
Citation: Schupbach, W.; Premnath, K.

Fokker-Planck Central Moment

Lattice Boltzmann Method for

Effective Simulations of Fluid

Dynamics. Fluids 2024, 9, 255.

https://doi.org/10.3390/

fluids9110255

Academic Editors: Jie Bao and Giuliano

De Stefano

Received: 20 August 2024

Revised: 12 October 2024

Accepted: 24 October 2024

Published: 29 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Fokker-Planck Central Moment Lattice Boltzmann Method for
Effective Simulations of Fluid Dynamics
William Schupbach and Kannan Premnath *

Department of Mechanical Engineering, University of Colorado Denver, 1200 Larimer Street,
Denver, CO 80204, USA; william.schupbach@ucdenver.edu
* Correspondence: kannan.premnath@ucdenver.edu; Tel.: +1-303-315-7558

Abstract: We present a new formulation of the central moment lattice Boltzmann (LB) method
based on a minimal continuous Fokker-Planck (FP) kinetic model, originally proposed for stochastic
diffusive-drift processes (e.g., Brownian dynamics), by adapting it as a collision model for the
continuous Boltzmann equation (CBE) for fluid dynamics. The FP collision model has several
desirable properties, including its ability to preserve the quadratic nonlinearity of the CBE, unlike
that based on the common Bhatnagar-Gross-Krook model. Rather than using an equivalent Langevin
equation as a proxy, we construct our approach by directly matching the changes in different discrete
central moments independently supported by the lattice under collision to those given by the CBE
under the FP-guided collision model. This can be interpreted as a new path for the collision process
in terms of the relaxation of the various central moments to “equilibria”, which we term as the
Markovian central moment attractors that depend on the products of the adjacent lower order
moments and a diffusion coefficient tensor, thereby involving of a chain of attractors; effectively, the
latter are nonlinear functions of not only the hydrodynamic variables, but also the non-conserved
moments; the relaxation rates are based on scaling the drift coefficient by the order of the moment
involved. The construction of the method in terms of the relevant central moments rather than
via the drift and diffusion of the distribution functions directly in the velocity space facilitates its
numerical implementation and analysis. We show its consistency to the Navier-Stokes equations
via a Chapman-Enskog analysis and elucidate the choice of the diffusion coefficient based on the
second order moments in accurately representing flows at relatively low viscosities or high Reynolds
numbers. We will demonstrate the accuracy and robustness of our new central moment FP-LB
formulation, termed as the FPC-LBM, using the D3Q27 lattice for simulations of a variety of flows,
including wall-bounded turbulent flows. We show that the FPC-LBM is more stable than other
existing LB schemes based on central moments, while avoiding numerical hyperviscosity effects in
flow simulations at relatively very low physical fluid viscosities through a refinement to a model
founded on kinetic theory.

Keywords: lattice Boltzmann method; Fokker-Planck collision model; computational fluid dynamics;
turbulence simulations; kinetic theory; central moments; numerical stability

1. Introduction

The lattice Boltzmann Method (LBM) is a numerical scheme generally used for simu-
lating fluid flows and various associated physical phenomena [1], and has been shown to
deal with complex boundaries and interfacial dynamics, as well as multiscale flows such as
turbulence and particulate suspension flows, quite well [2–4]. The key idea in the LBM is
that simplified models of the continuous Boltzmann equation [5], are employed to track
distributions of fluid particles which are restricted to collide and stream along specific
velocity directions designated by lattice links. More generally, the collision process is
modeled as to relax the distributions towards an equilibrium state designated by attractors,
that are typically defined by the Maxwell distribution. Those particle distributions are then
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shifted, or streamed, back along the same lattice links. In turn, the hydrodynamic variables
are then recovered by taking the relevant statistical moments of those distributions.

