the 1D problem setup. Figure 31 shows a comparison of four high-
order accurate shock-capturing schemes WENO5, WENO5fi, WENO5fi+split and our high-
order subcell resolution version of WENO5 [20,42] (WENO5/SR). The new WENO5/SR
method uses the Strang form of the splitting between the homogeneous part of the system
of governing equations (without the source term) and the nonlinear stiff source terms.
For each time integration, the first step is to solve the homogeneous system of governing
equations. Then, a subcell resolution detector is used to correct the wrong numerical
speed of propagation of discontinuities before solving the next step of the nonlinear stiff
source term. It is remarked that the Strang splitting is not to be confused with the skew-
symmetric splitting of the inviscid flux derivative as in Ducros et al.’s splitting [158]. The
reference solution is computed by the WENO5 scheme on a uniform grid with 10,000 points.
Here, WENO5fi+split denotes the use of sixth-order classical central spatial discretization
together with the dissipative portion of WENO5. The term “split” here denotes the use of
the Strang form of the splitting between the homogeneous part of the system of governing
equations (without the source term) and the nonlinear stiff source terms in solving the
governing equations.

Figure 30. One-dimensional C-J detonation problem setup.

Figure 32 shows the number of grid points away from the reference shock solution
(Err) as a function of the CFL number (128 discrete CFL values between (0.001, 8) with
6.291338583 × 10−3 equal increment) for three low dissipative shock-capturing methods
WENO5/SR, WENO5fi+split and WENO5fi/SR+split using three 50, 150 and 300 uniform
grid points and for three stiffness K0, 100K0, 1000K0. Err is highly dependent on the grid,
method and stiffness coefficient. The two subcell-resolution methods exhibit the least
Err error.

Figure 33 shows the number of grid points away from the reference shock solution
(Err) as a function of the CFL number (128 discrete CFL values between (0.001, 8) with
6.291338583 × 10−3 equal increment) for three low dissipative shock-capturing methods
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WENO5/SR, WENO5fi+split and WENO5fi/SR+split, RK3 and RK4 time discretizations
using two 150 and 300 uniform grid points, and stiffness K0.

Figure 31. Pressure (left) and mass fraction of unburnt gas (right). Comparison among four high-
order shock-capturing methods for a 1D C-J detonation problem. One reaction, Arrhenius model,
using 50 uniformly distributed grid points.

Figure 32. One-dimensional C-J detonation problem: Number of grid points away from the reference
shock solution (Err) as a function of the CFL number (128 discrete CFL values between (0.001, 8) with
6.291338583 × 10−3 equal increment) for three low dissipative shock-capturing methods using 50,
150 and 300 uniform grid points (across) and for stiffness K0, 100K0, 1000K0 (top to bottom).
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Figure 33. One-dimensional C-J detonation problem, Arrhenius case at t = 1.8. Comparison of the
same three spatial discretizations with RK4 and RK3 temporal discretization using two 150, 300
uniform grid points (across) and stiffness K0. Number of grid points away from the reference shock
solution (Err) as a function of the CFL number (128 discrete CFL values between (0.001, 8) with
6.291338583 × 10−3 equal increment).

9.4. Two-Dimensional Chapman–Joguet (C-J) Detonation Containing Stiff Source Terms and
Discontinuities [42]

Figure 34 shows a 2D C-J detonation problem setup. Figure 35 shows the density
comparison by three methods comparing with the reference solution by WENO5 using
4000 × 800 uniform grid points. One important feature of this solution is the appearance
of triple points, which travel in the transverse direction and reflect from the upper and
lower walls. A discussion of the mechanisms driving this solution is given in [159]. Again,
a pointwise evaluation of the source is employed for the 2D test case. Scheme behavior as a
function of CFL, grid refinement and stiffness of the source terms was performed in Yee et al.
(2013) [42]. WENO5/SR and WENO5fi+split are able to obtain the correct shock speed with
similar accuracy compared to the reference solution. WENO5fi gives a slightly oscillatory
solution near x = 0.004. WENO5 and WENO5/SR produce no oscillations at the same
location. Further improvement of the flow sensor of the filter scheme is needed in order
to remove the spurious oscillations. Furthermore, for the 500 × 100 grid, WENO5fi also
obtained the correct shock speed. For CFL = 0.05, however, WENO5fi/SR+split is not able
to obtain the correct shock speed for the stiff coefficient K0. The WENO5fi+split method
is the nonlinear filter approach using WENO5 on the entropy split form of the classical
fourth-order central spatial discretization. Section X includes a brief introduction on the
WENO5fi+split method and for any WENO order. Details can be found in [11–16,26,29,30].

Figure 36 shows a 1D cross-section of density at t = 1.7 × 10−7 by the same four meth-
ods as the 1D case on a uniform coarse grid of 200 × 40. The CFL=0.05 and
K0 = 0.5825 × 1010. The right figure is a close up of the vicinity of the discontinuity.
The reference solution is by WENO5 using 4000× 800 uniform grid points. WENO5 is more
dissipative and also gives the largest error in the location of the discontinuity. WENO5fi
performs better and is less dissipative because the WENO5 dissipation is not used every-
where in the computational domain. WENO5/SR gives the most accurate propagation
speed but WENO5fi+split compares very well with WENO5/SR for this particular problem
and grid size. The probable reason is that because of the stabilizing effect of the splitting,
less dissipation is needed to keep WENO5fi+split stable. WENO5/SR and WENO5fi+split
capture the correct structure using fewer grid points than in Helzel et al. [151] and in
Tosatto and Vigevano [155].

Figure 37 shows the 2D detonation problem at t = 1.7 × 10−7 and K0 = 0.5825 × 1010.
The figure indicates the number of grid points away from the reference shock solution
(Err) as a function of the CFL number (128 discrete CFL values between (0.001, 8) with
6.291338583 × 10−3 equal increment) for three low dissipative shock-capturing methods
using 200× 40 and 500× 100 uniform grid points (across) and for stiffness K0, 100K0, 1000K0
(top to bottom).
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Figure 34. Two-dimensional C-J detonation problem setup.

Figure 35. Two-dimensional detonation problem at t = 1.7 × 10−7 and K0 = 0.5825 × 1010: Density
computed by different methods. From left to right: reference solution by the standard WENO5
method using 4000 × 800 uniform grid points; WENO5, WENO5/SR and WENO5fi+split using
500 × 100 uniform grid points with CFL = 0.05.
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Figure 36. Two-dimensional C-J detonation comparison: 1D cross-section of density at t = 1.7 × 10−7

by the same four methods as the 1D case on a uniform coarse grid of 200 × 40. The CFL=0.05 and
K0 = 0.5825 × 1010. The right figure is a close up of the vicinity of the discontinuity. Note that there is
an enlargement of the x domain in order to illustrate the wrong shock location. The reference solution
is by WENO5 using 4000 × 800 uniform grid points.

Figure 37. Two-dimensional detonation problem at t = 1.7× 10−7 and K0 = 0.5825× 1010: Number of
grid points away from the reference shock solution (Err) as a function of the CFL number (128 discrete
CFL values between (0.001, 8) with 6.291338583 × 10−3 equal increment) for three low dissipative
shock-capturing methods using 200 × 40 and 500 × 100 uniform grid points (across) and for stiffness
K0, 100K0, 1000K0 (top to bottom).
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9.5. One-Dimensional and Two-Dimensional 13 Species EAST Simulations

The next two examples show the computations of a 1D and 2D 13-species chemical
reacting flow by Kotov et al. and Yee et al. [4,42].

These 1D and 2D simulations consist of a 13-species chemical reacting flow, which
is a simplified problem related to the NASA Electric Arc Shock Tube (EAST) experiment.
Figure 38 shows the schematic of the EAST experiment. Figure 39 shows the EAST model
governing equations in 1D, 2D and 3D. See [4,42] for flow notations. Figures 40 and 41
show the 1D and 2D problem setup. Figure 42 shows the comparison of three grids using
the same WENO5fi method (left) and the comparison of five methods with the reference
solution (right). The left subfigure of Figure 42 indicates how the shock/shear locations are
dependent on the grid size using the same high-order method. The relative width between
the shock and shear are the function of the grid spacing compared with the reference
solution. The right subfigure indicates how the shock/shear locations are dependent on
five different numerical methods (TVD, TVDafi+split, WENO5-llf, WENO5Pafi+split and
TVD/SR). See [4] for the description of the five methods.

