A Review of Biomechanical Studies of Heart Valve Flutter
Abstract
:1. Introduction
2. Detection and Quantification of Heart Valve Flutter
3. Problems with Heart Valve Flutter
3.1. Blood Flow Disturbance Caused by Heart Valve Flutter
3.2. Mechanical Problems and Valve Degeneration
4. Parameters Related to Heart Valve Flutter
4.1. Heart Valve Material Parameters
4.2. Heart Valve Design Parameters
4.3. Influence of Non-Valvular Parameters on Cardiac Valve Flutter
5. Discussions
5.1. Material and Thickness
5.2. Design Optimization
5.3. Fiber Enhancement in the Heart Valve
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ross, D.; Yacoub, M.H. Homograft replacement of the aortic valve. A critical review. Prog. Cardiovasc. Dis. 1969, 11, 275–293. [Google Scholar] [CrossRef]
- Li, R.L.; Russ, J.; Paschalides, C.; Ferrari, G.; Waisman, H.; Kysar, J.W.; Kalfa, D. Mechanical considerations for polymeric heart valve development: Biomechanics, materials, design and manufacturing. Biomaterials 2019, 225, 119493. [Google Scholar] [CrossRef]
- Bourguignon, T.; Bouquiaux-Stablo, A.-L.; Candolfi, P.; Mirza, A.; Loardi, C.; May, M.-A.; El-Khoury, R.; Marchand, M.; Aupart, M. Very long-term outcomes of the Carpentier-Edwards perimount valve in aortic position. Ann. Thorac. Surg. 2015, 99, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Dvir, D.; Bourguignon, T.; Otto, C.M.; Hahn, R.T.; Rosenhek, R.; Webb, J.G.; Treede, H.; Sarano, M.E.; Feldman, T.; Wijeysundera, H.C.; et al. Standardized Definition of Structural Valve Degeneration for Surgical and Transcatheter Bioprosthetic Aortic Valves. Circulation 2018, 137, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Zhu, Q.; Chen, J.; Liu, X. Research Progress on Long-Term Durability of Aortic Bioprosthetic Valves. Chin. Circ. J. 2021, 36, 1031–1035. [Google Scholar] [CrossRef]
- Simionescu, D.T.; Lovekamp, J.J.; Vyavahare, N.R. Degeneration of bioprosthetic heart valve cusp and wall tissues is initiated during tissue preparation: An ultrastructural study. J. Heart Valve Dis. 2003, 12, 226–234. [Google Scholar] [PubMed]
- Talman, E.A.; Boughner, D.R. Glutaraldehyde fixation alters the internal shear properties of porcine aortic heart-valve tissue. Ann. Thorac. Surg. 1995, 60, S369–S373. [Google Scholar] [CrossRef] [PubMed]
- Schoen, F.J.; Fernandez, J.; Gonzalez-Lavin, L.; Cernaianu, A. Causes of failure and pathological findings in surgically removed Ionescu-Shiley standard bovine pericardial heart-valve bioprostheses—Emphasis on progressive structural deterioration. Circulation 1987, 76, 618–627. [Google Scholar] [CrossRef]
- Calderón, J.A.G.; López, D.C.; Pérez, E. Polysiloxanes as polymer matrices in biomedical engineering: Their interesting properties as the reason for the use in medical sciences. Polym. Bull. 2020, 77, 2749–2817. [Google Scholar] [CrossRef]
- Rezvova, M.A.; Klyshnikov, K.Y.; Gritskevich, A.A.; Ovcharenko, E.A. Polymeric Heart Valves Will Displace Mechanical and Tissue Heart Valves: A New Era for the Medical Devices. Int. J. Mol. Sci. 2023, 24, 3963. [Google Scholar] [CrossRef]
- Braunwald, N.S.; Morrow, A.G. A late evaluation of flexible teflon prostheses utilized for total aortic valve replacement: Postoperative clinical, hemodynamic, and pathological assessments. J. Thorac. Cardiovasc. Surg. 1965, 49, 485–496. [Google Scholar] [CrossRef]
- Cardoso, V.F.; Correia, D.M.; Ribeiro, C.; Fernandes, M.M.; Lanceros-Méndez, S. Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications. Polymers 2018, 10, 161. [Google Scholar] [CrossRef]
- Choi, K.H.; Sung, S.C.; Kim, H.; Lee, H.D.; Kim, G.; Ko, H. Late results of right ventricular outflow tract reconstruction with a bicuspid expanded polytetrafluoroethylene valved conduit. J. Card. Surg. 2018, 33, 36–40. [Google Scholar] [CrossRef]