Moreover, modeling the collision process in the LBM plays an important role in tuning
the physics of the flow characteristics as well as in the numerical stability of the scheme
itself. To that end, many different collision models have been developed with the overall
goal of improving its ability to represent multi-physics effects or to increase the limits of its
applicability in flow simulations that are prone to numerical instabilities. In many practical
applications, fluid flows occur with relatively large Reynolds numbers or low viscosities,
and thus numerical simulation of those flows requires a robust numerical method capable
of dealing with the associated numerical artifacts that arise when using a less robust model.

The first and simplest collision model, known as the single relaxation time (SRT)
collision model [6], paved the way for treating the collision step as a relaxation process, but
it was also found to have sever limitations in terms of numerical stability. More specifi-
cally, the SRT model breaks down when applied to problems that involve large Reynolds
numbers or very small fluid viscosities. The primary issue being that the distributions
are relaxed at the same rate, which causes some of them to incur large numerical errors.
As a response to these issues, the multiple relaxation model was developed, which per-
forms the collision step in moment space instead of velocity space, and allows different
moments of the distributions to relax at different rates [7,8]. The MRT model was found to
significantly improve the numerical stability when compared to the SRT collision model.
Next, a natural extension of the MRT collision model was developed, which performs the
relaxation in a new space known as central moment space that can be described as moment
space with a moving reference frame. This new development is commonly known as the
central moment collision model or as the cascaded collision model, and the attractors are
obtained by matching the discrete central moment equilibria supported by a lattice with
the corresponding central moments of the continuous Maxwell distribution [9]. This new
model again showed great improvements in numerical stability when compared to the
MRT collision model.

When simulating flows with relatively low fluid viscosities, some of such LBM col-
lision models involve disparities between the relaxation rates of the second and higher
order moments, and as such, some amendments are required to avoid numerical hyper-
viscosities. One ad hoc solution in this regard for the central moment family of LB schemes
involves constructing the attractors for the higher order central moments by exploiting
the factorization property of the continuous Maxwellian and using the products of the
post-collision central moments of lower orders to drive the relaxation process, without
relying on the Maxwellian by itself [10]. This scheme is known as the factorized LBM.
Furthermore, another solution that deals with the hyper-viscosity artifact, which is much
more sophisticated with additional attendant transformations involves relaxing cumulants
in favor of central moments under collision [11]. In this work, we propose and investigate
a new and alternative formulation of the central moment method LB based on the relax-
ation of central moments towards attractors defined by taking the central moments of the
Fokker-Planck model for the Boltzmann collision integral and eliminates these artifacts
while achieving highly stable flow simulations through adopting a different perspective
and refinements from kinetic theory.

The Fokker-Planck (FP) equation is an important formulation in statistical mechanics
originally constructed for describing the evolution of the distribution of particles, whose
motion stems from the effects of stochastic forces [12–18], the prototypical example being
the Brownian dynamics arising from the stochastic diffusive and drift processes [19–23].
Thus, the continuous-time FP equation represents the changes in the distribution function
due to drift and diffusion in the phase space, and is equivalent to the Langevin equation
which is a classical example of the stochastic differential equation containing contributions
from deterministic and random terms [24]. It is also referred to as the Kolmogorov forward
equation in the mathematical literature and can be derived from the master equation,
a fundamental approach for describing probabilistically-driven phenomena involving
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Markovian stochastic processes—a differential form of the so-called Chapman-Kolmogorov
equation, via the Kramers-Moyal expansion. As such, the FP equation has been generalized
further and applied to solve a large class of problems [25–27], which includes its recent
use in constructing reduced order models for complex systems represented as stochastic
cascade processes from empirical data [28,29].