Figure 43 shows the temperature and pressure evolution of the 2D 13-species test case.
Figure 44 shows the comparison of methods indicating how the shock/shear locations
are dependent on the three methods. Different boundary layers are predicted by the
three different methods as well. Here, WENO5-LLF denotes WENO5 using the local Lax–
Friedrichs flux (LLF), and WENO5P-LLF denotes a positivity-preserving WENO5 of Zhang
and Shu [160] using the LLF. The relative width between the shock and shear is a function
of the methods.

Figure 38. The EAST experiment.
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Figure 39. The EAST model governing equations in 1D, 2D and 3D. See [4,42] for flow notations.

Figure 40. One-dimensional 13-species problem setup related to the EAST experiment.
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Figure 41. Two-dimensional 13-species problem setup related to the EAST experiment.

Figure 42. Temperature comparison using three grids and comparison among five high-order shock-
capturing methods for 1D 13-species chemical reacting flows.
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Figure 43. Temperature and pressure evolution of the 2D 13 species chemical reacting flows.

Figure 44. Temperature comparison among three high-order shock-capturing methods for the same
2D 13-species chemical reacting flows.

10. How Numerical Dissipation Affects the Predictability and Reliability of Simulation
of Compressible Turbulence with Shock Waves

This section show how numerical dissipation affects PAR of compressible turbulence
with shock waves. A short historical perspective and a brief description of the high-order
methods being heavily used are included in this section.
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ENO and WENO methods utilizing the shock resolving capability of TVD schemes
together with higher order accuracy were developed in the late 1980s and early 1990s. In the
past two decades, many variants of ENO and WENO methods were derived, yet they were
still too dissipative away from shock waves for long-time integration of turbulent flows. For
this reason, straightforward application of these original and recently developed high-order
variants of ENO and WENO methods alone appear to not be a preferred choice for highly
resolved turbulence simulations that push the resolution to the limit without resorting
to using an extremely fine grid. From now on, the terms TVD, ENO and WENO refer to
their original formulations and their variants. In other words, using one single method
during the entire flow evolution usually posted shortcomings for complex turbulence flow
development. A blending of more than one method to cater to the particular flow regions
or different stages of turbulence development guided by a smart flow sensor at each time
step on the type and amount of numerical dissipation is needed and would help to improve
the overall stability, accuracy and reliability of simulations.

Since the late 1990s, blending of more than one method basically concentrated on two
categories of such development: (a) the hybrid method, which switches between high-order
non-dissipative methods and high-order shock-capturing methods (e.g., high-order WENO
or ENO) guided by a flow sensor on the computed data; (b) the high-order nonlinear
filter method of Yee et al., Sjögreen and Yee, and Yee and Sjögreen [4,10,13,25,27,28,40,161].
For our nonlinear filter methods, after the completion of a full time step of the primary
high-order non-dissipative linear scheme, a smart local flow sensor would examine the
computed data by flagging the locations and the amount of numerical dissipations that are
needed. Then, the computed data would be filtered by a dissipative portion of high-order
shock-capturing methods according to the flagged locations and the percentage amount
of shock-capturing dissipation. More sophisticated forms with more than one type of
numerical dissipation and local sensors are reported in [4,5,27,28]. For the performance
of the nonlinear filter methods using high-order non-dissipative Padé (compact) spatial
methods as the primary (base) methods, see [11,14,162]. For performance of the nonlinear
filter methods using the high-order dispersion relation preserving (DRP) methods for
aeroacoustic application, see Many of the recent developers of more complex variants of
ENO and WENO are considering the aforementioned hybridized approach with their own
flow sensors.

The majority of existing high-order methods, including hybrid or high-order nonlinear
filter methods, might not discretely preserve the desirable physics-preserving properties
(e.g., entropy conserving, momentum conserving and or kinetic energy preserving with
added mechanism). To further minimize the use of numerical dissipation and to preserve
some of the key physical properties, the current trend in turbulence/shock numerical
simulations uses adaptive blending of a high-order skew-symmetric form of physics-
preserving non-dissipative methods with the desired high-order shock-capturing methods
guided by a smart flow sensor in a manner to further minimize the aid of added numerical
dissipation. Here, the non-dissipative classical central, Padé (compact) or dispersion
relation preserving (DRP) spatial discretization is applied to the skew-symmetric form of the
inviscid flux derivatives. High-order skew-symmetric forms of physics-preserving methods
blended with high-order shock-capturing methods can be found in [11–16,26,29,30]. Our
studies indicated that the nonlinear filter approach provides similar accuracy but is more
efficient than the hybrid approach in conjunction with higher than one stage of time
discretization, e.g., higher than the first order of Runge–Kutta methods.

10.1. Short Overview of Hybrid Methods

Consider a 1D hyperbolic conservation law, where U is the vector of flow variables, Fx
is the inviscid flux derivative, and t and x represent time and the computational space in x
in a computational domain

Ut + Fx = 0.
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For simplicity, we assume the semi-discrete form uses a uniform finite difference method
(FDM) grid xj = (j − 1)∆x, j = 1, . . . , N, where ∆x is the grid spacing. Denote Uj and Fj as
the approximation of U and F at grid spacing j. A semi-discrete form of a chosen method is

dUj

dt
+

Hj+1/2 − Hj−1/2

∆x
= 0, (13)

where Hj+1/2 denotes numerical fluxes consistent with F. A simple hybrid method switch-
ing between two methods can be written as

Hj+1/2 = (1 − νj+1/2)H
C
j+1/2 + νj+1/2HS

j+1/2,

where HC
j+1/2 is a high-order non-dissipative numerical flux and HS

j+1/2 is a high-order
shock-capturing numerical flux. νj+1/2 is a local flow sensor. For a 1D system of hyperbolic
conservation laws using a complete set of characteristic waves, the high-order shock-
capturing methods are preferred to discretize locally each of the characteristic waves by
a complete set of Riemann solvers [17,21,25,26,163]. If a multidimensional method is not
used, it is very common to apply a 1D Riemann solver method dimension-by-dimension
for a multi-dimensional system of hyperbolic conservation laws [4,5,10,17,27,28,163]. See
some recent related development [164–166].

10.2. Overview of Nonlinear Filter

The nonlinear filter approach is less known in the aerodynamics CFD application
community as it has not been described in CFD references or textbooks. This section gives a
longer overview than the hybrid method approach, including test cases from our extensive
work [10,12,13,15,16,27,28,65,161,167].

In a nutshell, a nonlinear filter approach consists of a base scheme step and a post-
processing nonlinear filter step.

10.2.1. Base Scheme Step

A full time step is advanced using a high-order non-dissipative spatially central
scheme (classical central, Padé or DRP method). A summation-by-parts (SBP) boundary
operator [56,57] and a matching order conservative high-order freestream metric evaluation
for curvilinear grids [17] are used. A high-order temporal discretization such as the third-
order TVD Runge–Kutta or fourth-order Runge–Kutta (RK3 or RK4) method is used.

10.2.2. Nonlinear Filter Step—A Post-Processing Step

Instead of the hybrid approaches, to further improve nonlinear stability and accuracy
from the non-dissipative spatial base scheme, the computed data are nonlinearly filtered
by a dissipative portion of a high-order shock-capturing scheme with a local smart flow
sensor. At each grid point, the local flow sensor(s) is employed to analyze the regularity of
the computed flow field from the base scheme step. Only strong discontinuity locations
would receive the full amount of shock-capturing dissipation. In smooth regions, no
dissipation is added unless high-frequency oscillations are detected. In regions with strong
turbulence, if needed, a small fraction of the shock-capturing dissipation can be added to
improve stability. Note that the nonlinear filter numerical fluxes only involve the inviscid
flux derivatives regardless of whether the flow is viscous or inviscid. If viscous terms
are present, for ease of the SBP boundary closure implementation for the viscous flux
derivatives, the same inviscid central difference operator used for the first derivative is
employed twice for the viscous flux derivatives. For a variety of local flow sensors with
automatic selection of different flow types, see [28].