- Chang, T.-I.; Hsu, K.-H.; Li, S.-J.; Chuang, M.-K.; Luo, C.-W.; Chen, Y.-J.; Chang, C.-I. Evolution of pulmonary valve reconstruction with focused review of expanded polytetrafluoroethylene handmade valves. Interact. Cardiovasc. Thorac. Surg. 2021, 32, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Yamagishi, M.; Maeda, Y.; Taniguchi, S.; Fujita, S.; Hongu, H.; Yaku, H. Long-term outcomes of expanded polytetrafluoroethylene conduits with bulging sinuses and a fan-shaped valve in right ventricular outflow tract reconstruction. J. Thorac. Cardiovasc. Surg. 2018, 155, 2567–2574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, X.; Xu, T.-Y.; Zhang, Z.-G.; Li, X.; Han, L.; Xu, Z.-Y. Transcatheter pulmonary valve replacement by hybrid approach using a novel polymeric prosthetic heart valve: Proof of concept in sheep. PLoS ONE 2014, 9, e10065. [Google Scholar] [CrossRef]
- Jansen, J.; Willeke, S.; Reiners, B.; Harbott, P.; Reul, H.; Rau, G. New J-3 flexible-leaflet polyurethane heart-valve prosthesis with improved hydrodynamic performance. Int. J. Artif. Organs 1991, 14, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.; Dasi, L.P. Spatiotemporal complexity of the aortic sinus vortex. Exp. Fluids 2014, 55, 1770. [Google Scholar] [CrossRef] [PubMed]
- Braunwald, N.S. It will work: The 1st successful mitral-valve replacement. Ann. Thorac. Surg. 1989, 48, S1–S3. [Google Scholar] [CrossRef]
- Schlöglhofer, T.; Aigner, P.; Stoiber, M.; Schima, H. Fixation and mounting of porcine aortic valves for use in mock circuits. Int. J. Artif. Organs 2013, 36, 738–741. [Google Scholar] [CrossRef]
- Shoele, K.; Mittal, R. Flutter instability of a thin flexible plate in a channel. J. Fluid Mech. 2016, 786, 29–46. [Google Scholar] [CrossRef]
- Udayakumar, G.P.; Muthusamy, S.; Selvaganesh, B.; Sivarajasekar, N.; Rambabu, K.; Banat, F.; Sivamani, S.; Sivakumar, N.; Hosseini-Bandegharaei, A.; Show, P.L. Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries. J. Environ. Chem. Eng. 2021, 9, 105322. [Google Scholar] [CrossRef]
- Vellayappan, M.V.; Balaji, A.; Subramanian, A.P.; John, A.A.; Jaganathan, S.K.; Murugesan, S.; Mohandas, H.; Supriyanto, E.; Yusof, M. Tangible nanocomposites with diverse properties for heart valve application. Sci. Technol. Adv. Mater. 2015, 16, 033504. [Google Scholar] [CrossRef] [PubMed]
- Marx, P.; Kowalczyk, W.; Demircioglu, A.; Shehada, S.-E.; Wendta, H.; Mourad, F.; Thielmann, M.; Jakob, H.; Wendt, D. An in vitro comparison of flow dynamics of the Magna Ease and the Trifecta prostheses. Minim. Invasive Ther. Allied Technol. MITAT Off. J. Soc. Minim. Invasive Ther. 2020, 29, 78–85. [Google Scholar] [CrossRef]
- Doaré, O.; Sauzade, M.; Eloy, C. Flutter of an elastic plate in a channel flow: Confinement and finite-size effects. J. Fluids Struct. 2011, 27, 76–88. [Google Scholar] [CrossRef]
- Van Steenhoven, A.A.; Verlaan, C.W.; Veenstra, P.C.; Reneman, R.S. In vivo cinematographic analysis of behavior of the aortic valve. Am. J. Physiol. 1981, 240, H286–H292. [Google Scholar] [CrossRef]
- Bahraseman, H.G.; Languri, E.M.; Yahyapourjalaly, N.; Espino, D.M. Fluid-structure interaction modeling of aortic valve stenosis at different heart rates. Acta Bioeng. Biomech. 2016, 18, 11–20. [Google Scholar] [PubMed]
- Aljalloud, A.; Shoaib, M.; Egron, S.; Arias, J.; Tewarie, L.; Schnoering, H.; Lotfi, S.; Goetzenich, A.; Hatam, N.; Pott, D.; et al. The flutter-by effect: A comprehensive study of the fluttering cusps of the Perceval heart valve prosthesis. Interact. Cardiovasc. Thorac. 2018, 27, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Hatoum, H.; Dasi, L.P. Spatiotemporal Complexity of the Aortic Sinus Vortex as a Function of Leaflet Calcification. Ann. Biomed. Eng. J. Biomed. Eng. Soc. 2019, 47, 1116–1128. [Google Scholar] [CrossRef]