In the context of fluid dynamics, based on stochastic molecular models pioneered by
Kirkwood and collaborators [30–33], which are essentially Langevin equations and hence
correspond to appropriate FP equations, the equations of fluid motion and their transport
coefficients can be derived systematically [34]. On the other hand, of specific interest to
this work, Lebowitz et al. [35] proposed the FP formulation, viz., the drift-and-diffusion
driven changes of a distribution function in the phase space, as a model for the collision
term in the continuous Boltzmann equation, where their drift and diffusion coefficients are
related to the transport coefficients of the fluid. Moreover, Cercignani [36] demonstrated
that such a FP model for collision represents a consistent and rigorous approximation
(or a diffusion limit) of the Boltzmann’s collision integral term, especially for grazing
collisions (see also [37–41]). Also, it has been shown by Pawula [42] that Boltzmann’s
collision term leads to a differential operator under a finite truncation via the Kramers-
Moyal expansion, involving only the first two terms corresponding to the FP equation. As
such, the continuous Boltzmann equation itself can be derived in a few different ways,
the most general approach among them is based on the so-called Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy [43]. Figure 1 shows schematically the different routes
of how the celebrated Boltzmann equation can be derived under the repeated randomness
or molecular chaos (stosszahlansatz) assumption [44] or via a reduction from the BBGKY
hierarchy [43] and the modeling of its collision term via either the popular Bhatnagar-
Gross-Krook (BGK) approximation [45] or the FP model under appropriate simplifying
considerations; both these models reduces the complexity of using the Boltzmann equation
in representing the dynamics of fluids (or plasmas). Clearly, Markov process considerations
underlie the derivation of the Boltzmann equation or the development of the FP model,
and is thus a crucial aspect in modeling the physical processes during collision.

In addition to the fact that the FP model directly arises as a simplification of the Boltz-
mann collision term, it has other advantages. The resulting FP collision model preserves
the quadratic nonlinearity of the Boltzmann’s collision term, unlike the BGK model, which
allows only a relaxation to the Maxwell distribution function (see [36]). Moreover, by
exploiting the flexibility available in tuning the drift and diffusion coefficients appropri-
ately and with necessary modifications, variety of complex fluid flows with attendant
multiphysics effects can be modeled, such as flows involving heat transfer with adjustable
Prandtl number, microscale gas flows, polyatomic gas flows, mixtures of gases, etc.

A stochastic numerical scheme for practical implementation, based on using an equiv-
alent Langevin equation in place of the FP collision model in the Boltzmann equation was
constructed by Jenny et al. in [46], which has been extended further and applied to various
fluid dynamical applications more recently (see e.g., [47–55]). Generally, such algorithms
serve as a computationally more efficient alternatives to the direct simulation Monte Carlo
method for the solution of the Boltzmann equation for simulation of microscale gas flows at
moderate Knudsen numbers. In the LB framework, Moroni et al. [56] presented a scheme
for the solution of the FP equation whose discretization is effected by the Hermite projec-
tions in the velocity space. Such velocity space discretizations, which retain terms up to the
third order in the fluid velocities for the changes in the distribution function under collision,
was then extended for hydrodynamics in [57] but was found to have stability limitations,
which will be addressed through a different approach in this work. More recently, the FP
equation has been applied via its proxy, viz., an equivalent Langevin equation and then
solved along with an LBM for simulating polymeric fluid flows (see e.g., [58–60]).
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Figure 1. Routes for the derivation of the Boltzmann equation and the modeling of its collision term
via BGK or FP approach under appropriate approximations, and their applications to representing
the dynamics in fluids and plasmas (inspired from [41]).

In this work, we present a new central moment LBM constructed from the simplified
formulation of the continuous Boltzmann equation with the FP collision model via a
matching principle, i.e., the changes in different discrete central moments independently
supported by a chosen lattice of the LB algorithm under collision are equal to those given by
the central moments of the continuous FP-based collision model of the Boltzmann equation
for effective flow simulations. Thus, we propose to construct a LBM that implements the
FP collision model in terms of their resulting system of central moments rather than relying
on the solution of a stochastic proxy formulation based on Langevin-type equation, or
trying to solve the FP equation directly as given in the velocity space. Such an approach is
reminiscent of and has some analogy to formulating and solving the problem of dispersion
of a tracer species under the combined action of molecular diffusion and the driving
nonuniform velocity field—the so-called classical Taylor dispersion [61]; in such cases, it
is known that solving the distribution of the tracer species directly depends on invoking
various approximations and hence restrictive [61], while recasting the problem in terms
of the evolution equations of the various moments of the distribution of the tracer species
avoids the need to use restrictive assumptions and hence yields more general solutions as
shown by Aris [62]. As such, in our case, the use of central moments avoids the need to
approximate the cumbersome derivatives of the distribution functions with respect to the
particle velocities present in the FP model, which can be represented exactly in terms of
the central moments of lower orders, with an underlying local structure which is naturally
amenable for highly stable LB implementations. Interestingly, as shown schematically in
Figure 2, from a mathematical perspective, the Boltzmann’s collision term is an integral
operator, while its modeling via a FP kinetic model leads to a differential operator, which
when replaced with its central moments along with suitable refinements under the standard
LB discretization leads a significantly simpler algebraic operator that greatly facilitates
algorithmic implementation.
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Figure 2. Representation of collision processes at different levels of modeling description and the
associated mathematical nature of the collision operator.