The nonlinear filter idea was first introduced and tested by Yee et al. [25,26], using an
artificial compression method (ACM) of Harten [168] as the flow sensor. Later, smart flow
sensors were developed by Sjögreen and Yee, Yee and Sjögreen, and Kotov et al. [4,5,10,27,28].
Unlike the hybrid approach, in the presence of physical viscosity, the primary high-order
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non-dissipative scheme includes the discretizations on both the inviscid and viscous portion
of the governing equation before the nonlinear filtering post-processing step. This is opposed
to the hybrid method. It examines the computed flow data from the previous time step
information. In addition, switching between two methods that can create instability during
frequent switching between two methods is opposed to the nonlinear filter methods that do
not switch among methods. The high-order base scheme again can be a standard central,
Padé or DRP method, depending on the flow type in question.

Denote the computed solution by the base scheme step by U∗
j,k,l of 3D Euler equations

of gas dynamics. After the completion of a full time step of the spatial base scheme step at
time n, the final update of the solution after the filter step at time n + 1 (with the numerical
fluxes in the y- and z-directions suppressed as well as their corresponding y- and z-direction
indices on the x inviscid flux suppressed) is

Un+1
j,k,l = U∗

j,k,l −
∆t
∆x

[H∗
j+1/2 − H∗

j−1/2], (14)

H∗
j+1/2 = Rj+1/2H j+1/2. (15)

The nonlinear filter numerical fluxes usually involve the use of field-by-field approximate
Riemann solvers. If the Roe type of approximate Riemann solver [169] is employed, for
example, the x-filter numerical flux vector H∗

j+1/2 is evaluated at the U∗
j,k,l solution from the

base scheme step. Rj+1/2 is the matrix of right eigenvectors of the Jacobian of the inviscid
flux vector in terms of Roe’s average states based on U∗. H∗

j+1/2 and H∗
j−1/2 are “filter”

numerical fluxes in terms of Roe’s average states based on U∗
j,k,l . Denote the elements of

the filter numerical flux vector H j+1/2 by h
m
j+1/2, m = 1, 2, ..., 5. The element of the filter

numerical flux h
m
j+1/2 has the form

h
m
j+1/2 =

κm
j+1/2

2
wm

j+1/2ϕm
j+1/2. (16)

where wm
j+1/2 is a flow sensor to activate the nonlinear numerical dissipation portion

of a high-order shock-capturing scheme 1
2 ϕm

j+1/2. The term κm
j+1/2 represents a locally

determined positive parameter that is less than or equal to one, based on the regularity of
the computed data. The choice of the parameter κ can be different for different flow types
and is automatically chosen by using the local κm

j+1/2 described in [28]. However, if the
computation used the Ducros et al. flow sensor, we set κm

j+1/2 = 1 [170].
Figure 45 shows the nonlinear filter procedure for a system of 1D hyperbolic conser-

vation laws. Figure 46 shows the nonlinear filter procedure using a combination of more
than one flow sensor. Figure 46 also shows how to obtain, e.g., the dissipative portion of a
seventh-order WENO (WENO7) denoted by ϕm

j+1/2 = gm
j+1/2 − bm

j+1/2. The term gm
j+1/2 rep-

resents the mth characteristic term of WENO7 and bm
j+1/2 represents the mth characteristic

term of the eighth-order central method. The nonlinear filter approach using WENO7 is
denoted by WENO7fi on some of the later numerical test result presentations.

10.2.3. A Historical Note on Nonlinear Filter Approaches

The original idea of the nonlinear filter approach of Yee et al. (2000) [25] was based
on shock-capturing methods that are written into a central discretization portion and a
nonlinear shock-capturing portion (dissipative portion). All variants of TVD schemes
are already written in this form by design. In order to obtain the dissipative portion
of other high-order shock-capturing methods, the dissipative portion of the considered
shock-capturing ϕm

j+1/2 = gm
j+1/2 − bm

j+1/2 can be obtained in a similar manner as WENO7fi.
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Figure 45. Nonlinear filter procedure.

Figure 46. Nonlinear filter procedure with local flow sensors.
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It is noted that the nonlinear filter step described above should not be confused with
the LES filtering operation. For extension of the blending of more than one numerical
method to the ideal MHD, see [12,13,15,16,27,28,65,161,167].

As mentioned briefly above, the nonlinear filter schemes are efficient by construction.
The total computational cost for a given error tolerance is significantly lower than for stan-
dard shock-capturing schemes or their hybrid cousins of the same order. One important
reason for their efficiency is that the nonlinear shock-capturing filter dissipation is applied
after each full time step of the base scheme, whereas a standard shock-capturing/hybrid
method evaluates the shock-capturing method at each stage of the, e.g, m stage Runge–
Kutta (R-K) time stepping scheme. Hence, the nonlinear filter approach requires only
one shock-capturing method evaluation per time step per grid point per dimension, in-
dependent of the time discretization involved. Hybrid schemes, which switch between
the high-order non-dissipative method and high-order shock-capturing method, require
m Riemann solvers for each m stages of the R-K time discretization. Therefore, the hybrid
methods are less efficient than the nonlinear filter methods. The hybrid method also can
encounter numerical instability as well as conservation issues related to switching between
schemes at the switch locations.

In addition, if the computation considers the dimension-by-dimension and a complete
set of characteristic waves Riemann solver approach, only ONE CPU intensive evaluation of
a dissipative portion of a chosen high-order shock-capturing method in local characteristic
variables is need per dimension, per time step and per grid spacing for the nonlinear filter
approach, regardless of the time integrator. Contrary to the nonlinear filter method, for
the hybrid method, the number of high-order shock-capturing methods using the same
Riemann solver approach evaluations per dimension, per time step and per grid spacing
would be four times by a four-stage Runge–Kutta time integrator.

Figure 47 shows a 3D isotropic turbulence with shocklets problem setup. Figure 48
shows the accuracy of our nonlinear filter method for the isotropic turbulence simulation
with the smart flow sensor built-in. Comparing the resolution by the hybrid method
reported in Johnson et al. [171], one can see that they produce the same accuracy. For
the same 3D isotropic problem setup as in Johnson et al. [171] and performance of our
nonlinear filter method, see [5].

Figure 47. Three-dimensional isotropic turbulence with shocklets problem setup.
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Figure 48. Three-dimensional Isotropic turbulence with shocklets: Comparison among standard 7th-
order WENO method (WENO7) and our two 7th-order nonlinear filter methods (C08Econs+WENO7fi
and C08Dsplit+WENO7fi) using a very coarse 643 grid with the filtered DNS computation on a 2563

grid. Kinetic energy (top left), Enstrophy (top right), Temperature Variance (bottom left) and
Dilatation (bottom right). C08Econs denotes the 8th-order classical central applied to the entropy
split form, and C08Dsplit denotes the 8th-order classical central applied to the Ducros et al. split form
of the Euler inviscid flux derivative.

10.3. The Need for Efficient High-Order Physics-Preserving Methods Blending with High-Order
Shock-Capturing Methods

In classical mechanics, temporal, spatial or both finite difference discretizations that
conserve a certain physical property (or combination of physical properties) of the govern-
ing equations are most often referred to, in a broad sense, as structure-preserving numerical
methods. See e.g., [172]. In the literature, structure-preserving methods are also denoted as
physics-preserving methods. Here, we use these terms interchangeably. Temporal and
spatially finite difference discretizations that discretely conserve fundamental properties of
the chosen governing equations are hereafter are denoted as structure-preserving methods
(SPMs). SPMs have been gaining more attention in long-time integration of turbulent flows.
A combination of these SPMs can further increase the reliability, stability and accurate
simulation of fluid flows, especially for turbulent flows. It is noted that the majority of
existing high-order methods, including hybrid or high-order nonlinear filter methods,
might not discretely preserve the desirable physical-preserving properties (NOT SPM).

In the applied mathematics CFD community, entropy-conserving and entropy-stable
methods have been flourishing for the last two decades [3,12,13,15,16,26,173–175]. Sym-
plectic time integrators are used to prevent phase distortion, e.g., Hamiltonian systems or
the Korteweg–deVries equations [176]. In the applied mechanics and CFD community, the
importance of developing SPMs that conserve one or more fundamental properties of the
governing equations (mass, minimizing phase distortion, momentum and physical entropy
conserving, positivity of density and pressure, and kinetic energy preserving, etc.) has been
ongoing for the last four decades. See e.g., [3,12,13,15,16,26,65,158,174,177,178] for some of
the developments. Combinations of more than one SPM is also be possible. See [14,30] or
the next section for formulations. Formulations using the DRP and Padé high-order SPM
non-dissipative linear methods are presented in [11,14].