- Rainer, W.G.; Christopher, R.A.; Sadler, T.R.; Hilgenberg, A.D. Dynamic behavior of prosthetic aortic tissue valves as viewed by high-speed cinematography. Ann. Thorac. Surg. 1979, 28, 274–280. [Google Scholar] [CrossRef]
- Lee, J.H.; Scotten, L.N.; Hunt, R.; Caranasos, T.G.; Vavalle, J.P.; Griffith, B.E. Bioprosthetic aortic valve diameter and thickness are directly related to leaflet fluttering: Results from a combined experimental and computational modeling study. JTCVS Open 2020, 6 (Suppl. S2), 60–81. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.J.; Park, M.H.; Pandya, P.K.; Stark, C.J. Biomechanics and clinical outcomes of various conduit configurations in valve sparing aortic root replacement. Ann. Cardiothorac. Surg. 2023, 12, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.L.; Wu, M.C.H.; Xu, F.; Wiese, N.M.; Rajanna, M.R.; Herrema, A.J.; Ganapathysubramanian, B.; Hughes, T.J.R.; Sacks, M.S.; Hsu, M.-C. Thinner biological tissues induce leaflet flutter in aortic heart valve replacements. Contributed by Hughes TJR. Proc. Natl. Acad. Sci. USA 2020, 117, 19007–19016. [Google Scholar] [CrossRef]
- Becsek, B.; Pietrasanta, L.; Obrist, D. Turbulent Systolic Flow Downstream of a Bioprosthetic Aortic Valve: Velocity Spectra, Wall Shear Stresses, and Turbulent Dissipation Rates. Front. Physiol. 2020, 11, 577188. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.L.; Rajanna, M.R.; Yang, C.-H.; Hsu, M.-C. Effects of membrane and flexural stiffnesses on aortic valve dynamics: Identifying the mechanics of leaflet flutter in thinner biological tissues. Forces Mech. 2021, 6, 100053. [Google Scholar] [CrossRef]
- Nygaard, H.; Giersiepen, M.; Hasenkam, J.M.; Reul, H.; Paulsen, P.K.; Rovsing, P.E.; Westphal, D. Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro. J. Biomech. 1992, 25, 429–440. [Google Scholar] [CrossRef]
- Vennemann, B.; Rösgen, T.; Heinisch, P.P.; Obrist, D. Leaflet Kinematics of Mechanical and Bioprosthetic Aortic Valve Prostheses. ASAIO J. 2018, 64, 651–661. [Google Scholar] [CrossRef]
- Leat, M.E.; Fisher, J. A synthetic leaflet heart-valve with improved opening characteristics. Med. Eng. Phys. 1994, 16, 470–476. [Google Scholar] [CrossRef]
- Pinto, E.R.; Damani, P.M.; Sternberg, C.N.; Liedtke, A.J. Fine flutterings of the aortic valve as demonstrated by aortic valve echocardiograms. Am. Heart J. 1978, 95, 807–808. [Google Scholar] [CrossRef]
- Shar, J.A.; Keswani, S.G.; Grande-Allen, K.J.; Sucosky, P. Computational Assessment of Valvular Dysfunction in Discrete Subaortic Stenosis: A Parametric Study. Cardiovasc. Eng. Technol. 2021, 12, 559–575. [Google Scholar] [CrossRef]
- Coulter, F.B.; Schaffner, M.; Faber, J.A.; Rafsanjani, A.; Smith, R.; Appa, H.; Zilla, P.; Bezuidenhout, D.; Studart, A.R. Bioinspired Heart Valve Prosthesis Made by Silicone Additive Manufacturing. Matter 2019, 1, 266–279. [Google Scholar] [CrossRef]
- Hart, J.; Cacciola, G.; Schreurs, P.; Peters, G. A three-dimensional analysis of a fibre-reinforced aortic valve prosthesis. J. Biomech. 1998, 31, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, B.; Hu, J.-X.; Zheng, X.; Qin, S.; Li, C.; Wang, S.; Mao, J.; Wang, L. Bioinspired NiTi-reinforced polymeric heart valve exhibiting excellent hemodynamics and reduced stress. Compos. Part B Eng. 2023, 255, 110615. [Google Scholar] [CrossRef]
- Condurache, A.P.; Hahn, T.; Scharfschwerdt, M.; Mertins, A.; Aach, T. Video-Based Measuring of Quality Parameters for Tricuspid Xenograft Heart Valve Implants. IEEE Trans. Biomed. Eng. 2009, 56, 2868–2878. [Google Scholar] [CrossRef]
- Wiese, N.M.; Krishnamurthy, A.; Ganapathysubramanian, B. Quantification of Leaflet Flutter in Bioprosthetic Heart Valves Using Fluid-Structure Interaction Analysis. Master’s Thesis, Iowa State University, Ames, IA, USA, 2019. [Google Scholar] [CrossRef]