Our formulation for the LBM based on FP-guided collision results in a new path for the
evolution of different central moments, especially at higher orders, under collision and can
be re-interpreted in terms of the relaxation of the various central moments to “equilibria”
that depend only on the adjacent, lower order post-collision moments, appearing in the
form of recurrence relations. Since the collision process is fundamentally stochastic and
Markovian in nature as noted above, we designate such equilibria identified under the
equivalent relaxation-type interpretation, which also involves scaling the drift coefficient
by the order of the participating moment to define the relaxation rates, as Markovian
central moment attractors. This is distinct from the path of relaxation of central moments
to the central moments of the Maxwellian under collision, since the Markovian central
moment attractors depend on products of the lower order moments with components of a
diffusion coefficient tensor, thereby allowing for considerations of their non-equilibrium
effects. This is especially the case for evolving the fourth and higher order central moments
under collision. As we will show in a later section, only in the special case where we
assume the lower order moments appearing in the Markovian central moment attractors
to be in equilibrium, will the latter coincide with those of the central moments of the
Maxwellian. In addition, we will present and implement a method to include body forces
in our formulation based directly on the Boltzmann’s acceleration term by invoking the
matching principle, i.e., by setting the discrete central moment changes due to body forces
to be equal to those given by the central moments of the acceleration term of the continuous
Boltzmann equation.

We will construct central moment LBMs using FP-guided collision, referred to as the
FPC-LBM, in two (2D) and three (3D) dimensions using the standard D2Q9 and D3Q27
lattices, respectively, and present the implementation details of the resulting algorithms.
As such, the two-dimensional, nine velocity (D2Q9) and three-dimensional, twenty-seven
velocity (D3Q27) lattices are the tensor product lattice sets in the respective dimensions
and commonly used in LBM for flow simulations. In order to establish their consistency to
the Navier-Stokes equations, we will present Chapman-Enskog analysis of the equivalent
central moment system of the Boltzmann equation using the FP collision model in 2D
and 3D. We will perform a detailed numerical study of our central moment LBM using
FP-guided collision to demonstrate its accuracy and stability characteristics for various
standard benchmark flow problems in 2D and 3D, and also present comparisons of its
performance when compared to those using other collision models.

Finally, we note that for simulation of flows at relatively very low fluid viscosities,
there is necessarily large disparities in the relaxation rates of the non-conserved second
order and the higher order moments when the LB formulation is implemented using
the multiple relaxation times, and if the central moments of the Maxwellian are used as
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equilibria, the contributions from such higher moments involves terms analogous to the
non-equilibrium momentum fluxes (related to the strain rate tensor) and can dominate the
corresponding physical contributions from the second-order non-equilibrium moments,
which manifest as numerical hyperviscosities. On the other hand, this can be addressed
by suitably prescribing the model parameters associated with the FP model, viz., the dif-
fusion coefficient tensor in the Markovian central moment attractor. More specifically,
the diffusion tensor parameter associated with the FP model is related to the variance of
the distribution function, which corresponds to the different components of the second
order central moments. When we consider the latter to be at equilibrium in evolving
the conserved hydrodynamic variables via the relaxation of second order moments as
required to recover the Navier-Stokes equations, while retaining them to be in general
non-equilibrium states for evolving the higher moments, the resulting Markovian central
moment attractors naturally become nonlinear functions of lower non-conserved moments,
which, as shown later in this work, can effectively avoid such numerical hyperviscosities,
while also greatly enhancing numerical stability in simulations of flows at higher Reynolds
numbers. Furthermore, to demonstrate the capability of our approach for accurate tur-
bulence simulations, we will presents results obtained using the FPC-LBM for turbulent
channel flow and compare them with state-of-the-art direct numerical simulations (DNS)
data obtained previously using a Navier-Stokes based solver.