Fluids 2024, 9, 250 62 of 86

10.4. SPM Finite Difference Formulation in Split Form: Skew-Symmetric Splittings of the
Compressible Euler Flux Derivatives

When the high-order non-dissipative spatial method discussed previously discretized
a class of the skew-symmetric form of the inviscid Euler flux derivative (instead of the
unsplit flux derivative), it was shown that the appearance of instabilities or aliasing errors
in long-time integration of turbulence flows can be delayed. The splitting can be performed
for certain flow variables or the entire convective flux derivative system. They are written
in a special split form which is equivalent to the unsplit version, i.e., the split and unsplit
governing equations are equivalent. However, after finite difference discretizations, certain
different split forms can maintain a discrete entropy conservation, momentum conservation,
kinetic energy preservation property or can provide a stable L2-like energy norm estimate
for smooth solutions. See articles [3,12,13,15,16,26,30,45,65,158,174,177,179,180] for discus-
sions of the performance of various skew-symmetric splitting approaches in DNS and LES
applications. See Sjögreen et al. [13] for the extension of these skew-symmetric splittings to
any even-order split approximation formulation for the Euler and MHD equations.

In the simplest form, a split approximation starts from rewriting the derivative of the
product (ab)x as

(ab)x = α(ab)x + γabx + βaxb, (17)

before discretization, where a and b are functions of x. The parameters α, γ and β are so
chosen to be still equivalent to the original (ab)x before discretization. A common split
derivative is found by setting α = γ = β = 1/2, which results in the form

(ab)x =
1
2
(ab)x +

1
2

abx +
1
2

axb. (18)

The Ducros et al. splitting [158] starts with this particular non-conservative split form
using the classical central discretization operator on the derivative terms. They then apply
mathematical manipulations on the difference operators to make the final discretization
into a conservative difference method. Their construction will be discussed shortly.

A split approximation for the derivative of the product of three functions (abc)x starts
with rewriting the derivative as

(abc)x = α(abc)x + γ[a(bc)x + bcax] + β[b(ac)x + acbx]

+κ[c(ab)x + abcx] + δ[bcax + acbx + abcx] (19)

before discretization, where a, b and c are functions of x. The parameters α, γ, β, κ and δ are
chosen to be still equivalent to the original (abc)x before discretization. A well-known split
derivative that can be written in conservative form and can improve nonlinear stability is
the Kennedy and Gruber [45] splitting, which is kinetic energy preserving for the Euler
equation by setting the first four parameters to be 1/4 and δ = 0 for the triple product
derivative. See [45,179,180] for details.

For the nonlinear Euler equation of gas dynamics, a less known splitting of the inviscid
flux derivative is the entropy splitting method of [26,178,181]. The key mathematical idea
of the entropy splitting is that their split formulas can be used to estimate the L2-norm-like
or the energy norm of the computed solution for periodic and non-periodic boundary
conditions. In the recent terminology, it is entropy stable (in the sense of possessing an energy
estimate) for the Euler equations using high-order classical central or DRP central schemes
in conjunction with summation-by-parts boundary operators [11,26,64,178,181–183]. See [64]
for a follow on study of the subject. The next two subsections give a short overview of the
Ducros et al. and entropy splitting methods.
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10.5. Ducros et al. Type Conservative Splitting

The Ducros et al. split approximation [158] for the Euler equations of gas dynamics
starts with (18) the terms of the split form approximated by

1
2

D(ab) +
1
2

D(a)b +
1
2

aD(b), (20)

where D is a centered finite difference operator, and a and b are functions of x. For this split
approximation by a central, Padé or DRP discretization, after mathematical manipulations,
the resulting method conserves momentum (see below). However, it is not obvious how to
obtain a norm estimate for nonlinear systems.

The key step in the Ducros et al. [158] split approximation is to rewrite (20) in conser-
vation form. For the second-order operator Duj = (uj+1 − uj−1)/(2∆x), we have

1
2

D(ab) +
1
2

D(a)b +
1
2

aD(b) =
1

4∆x
∆+[(aj + aj−1)(bj + bj−1)], (21)

where ∆+qj = (qj+1 − qj).
The beauty is that Equation (21) can be generalized to standard centered difference

operators of 2pth-order of accuracy,

Dpuj =
1

∆x

p

∑
k=1

α
(p)
k (uj+k − uj−k). (22)

The coefficients α
(p)
k satisfy

p

∑
k=1

kα
(p)
k =

1
2

p

∑
k=1

α
(p)
k k2n+1 = 0, n = 1, . . . , p − 1. (23)

The right-hand side of the algebraic identity

aj+kbj+k − aj−kbj−k + (aj+k − aj−k)bj + aj(bj+k − bj−k) =

(aj+k + aj)(bj+k + bj)− (aj + aj−k)(bj + bj−k) (24)

is written on conservative form by

(aj+k + aj)(bj+k + bj)− (aj + aj−k)(bj + bj−k) =

k−1

∑
m=0

(aj−m + aj+k−m)(bj−m + bj+k−m)−
k−1

∑
m=0

(aj−1−m + aj−1+k−m)(bj−1−m + bj−1+k−m). (25)

The conservative form of the split approximation becomes

1
2

Dp(ab) +
1
2

Dp(a)b +
1
2

aDp(b) =

1
∆x

p

∑
k=1

1
2

α
(p)
k

(
(aj+kbj+k − aj−kbj−k) + aj(bj+k − bj−k) + (aj+k − aj−k)bj

)
=

1
∆x

p

∑
k=1

α
(p)
k
2

(
k−1

∑
m=0

(aj−m + aj+k−m)(bj−m + bj+k−m)

−
k−1

∑
m=0

(aj−1−m + aj−1+k−m)(bj−1−m + bj−1+k−m)

)
=

1
∆x

(hj+1/2 − hj−1/2), (26)
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where the numerical flux is defined by

hj+1/2 =
p

∑
k=1

1
2

α
(p)
k

k−1

∑
m=0

(aj−m + aj+k−m)(bj−m + bj+k−m). (27)

Define

Θ(p)
j+1/2(a, b) =

p

∑
k=1

1
2

α
(p)
k

k−1

∑
m=0

(aj−m + aj+k−m)(bj−m + bj+k−m). (28)

Consider the x-direction inviscid flux for 3D Euler equations of gas dynamics equations

F = [ρu, ρu2 + p, ρuv, ρuw, (e + p)u]T ,

where the inviscid flux F = F(U); the velocity vector u = [u(x, y, z), v(x, y, z), w(x, y, z)]T

in the x-, y- and z-directions; ρ denotes the density; p is the pressure; and e is the total
energy. Denote uj = (uj, vj, wj)

T as the discretization at the j grid location with the y and z
discretizations indices suppressed for simplicity. The flux components can be written as
products of two factors in many different ways, leading to different split approximations.
One Ducros et al. split-type approximation of the gas dynamics flux derivative that will be
used in this study is given by

Fx|x=xj ≈


1
2 Dρjuj +

1
2 ρjDuj +

1
2 ujDρj

1
2 Dρju2

j +
1
2 ρjujDuj +

1
2 ujDρjuj + Dpj

1
2 Dρjujvj +

1
2 ρjvjDuj +

1
2 ujDρjvj

1
2 Dρjujwj +

1
2 ρjwjDuj +

1
2 ujDρjwj

1
2 Duj(ej + pj) +

1
2 ujD(ej + pj) +

1
2 (ej + pj)Duj

, (29)

which, by (27), can be written in conservative form with numerical flux function

Hj+1/2 =
1
2

p

∑
k=1

α
(p)
k

k−1

∑
m=1


(ρj−m + ρj+k−m)(uj−m + uj+k−m)

(ρj−muj−m + ρj+k−muj+k−m)(uj−m + uj+k−m) + pj−m + pj+k−m
(ρj−mvj−m + ρj+k−mvj+k−m)(uj−m + uj+k−m)

(ρj−mwj−m + ρj+k−mwj+k−m)(uj−m + uj+k−m)

(ej−m + pj−m + ej+k−m + pj+k−m)(uj−m + uj+k−m)

. (30)

The more compact notation introduced in (28) allows (30) to be rewritten as

Hj+1/2 =



Θ(p)
j+1/2(ρ, u)

Θ(p)
j+1/2(ρu, u) + Θ(p)

j+1/2(p, 1)

Θ(p)
j+1/2(ρv, u)

Θ(p)
j+1/2(ρw, u)

Θ(p)
j+1/2(e + p, u)


. (31)

Unlike the linearized and symmetrized system of Euler equations, where the split
approximations lead to a stability estimate, there is no such stability estimate for the 2pth-
order accurate conservative Ducros et al. splitting. However, since the Ducros et al. splitting
results in a conservative scheme, it is applicable for problems containing discontinuities.