- Avelar, A.H.d.F.; Canestri, J.A.; Bim, C.; Silva, M.G.M.; Huebner, R.; Pinotti, M. Quantification and Analysis of Leaflet Flutter on Biological Prosthetic Cardiac Valves. Artif. Organs 2017, 41, 835–844. [Google Scholar] [CrossRef]
- Claiborne, T.E.; Xenos, M.; Sheriff, J.; Chiu, W.-C.; Soares, J.; Alemu, Y.; Gupta, S.; Judex, S.; Slepian, M.J.; Bluestein, D. Toward optimization of a novel trileaflet polymeric prosthetic heart valve via device thrombogenicity emulation. ASAIO J. 2013, 59, 275–283. [Google Scholar] [CrossRef]
- Bernacca, G.M.; O’connor, B.; Williams, D.F.; Wheatley, D.J. Hydrodynamic function of polyurethane prosthetic heart valves: Influences of Young’s modulus and leaflet thickness. Biomaterials 2002, 23, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.D.; Peters, G.; Schreurs, P.; Baaijens, F. Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J. Biomech. 2004, 37, 303–311. [Google Scholar] [CrossRef]
- Liu, Y.; Kasyanov, V.; Schoephoerster, R.T. Effect of fiber orientation on the stress distribution within a leaflet of a polymer composite heart valve in the closed position. J. Biomech. 2007, 40, 1099–1106. [Google Scholar] [CrossRef]
Description | Reference |
---|---|
The subtle flutter may represent a local turbulent effect on the flexible aortic valve tip in an altered hemodynamic state | [39] |
The flutter can cause blood flow disturbances and other abnormal fluid phenomena that may lead to the formation of a thrombus or embolisms | [35] |
The study explored the effects of altered hemodynamics on the aortic valve leaflets, including aspects such as wall shear stress (WSS), which can lead to fatigue and a thrombus | [40] |
Other mechanical problems with the valve implant, such as degradation, reduced durability, and fatigue, may be accelerated due to high-frequency cyclic loading | [35] |
Leaflet flutter of a biological valve can have an impact on the durability of the valve as it introduces additional cycles of mechanical load during contraction, which can lead to early blade wear or mechanical failure due to repeated bending of the blade material and the forces experienced during opening and closing | [37] |
Heart valve flutter is thought to be associated with calcification, regurgitation, hemolysis, and material fatigue. A stronger tremor observed in the TF valve may lead to a reduced peak flow rate on the one hand and reduced long-term durability of the valve on the other | [41] |
Description | Reference |
---|---|
In the case of aortic valve stenosis, the incidence of flutter decreased compared to normal due to the limitation of leaflet motion due to the thickening of the valve leaflet | [25] |
The flutter frequency of valve tissue with different thickness is lower with greater thickness | [45] |
The heart valve flutter is related to thickness, but the correlation is not specified | [46] |
The study took into account different thicknesses of biomaterials and found that thinner valves were more likely to cause flutter | [33] |
For fixed-diameter devices, a thinner leaflet will produce a lower tremor frequency than a thicker leaflet | [31] |
Thinner biological tissue can induce valve flutter during aortic heart valve replacement | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Zhang, Z.; Li, T.; Chen, Y. A Review of Biomechanical Studies of Heart Valve Flutter. Fluids 2024, 9, 254. https://doi.org/10.3390/fluids9110254
Chen L, Zhang Z, Li T, Chen Y. A Review of Biomechanical Studies of Heart Valve Flutter. Fluids. 2024; 9(11):254. https://doi.org/10.3390/fluids9110254
Chicago/Turabian StyleChen, Lu, Zhuo Zhang, Tao Li, and Yu Chen. 2024. "A Review of Biomechanical Studies of Heart Valve Flutter" Fluids 9, no. 11: 254. https://doi.org/10.3390/fluids9110254
APA StyleChen, L., Zhang, Z., Li, T., & Chen, Y. (2024). A Review of Biomechanical Studies of Heart Valve Flutter. Fluids, 9(11), 254. https://doi.org/10.3390/fluids9110254