In summary, our present work is motivated by the fact that various collision models
of the LBM are prone to numerical instabilities or are subject to numerical hyperviscosities
when simulating flows at relatively low fluid viscosities or high Reynolds numbers. We
address both these issues by constructing FPC-LBM in 2D and 3D based on refining a
model from kinetic theory that results in a more robust and accurate formulation for flow
simulations in such cases.

This paper is organized as follows. In the next section (Section 2), we will present
the derivation of a central moment formulation of the continuous FP collision operator
of the Boltzmann equation in 2D, followed by the construction of the discrete Markovian
central moment attractors using the D2Q9 lattice for the 2D FPC-LBM. Section 3 presents the
corresponding 3D continuous central moment FP collision model and the respective discrete
attractors using the D3Q27 lattice for the 3D FPC-LBM. Mathematical consistency analysis
via the Chapman-Enskog expansions carried out directly using central moments in 2D and
3D are given in Appendices A and C, respectively; complete algorithmic implementation
details of the 2D and 3D FPC-LBMs are discussed in Appendices B and D, respectively.
Simulations using the FPC-LBMs for various standard benchmark flow problems that
establish their accuracy, improvements in numerical stability when compared to using a
variety of other existing collision models, and its ability in avoiding hyperviscosity effects
are presented in Section 4. Finally, Section 5 briefly summarizes our main contributions
and the key conclusions drawn from this work.

2. Construction and Analysis of 2D Central Moment Fokker-Planck Collision Model of
Boltzmann Equation and 2D FPC-LBM

We start with the continuous Boltzmann equation given by (see e.g., [63])

∂ f
∂t

+ ξ ·∇ f =

(
δ f
δt

)Boltz

coll
+

(
δ f
δt

)
f orcing

, (1)

where f = f (x, ξ, t) is the single-particle density distribution function. In 2D, the position
vector and the particle velocity are given by x = (x, y) and ξ = (ξx, ξy), respectively, with
∇ = (∂x, ∂y). Considering athermal flows for simplicity, the fluid density ρ and bulk
velocity u = (ux, uy) are obtained through the leading zeroth and first moments of f with
respect to ξ given by

ρ =
∫

f dξ, ρu =
∫

f ξdξ. (2)
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Here, the left side of Equation (1) accounts for the variation in f due to particle advection
or streaming, and if the fluid is subjected to an external force F = (Fx, Fy), the particles

undergo acceleration whose effect on f is represented through the term
(

δ f
δt

)
f orcing

in its

right side given by (
δ f
δt

)
f orcing

= − F
ρ
·∇ξ f , (3)

where ∇ξ = (∂ξx , ∂ξy) is the gradient in the velocity space. The particles interact through
collision that redistributes their velocities, which is accounted for on the rate of change in f
via the Boltzmann’s collision term for binary collisions

(
δ f
δt

)
coll

given by [63]

(
δ f
δt

)Boltz

coll
=
∫

gb( f
′
f
′
1 − f f1)db dε dξi, (4)

where the distribution functions of particle pairs before and after collision are given by
f ≡ f (x, ξ, t), f1 ≡ f (x, ξ1, t), and f ′ ≡ f (x, ξ′, t), f