10.6. Special Class of Entropy Conserving SPM—Entropy Split Method (Entropy
Splitting Approach)

One class of SPM that the authors have been developing is the entropy split method for
the compressible Euler flux derivatives. The entropy split method was originally denoted as
the “Entropy Spitting Approach” [17,26]. This is a less-known skew-symmetric splitting for
the Euler equation of gas dynamics [26,178,181]. This skew-symmetric splitting made use of
Harten’s symmetrizable form of the Euler equations in terms of the entropy variables [174]
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to obtain a semi-discrete splitting of the Euler equations with a discrete entropy stability
(in space) by the summation-by-parts approach. The entropy splitting is written in terms
of the sum of a conservative portion and a nonconservative portion. If central (classical
central, Padé or DRP) discretizations are used for the interior scheme (interior grid points)
and a summation-by-parts boundary scheme (boundary points), it can be proved that the
resulting split method is entropy conservative and entropy stable. See the recent result by
Sjögreen and Yee [3,11,12,14,15,29,30,64,65]. During the entropy splitting development, the
Harten [174] and the Gerritsen and Olsson entropy splitting forms incorrectly selected the
un-physical branch of the inequality and were later corrected by Yee et al., hereafter referred
to as the entropy splitting of the Euler equations. It is considered to be a semi-conservative
splitting except at the boundary grid points. The entropy splitting of Olsson and Oliger,
Gerritsen and Olsson, and Yee et al. [26,178,181] is a splitting of a form that is more suitable
for the discrete stable energy norm estimate technique, including boundary scheme estimate
for arbitrary order of central spatial schemes. See Yee et al. [26] for the formulation.

Consider the 1D Euler equations with inviscid flux derivative F(U)x for a perfect gas.
For extension to multi-D in a time-varying deforming grid, see [17,26,184]. The inviscid flux
derivative is split into the following via the entropy variables W discussed in Harten [174].

Fx =
β

β + 1
Fx +

1
β + 1

FWWx, β ̸= −1 (32)

W = [w1, w2, w3, w4, w5]
T =

p∗

p
[e +

α − 1
γ − 1

p, −ρu, −ρv, −ρw, ρ]T , (33)

where
p∗ = −(pρ−γ)

1
α+γ (34)

and
β =

α + γ

1 − γ
, α > 0 or α < −γ. (35)

See Yee et al. [9,25,26] for the formulation, the choice for β and early numerical examples.
In the original entropy splitting method, the (Entropy Splitting Approach), the Euler

flux derivatives approximation as a sum of a conservative portion and a non-conservative
portion in conjunction with summation-by-parts (SBP) difference boundary closure [58]
of Olsson and Oliger, Gerritsen and Olsson, and Yee et al. [26,178,181] are not written in
the usual numerical flux form. Yee at al. and Vinokur and Yee [17,26] re-examined the
split form of the Euler flux derivative by Harten, Olsson and Oliger, and Gerritsen and
Olsson [174,178,181], to select the physical relevant branch of the split parameter β. They
extended the entropy split form to include a thermally perfect gas for moving curvilinear
grids [17,26,184]. In addition, they performed a detailed study that applied high-order
spatial central discretization on the entropy splitting form of the Euler flux derivatives
and compared it with the un-split form. It was shown that the split form of the Euler flux
derivatives is more stable than the unsplit form for longer time integration without the
need of added numerical dissipation. In [11], DRP (dispersion relation-preserving) finite
discretizations [182,185–188] were also applied to the entropy split form of the Euler flux
derivatives and with a similar gain in numerical stability. Here, the various high-order
methods resulting from applying classical spatial central, DRP and Padé methods to the
split form of the Euler flux derivative are referred to as entropy split methods as a function
of the splitting parameter β. These entropy split methods are entropy conserving and stable
but they are usually not conservative numerical methods without additional reformulation,
as proposed in, e.g., Sjögreen and Yee [3,12,13,15,16,30,189].

The entropy split methods and other SPM high-order skew-symmetric splitting of the
inviscid Euler or ideal MHD flux derivative formulation of any even order can be found
in [12,13,15]. Most of the skew symmetric splittings are not entropy conserving numerically.
Some of them are momentum conserving or kinetic energy preserving numerically, see [45,
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158,179,180]. See [3,12,13,15,16,30,189] for additional development for the compressible
Euler and ideal MHD equations.

Other Entropy Conserving Methods for the Compressible Euler and Ideal
MHD Equations

The entropy-conserving method by Tadmor [175,190] is the method of choice for
rapidly developing unsteady flows, especially in development of unstructured grid meth-
ods (e.g., DG method). Our work on typical test cases using the FDM formulation found
that the Tadmor entropy conserving method [175,190] of the same order requires twice the
arithmetic operations than the entropy split methods. In addition, Harten’s entropy func-
tion can be part of a Tadmor-type entropy conserving method family [12,65] with similar
accuracy and stability. Comparisons among the methods can be found in [3,11,12,30,65].

10.7. Newer Class of Entropy Split Methods in Numerical Flux Form: Not Relying on
Homogeneous Property of the Inviscid Flux and Symmetrizable Inviscid Flux Derivatives

In 2019, Sjögreen and Yee [15] derived a high-order conservative numerical flux for
the non-conservative portion of the entropy splitting of the Euler flux derivatives by taking
advantage of the homogeneity property of the inviscid flux and symmetrizable inviscid
flux derivatives. Due to the construction, this conservative numerical flux requires more
arithmetic operations and is less stable than the original entropy split method (not fully
conservative). An alternative simple approach for problems containing shock waves is
to use a shock detector to switch the entropy split discretization to a standard centered
approximation in the neighborhood of shock waves to avoid wrong shock speed.

Instead of taking advantage of the homogeneity property of the inviscid flux and
symmetrizable inviscid flux derivatives, a wider class of entropy split methods that do
not require the homogeneous property were developed, see our 2022 paper [16]. The
formulation is written in standard numerical flux form. This wider class of entropy split
method was extended for the equations of ideal MHD by the authors in [16].

It is our assessment that employing high-order SPM non-dissipative methods in
conjunction with the nonlinear filter approach should be a method of choice for high-
resolution simulations involving compressible turbulence up to mildly supersonic regimes.
For turbulence with shocks, there is an even larger gain both in the accuracy and CPU time
of the nonlinear filter schemes over their standard WENO counterparts.

Forms of the structure-preserving (SPM) numerical fluxes that belong to the class of
skew-symmetric splitting of the inviscid flux derivatives in curvilinear grids are given
in [16,30]. Depending on the type of flow physics, high-order central, DRP or Padé methods
are applied to the skew-symmetric split form of the inviscid flux derivative as the baseline
method before the post-processing nonlinear filter step, if needed, especially for problems
with shocks. Selected methods with multiple structure-preserving properties are given
with numerical examples.

10.8. A Complex 3D Supersonic Shock-Turbulence Interaction by a Physics-Preserving Nonlinear
Filter Method [4]

The 3D supersonic shock-turbulence interaction is a more challenging test case and is
a very CPU intensive computation with long transient simulation before obtaining mean-
ingful turbulent statistics. The 3D test case considered here concerns an initial turbulence
disturbance at the inflow boundary interacting with a stationary supersonic planar shock
wave. The problem has been studied by previous investigators, mainly related to DNS
computations; see e.g., [191–193]. Here, we choose the configuration considered in the
DNS study of [192]. Figure 49 shows a schematic of the problem setup. The computational
domain is −2 ≤ x ≤ −2 + 4π, 0 ≤ y ≤ 2π and 0 ≤ z ≤ 2π. The grid is uniform in
all directions with the spacing in x being several times finer than in y and z (see [192]
for explanation). We solve the filtered governing equations in a non-dimensional form.
The Yee et al. nonlinear filter scheme with the Ducros et al. flow sensor [170] is used for
integration of the Ducros et al. [158] split form of the governing equations. The spatial
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base scheme is the eighth-order central differencing and the nonlinear filter scheme is the
dissipative portion of the seventh-order WENO scheme (WENO7). This nonlinear filter
scheme, including the Ducros et al. splitting of the governing equation, is denoted by
WENO7fi + split (or WENO7fi for ease of discussion). Since the initial data consist of a
planar shock in the x-direction, numerical dissipation should be mainly needed in the
x-direction. In order to obtain more accurate results, WENO dissipation is employed only
in the x-direction at the postprocessing stage of the Yee et al. nonlinear filter. The inflow
and outflow boundary conditions are applied in the streamwise direction and periodic
boundary conditions are applied in the transverse directions.

Figure 49. Three-dimensional supersonic shock-turbulence interaction test case.

Inflow boundary condition. A fully developed turbulent inflow condition is applied
using a turbulent database. This database is generated as follows. First, an initial isotropic
turbulent field with the energy spectrum E(k) ∼ k4 exp(−2k2/k2

0) and microscale Reynolds
number Reλ = ρλu′

rms/µ = 140 is generated using the methodology described in Ristorcelli
and Blaisdell [194]. Here, the energy peak wavenumber k0 = 4 is used. Next, the decay
of this field in a periodic box is simulated for approximately three eddy turnover times
τ = λ/u′

rms to ensure fully developed turbulence. After the decay, the Reynolds number

Reλ = 40 and the turbulent Mach number Mt = u′
iu

′
i
1/2

/c0 = 0.16. Here, c0 is the mean
speed of sound. The generated isotropic turbulence is introduced at the inflow boundary
with constant mean velocity u0. We consider two cases with mean flow Mach numbers
M = 1.5 and M = 3.0. In order to compare the DNS results, we use the inflow database
from [192].

Outflow boundary condition. In order to avoid acoustic reflections of subsonic flow
from the outflow boundary, a non-reflective sponge layer is employed on the region near
the outflow. The length of this layer is xmax − xsp = π. The sponge layer is implemented
by introducing the following source term into the equations:

Ω = − k0u0

2π

(
x − xsp

xmax − xsp

)
( f− < f >yz), (36)
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where f = ρ, ρui, ρE and ⟨·⟩yz denotes averaging in the y- and z-directions.
The outflow pressure p∞ is chosen such that the mean shock location is stationary. For

laminar flow, Rankine–Hugoniot conditions give

p∞

p0
= 1 +

2γ

γ + 1

[
(u0 − Us)2

c2
0

− 1

]
, (37)

where p0 is the inflow mean pressure, u0 is the mean inflow velocity, c0 is the mean inflow
speed of sound and Us is the shock velocity. As the inflow condition is turbulent, the
Rankine–Hugoniot conditions are valid only instantaneously but not on average. After
an initial guess based on (37), the outflow pressure is refined by an iteration procedure,
integrating the governing equations on a coarse grid and updating the pressure according
to the formula

p′∞ = p∞ + 4Usρuu0/(γ + 1). (38)

See [192] for more details.
To illustrate an instantaneous turbulent pattern, Figure 50 shows the instantaneous

velocity field ux (top) and uy (bottom) at a slice where z = const, obtained with DNS
on a grid of 1553 × 2562 points. A turbulent flow enters over the left boundary at Mach
1.5. The turbulence interacts with a quasi-steady shock wave near the inflow boundary.
The figure shows the x- and y-directions velocity field in a z = const. slice of the three-
dimensional computational domain. See [4] for details of the problem set up and method
comparisons. The numerical method is an eighth-order accurate non-dissipative method
together with an adaptive nonlinear filter by a dissipation portion of the seventh-order
positivity preserving WENO7 of Zhang and Shu [160] (WENO7Pfi). The Ducros et al. skew-
symmetric splitting is the structure-preserving eighth-order central spatial discretization.
The turbulent Mach number is 0.16. The incoming turbulence causes wrinkles in the
shock front. The classical fourth-order Runge–Kutta method (RK4) is used as temporal
discretization. Grid refinement and comparison of standard high-order shock-capturing
methods with the high-order structure-preserving nonlinear filter method were performed
in [4].

The comparison between the filtered DNS data and the results obtained with different
numerical schemes on the coarse grid with 389 × 642 points and M = 3 is shown in
Figure 51. Here, we compare the results obtained by the fifth-order WENO (WENO5)
and WENO7 with the results obtained by the filter counterpart of WENO7 with Ducros
et al. splitting of the governing equations (WENO7fi+split). The comparison of WENO5,
WENO7 and WENO7fi+split is shown in Figure 52. For Figure 52, each of the considered
schemes is employed in all three directions. The solution by WENO7fi is closer to the
filtered DNS solution than WENO5 and WENO7. WENO5 is far too dissipative for DNS
computation with this coarse grid. Figure 53 shows the velocity spectrum of DNS by
WENO7fi with M = 3, sliced at x = 0: four-level DNS grid refinement study on grids with
389 × 642, 777 × 1282, 1553 × 2562 and 2329 × 2562 points.
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Figure 50. Instantaneous velocity field ux (top) and uy (bottom) obtained with DNS on grid of
1553 × 2562 points. Slice z = const.
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Figure 51. DNS, WENO5, WENO7 and WENO7fi method comparison: Comparison to filtered DNS
data of the statistics obtained by the different numerical schemes on grid 389 × 642, M = 1.5. Top
row: streamwise (left) and transverse (right) Reynolds stress components. Bottom row: streamwise
(left) and transverse (right) vorticity components.

Figure 52. DNS, WENO7fi, M = 3: Four-level DNS grid refinement study on grids with
389 × 642, 777 × 1282, 1553 × 2562 and 2329 × 2562 points. Top row: streamwise (left) and transverse
(right) Reynolds stress components. Bottom row: streamwise (left) and transverse (right) vorticity
components.
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Figure 53. DNS, WENO7fi, M = 3, velocity spectrum, slice at x = 0: four-level DNS grid refinement
study on grids with 389 × 642, 777 × 1282, 1553 × 2562 and 2329 × 2562 points.

11. High-Order Skew-Symmetric Physical-Preserving Methods (SPM) Comparison for
Gas Dynamics

For MHD computation and using the extension of our new entropy split method for
the equation of ideal MHD, see [16,30]. Here, some test cases comparing a set of high-order
structure-preserving methods for compressible gas dynamics will be given in this section.
Nomenclature for these method comparisons are defined below.

11.1. Various Structure-Preserving Properties Nomenclature

For test cases comparison, the high-order spatial structure-preserving methods consid-
ered are as follows:

• ECHKP: Entropy conserving using the Harten class of entropy functions

EH = − γ+α
γ−1 ρ(pρ−γ)

1
α+γ [174,175]. It turned out that this method in its base form

also satisfies Ranocha’s kinetic energy preservation condition (KEP), so there is only
one variant for this method [46,65].

• ECLOG: Tadmor-type entropy-conserving method using the Tadmor entropy function
EL = −ρ log(pρ−γ).

• ES: Skew-symmetric splitting of the inviscid flux derivative that is entropy conserving
and stable using the Harten entropy function [174] and the generalized energy norm
with summation-by-parts (SBP) [12,26,64].

• DS: Momentum-conserving Ducros et al. skew-symmetric split of the inviscid flux
derivative [158].

• KGP: Kennedy–Gruber–Pirozzoli (KGP) skew-symmetric splitting of the inviscid flux
derivative that is kinetic energy preserving [45,179,180].

• ESDS: Entropy split with Ducros et al. splitting [12].
• ESSW: Entropy split with Ducros et al. splitting but switch to regular central near

discontinuities [15].
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• ECLOGKP: Tadmor-type entropy conserving method using the Tadmor entropy func-
tion with Ranocha’s kinetic energy preserving modification [46].

• DSKP: Ducros split with KEP.

From our previous studies [12,13,15], the Tadmor-type entropy conserving methods
EC, ECLOG and ECLOGKP are the most CPU intensive methods among the nine methods.
For results by EC, see [12,13,15]. It is approximately twice the CPU per time step than the
ES, ESDS and ESSW methods. DS is the least CPU intensive. Comparisons of execution
times were given in previous published works.

See [12,13,15] for more test case comparisons, including strong shock waves. Here,
only the 2D isotropic vortex convection, 3D Taylor–Green vortex shock free turbulence
and the Brio-Wu MHD shock tube test cases are selected for the nine method comparison.
The comparison includes the maximum-norm error, mass conservation errors, entropy and
kinetic energy vs. time for the eighth-order methods. It is noted that the performance
comparison discussed here pertains to the chosen flow type, governing equation set and
uniform grid spacings without any grid adaptation. The performance of the entropy
split methods as a function of the split parameter β for other test cases can be found
in our previous published works indicated above. Just like other current high-order
method developments in the literature, the performance of the entropy split method
is highly dependent on the grid size, flow type, flow condition, shock-free turbulence,
turbulence with shocklets and turbulence with strong shocks. Below, only results by
the eighth-order classical spatial discretization are shown. Studies by DRP and compact
spatial discretizations were also performed but are not shown here. See [12–15,29] for
additional investigations.

11.2. A Smooth Flow Gas Dynamics Test Case: 2D Isotropic Vortex Convection

A standard test case to examine the stability and accuracy of long-time integration
for a smooth flow is the 2D isentropic vortex convection with the initial data indicated in
Figure 54.

Figure 54. Two-dimensional isentropic vortex convection problem setup.
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The exact solution is the initial data translated, u(x, t) = u0(x − u∞t, y − v∞t). The
computational domain was of size 0 ≤ x ≤ 18, 0 ≤ y ≤ 18 with periodic boundary
conditions. The center of the vortex is (x0, y0) = (9, 9). We integrate this test case to a final
time T = 800 for a majority of the comparisons. Two grids 1012 and 2012 are considered for
the comparison. For β = 2 and the coarse grid 1012, we integrate to a final time T = 1440,
which is more than 100 times longer than reported in the literature and twice as long as
most of our previous studies with end time 720. To obtain a better time accuracy, the CFL
number is set to 0.4, leading to a fairly small time step.

Investigating the level of maximum-norm error by the eighth-order ES and ESSW
methods as a function of β vs. time using the two grids, Figure 55 shows that a lower
maximum-norm error can be prolonged for longer time integration using β = 1 than β = 2
by the finer grid for both ES and ESSW methods. For the same grid, the maximum-norm
error is highly dependent on the value of β. The error remains the same for β = 1 by both
ES and ESSW methods. However, for other β = 2 and 2.5, the error using the ES method is
slightly different from the ESSW method.

Figure 55. Two-dimensional inviscid isentropic vortex convection: Comparison of maximum-norm
error vs. time for different β by eighth-order ES (top) and ESSW (bottom) using 1012 (left) and 2012

(right) grid points.

Figure 56 shows the maximum-norm error, mass conservation errors, entropy and
kinetic energy for the nine eighth-order methods using β = 1 on the fine grid. Overall, ES
performs the best, except the conservation of mass breaks down at around time 680. The
kinetic energy and entropy results show the quantity with its value at time zero subtracted,
e.g., the kinetic energy (Ekin(t)) shown is Ekin(t)− Ekin(0).
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Figure 56. Two-dimensional inviscid isentropic vortex convection: comparison of maximum-norm
error, mass conservation error, entropy errors and kinetic energy by EH vs. time for the nine eighth-
order methods using a fine 2012 grid points and β = 1.

To show the performance of β = 2, Figure 57 shows the time-evolution to the final
end time of T = 1440 using the coarse grid 1002 in terms of maximum-norm error, the two
entropies and the kinetic energy as function of time for eight methods using β = 2 in the
entropy split methods. The performance by the ES method using β = 2 is very different to
using β = 1 using the same grid.

The entropy EL shows the quantity with its value at time zero subtracted. The methods
KGS, DS and ESDS blow up before time 300, while the four methods that conserve entropy
all run to the final time. However, the methods that do not blow up have very large errors
after time 300.

From the computed results (not all results are shown here), the entropies are not per-
fectly conserved for longer times. The likely explanation is that the poor accuracy for long
times makes time discretization error significant. This, in turn, destroys the conservation
when entropy conservation holds only for the semi-discrete problem. However, as seen
from the zoomed-in plots, the entropy and kinetic energy are very close to being constant,
up to the time when the errors become large. This is an improvement that we expected to
see with the more accurate time integration.

Extensive method comparisons were conducted in [12,13,15,30]. Results by ES and
ESDS are highly dependent on the split parameter β. Only comparisons using β = 1 and
β = 2 based on the study in [12] are shown here. Using β = 1 with grid refinement, the
performance by ES is stable and more accurate for a longer time integration. In summary,
for the 2D vortex convection case, ESDS, ESSW and KGP methods conserve entropy in a
shorter time integration and are less accurate for longer time integration than the other
considered methods. For ESDS and ESSW, modification from the original ES method might
interfere with the entropy conservation property.

For the splitting parameter β, even for shock-free long-time integration flows, for
physical argument, it is preferred to use β = 1 or greater as for β < 1, more than 50%
non-conservative portion of the split flux derivative is used.
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Figure 57. Two-dimensional inviscid isentropic vortex convection: Final end time of T = 1440
comparison of maximum-norm error, entropy EH , entropy EL and kinetic energy vs. time for the
eight eighth-order methods using a 1002 grid points and β = 2.

11.3. A Well-Known 3D Shock-Free Compressible Turbulence Gas Dynamics Test Case—3D
Taylor–Green Vortex

The well-known shock-free compressible turbulence test case to evaluate the stability
and accuracy for gas dynamics is the Taylor–Green vortex [195]. The 3D Euler equations of
compressible gas dynamics are solved with γ = 5/3. The computational domain is a cube
with sides of length 2π and with periodic boundary conditions in all three directions. The
initial conditions are

ρ = 1 p = 100 + {[cos(2z) + 2)(cos(2x) + cos(2y)]− 2}/16 (39)

u = sin x cos y cos z, v = − cos x sin y cos z, w = 0. (40)

The problem is solved to time 20. In our previous studies, the uniform coarse grid DNS of
643 grid points solutions were compared with the filtered fine grid DNS solutions using
a uniform 2563 grid points. Here, we use the same uniform coarse grid to examine the
nonlinear stability and accuracy of the three new eighth-order NEW, ESSW and ESDS
methods. The total kinetic energy of the exact solution is constant in time.

Although grid refinement studies were performed and reported in [12,13,15,30], here,
we only report the numerical results for a coarse grid DNS comparison among methods. It is
noted that for this Taylor–Green inviscid problem, small scales are generated that eventually
cause large errors in the solution due to inadequate resolution. This probably occurs around
T = 5. Another issue is that for very low dissipative or non-dissipative numerical methods
for the simulation of turbulent flows, even with extreme grid refinement, grid convergence
cannot be obtained as the original inviscid Euler equations are chaotic in nature. With
sufficient but not excessive numerical dissipations, one is solving the equivalent of very
high Reynolds number Navier–Stokes equations. See Yee and Sjögreen [196] for a study.
The end time is 20 instead of the standard end time 10 to observe the solution behavior
twice as long using the same RK4 time discretization and CFL number 0.4. Harten’s entropy
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was used for all schemes except ECLOG and ECLOGKP, where we used the log-entropy.
Furthermore, the entropy E(t) is normalized to show deviation from the initial entropy.
Thus, E(t)− E(0) is shown in the figures.

Figure 58 shows the comparison of kinetic energy, maximum-norm error and entropy
vs. time for the nine eighth-order methods. It is interesting to see the behavior of doubling
the time integration duration for such coarse grid DNS computations.

Figure 58. Three-dimensional inviscid Taylor–Green vortex using 643 grid points: Comparison of
kinetic energy (top left), enstrophy (top right), entropy (bottom left) and entropy (closed up, bottom
right) vs. time for the nine eighth-order methods using β = 2.

Method ESDS becomes unstable at around time 6, and method DSKP becomes unstable
around time 7. All other schemes ran to completion. Again, the kinetic energy and entropy
results show the quantity with its value at time zero subtracted, e.g., the kinetic energy
(Ekin(t)) shown is Ekin(t)− Ekin(0). The ES method starts to lose some energy at a later time.
Otherwise, the stable results are similar. ECLOGKP and KGS are indistinguishable and fall
on top of each other in the zoomed-in figure. One surprising result is that method ECBKP
is expected to preserve kinetic energy in the same manner but does not. The other stable
methods are a little off, but this is only visible in the closeup. Methods ES and ECBKP fall
on top of each other, as we would expect, since these two schemes conserve the entropy in
a discretized sense. Method ECLOGKP is also on top of ES and ECBKP, making it hard to
visualize the differences in the results.

Not included here are studies illustrating that the logarithmic entropy function con-
served Harten’s entropy almost perfectly. Methods ECLOGKP and ECLOG conserve
entropy, as illustrated in the figure, where their solutions are on top of each other. Overall,
ECLOGKP, ECLOG, ECBKP, KGS and DS are very similar. One has to zoom in very much
in this region to see any differences for this test case. However, differences might be larger
for other flow problems. As can be seen for this test case, method ES behaves somewhat
different. DSKP and ESDS are not performing well. It is noted again that results by ES and
ESDS are highly dependent on β. Only results with β = 2 are shown based on the study
in [12].
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Figure 59 compares how well these eighth-order methods conserve mass and mo-
mentum in the x-, y- and z-directions. The figures show total mass (or momentum) as
a function of time, normalized so that the initial mass (or momentum) is zero. For the
mass-conservation plot, all schemes except ES, ESSW and ESDS are perfectly conservative.
The normalized M(t)− M(0) is zero as long as the method is stable for all methods except
the ES scheme, which is around e−9 for most of the time. In addition, these figures are
shown in the log-scale, where we artificially set the schemes with zero conservation error
to e−16.

Figure 59. Three-dimensional inviscid Taylor–Green vortex using 643 grid points: comparison of mass
conservation (top left), x-momentum conservation (top right), y-momentum conservation (bottom
left) and z-momentum conservation (bottom right) vs. time for the nine eighth-order methods using
β = 2.

The Taylor–Green vortex test case has a similar method comparison conclusion as
the vortex convection test case. ESDS, ESSW and KGP methods conserve entropy in a
shorter time integration and are less accurate for longer time integration than the other
considered methods. For ESDS and ESSW, their modification from the original ES method
might interfere with the entropy conservation property.

For the extension of these high-order methods for the ideal MHD in curvilinear grids
with method comparisons, see [30].

Only the key numerical results of a very difficult Brio–Wu MHD shock tube problem is
briefly discussed here. The Brio–Wu MHD shock tube problem involves two fast rarefaction
waves, a slow compound wave, a contact discontinuity and a slow shock wave. According
to the Flash code [197,198], standard high-order shock-capturing methods exhibit oscillatory
solutions. Examples are PPM (piecewise parabolic method of Collela and Woodward [199])
and third- to fifth-order WENO (WENO3–WENO5). Most researchers resorted to use first
order or very diffusive second-order methods with local Lax–Freidrichs (LLF) or variants
of the HLL-type numerical fluxes [200,201]. The oscillations increase with an increase in By,
with the reason being that stronger By introduces a more transverse effect that resists shock
propagation in the x-direction, causing the shock to move slowly. Our simulation using our
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high-order method provides higher accuracy with decreased oscillation at the discontinuity
regions than the Flash code results. Details of the test case can be found in [16,30].

11.4. A Short Summary of Comparative Performance of High-Order Skew-Symmetric SPM

In summary, for the chosen test cases, the long-time integration performance of the
entropy split methods as a function of the split parameter β is dependent on the flow type,
flow condition and the grid spacing. For finer grids, the stability of long-time integration
for the same β value can be different. The general guideline is that for very smooth pure
convection flows, β = 1 (50% conservative and 50% non-conservative of the split term)
or β between 1 and 2 can improve the stability tremendously without added numerical
dissipation. A finer grid in general prolongs stability for longer time integration. The split
method conserves mass and entropy. For problems with shock waves, β between 20 and 26
performs well with the NEW and ESSW methods in conjunction with the Yee et al. and Yee
and Sjögreen nonlinear filter approach.

The relative stability and accuracy are comparable among the KGP-type, DS-type split
methods and the ES and ESSW methods. In certain test cases, ES and ESSW are more stable
for longer time integration. KGP-type and DS-type methods are the least CPU intensive
for both the gas dynamics and MHD test cases. However, they do not conserve entropy.
For the difficult Brio–Wu test case, unlike most published work reported in the literature,
the current nonlinear filter approach in conjunction with the various splitting methods
indicated that stability and high accuracy were obtained using very high-order spatial
discretization and the Roe-type approximate Riemann solver. The numerical instability and
highly spurious oscillatory solutions by standard high-order shock-capturing methods are
drastically reduced by the ES and ESSW methods. With the current studies and from our
previous studies [12,13,15,202], EC, ECLOG and ECLOGKP are the most CPU intensive
methods among the nine methods. They have at least twice the CPU usage per time step
than the ES, ESDS and ESSW methods and yet exhibit similar resolutions. DS is the least
CPU intensive.

For a generalization to a wider class of entropy split methods for compressible ideal
MHD using the two-point numerical flux with numerical examples, see [16],

12. Concluding Remark

Some building blocks to ensure a higher level of confidence in PAR of numerical
simulations have been discussed. The discussion concentrates only on how well numerical
schemes can mimic the solution behavior of the underlying PDEs. The possible discrepancy
between the chosen model and the real physics and/or experimental data is set aside.
These building blocks are based largely on the author’s view, background and integrated
experience in computational physics, numerical analysis and the dynamics of numerics.
They also represent the end result of the various studies with the author’s collaborators
indicated in the acknowledgment section. Among many other important building blocks for
the PAR of numerical simulations, the author believes the following five building blocks are
essential. The first building block is to analyze as much as possible the dynamical behavior
of the governing equation. For stability and well-posedness considerations, whenever it is
possible, it is also necessary to condition (not pre-condition) the governing PDEs before the
application of the appropriate scheme (Yee and Sjögreen [121,122]). The second building
block is to understand the nonlinear behavior, limits and barriers and to isolate the spurious
behavior of existing numerical schemes. The third building block is to include nonlinear
dynamics and bifurcation theories as an integral part of the numerical process whenever
it is possible. The fourth building block is to construct appropriate adaptive spatial and
temporal discretizations that are suitable for the underlying governing equation. The last
building block is to construct appropriate adaptive numerical dissipation/filter controls
for long-time integrations, and complex high-speed turbulent and combustion simulations
(Sjögreen and Yee 2001 [10], Yee and Sjögreen 2001 [120]).
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We have revealed some of the causes of spurious phenomena due to the numerics in
an attempt to improve the understanding of the effects of numerical uncertainties in CFD.
We have shown that guidelines developed using linearization methods are not always
valid for nonlinear problems. We have gained an improved understanding of long-time
behavior of nonlinear problems and the nonlinear stability, convergence and reliability of
time-marching approaches. We have learned that numerics can introduce and suppress
chaos and can also introduce chaotic transients. The danger of relying on DNS to closely
bracket the onset of turbulence and chaos is evident.

We have shown that employing theories of nonlinear dynamics to guide the construc-
tion of more appropriate, stable and accurate numerical methods could help (a) delineate
solutions of the discretized counterparts but not solutions of the governing equations;
(b) prevent numerical chaos/turbulence leading to FALSE predication of transition to tur-
bulence; (c) provide reliable numerical simulations of nonlinear fluid dynamical systems,
especially by direction numerical simulations (DNS), large eddy simulations (LES) and
implicit large eddy simulations (ILES) simulations; and (d) prevent incorrect computed
shock speeds for problems containing stiff nonlinear source terms, if present.

From the wide varieties of test cases for compressible gas dynamics and MHD per-
formed in [1–3], the performance of the blending of more than one method is highly
dependent on the flow physics. Regardless of the choice of these blendings of high-order
methods, these test cases illustrate the improved stability and accuracy over the standalone
single high-order method approach. Nine eighth-order structure-preserving methods were
compared for a wide range of test cases in order to illustrate the effectiveness of the blend-
ing of selected numerical method approaches. These current trends of adaptive blending of
high-order, structure-preserving non-dissipative methods with high-resolution, high-order
shock-capturing methods are also applicable to discontinuous Galerkin method, and finite
element methods and spectral element methods. In addition, our studies indicated that
these current approaches can also improved stability and accuracy in rapidly developed
unsteady flows containing steep gradients, and shear and shock waves with the benefit of
minimizing added numerical dissipations.

Our future work is planned to develop newer methods catering to some of the afore-
mentioned disciplines with the knowledge gained from these nonlinear studies.
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