′
1 ≡ f (x, ξ

′
1, t). Here, g = |ξ − ξ1| is the

relative speed, ε is the azimuthal collision angle and b is the impact parameter. Equation (4)
is a multidimensional integral operator and represents one of the main difficulties with
using the Boltzmann equation. Thus, it is often replaced by simpler models that represent
certain essential features of the collision process. Varieties of collision models have been
constructed over the years. One such popular model is the BGK model [45] given by(

δ f
δt

)BGK

coll
= ωBGK( f M − f ), (5)

where f M is the local Maxwell distribution function given by

f M =
ρ

(2πc2
s )

D
2

exp
[
−(ξ − u)2

2c2
s

]
, (6)

and ωBGK is the collision frequency. In Equation (6), ρ is the density, u is the fluid velocity,
cs is the speed of sound (generally related to temperature, but for athermal flows held as a
constant), and D is the number of spatial dimensions. Equation (5) represents the effect of
collisions as a relaxation toward an equilibrium state defined in Equation (6), and can be
derived as a drastic approximation of the collision term (Equation (4)).

Another simplification of the Boltzmann’s collision integral (Equation (4)) is the Fokker-
Planck (FP) model proposed in Lebowitz (1960) [35]. While originally used to represent
the drift and diffusion processes of a Brownian particle, it can be shown to a rigorous
approximation of the collision term (Equation (4)) in the Boltzmann equation under the
assumptions of the small velocity changes under collision and the particles undergo grazing
collision, which is often the case for scattering processes involving inverse power interaction
potentials that result in large impact parameters (see Cercignani [36], Gombosi [40] and
Liboff [41]). The Fokker-Planck collision model can be represented as [35](

δ f
δt

)FP

coll
= ωFP

[
∂

∂ξi
((ξi − ui) f ) + D′

ij
∂2 f

∂ξi∂ξ j

]
, (7)

where ωFP is a frequency characterizing collisions and D′
ij is the diffusion tensor parameter

related to the variance of the distribution function or its second order central moment,
which will be discussed in more detail later. The effective diffusion rate coefficient Dij
itself is related to the diffusion tensor parameter D′

ij via the FP relaxation frequency as
Dij = D′

ijωFP. Equation (7) represents the effect of collision in terms of drift and diffusion
in the velocity space. The drift term models a process analogous to the dynamical friction
and reflects the idea that collisions tend to gradually eliminate all gradients in the particle
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velocities of the fluid; the diffusion term represents the effect of diffusion of f in the velocity
space resulting in a broadening of the distribution function via molecular chaos [40]. It is
interesting to note that unlike the BGK model (Equation (5)), the FP model (Equation (7))
preserves the quadratic nonlinearity of the Boltzmann’s collision integral (Equation (4))
since ui and D′

ij appearing in Equation (7) could themselves depend on f . We note here
that Equation (7) is a generalization of the FP model developed in [35] by considering a
tensor for the diffusion parameter D′

ij rather than a scalar D′.
We will now formulate a central moment representation of the continuous FP model

(Equation (7)), which will then serve as a basis for constructing a corresponding discrete
central moment lattice Boltzmann (LB) method for flow simulations. We start by defining
the inner products of any two objects a and b as the integration over velocity space in 2D as

⟨a, b⟩ =
∞∫

−∞

∞∫
−∞

a b dξx dξy.

Now, we introduce the weights Wmn of order (m + n) based on the integral powers of the
components of the peculiar velocity ξi − ui (i.e., the particle velocity relative to the bulk
fluid velocity) as

Wmn = (ξx − ux)
m(ξy − uy)

n. (8)

Then, we can define the central moment of the distribution function f of order (m + n) as
the inner product of f and Wmn as

Πmn = ⟨ f , Wmn⟩.

For convenience, we rewrite the FP collision operator given in Equation (7) in a shorthand
notation as (

δ f
δt

)FP

coll
= ωFP

(
δ f
δt

FP1
+

δ f
δt

FP2
)

, (9)

where

δ f
δt

FP1
=

∂

∂ξi
((ξi − ui) f ),

δ f
δt

FP2
= D′

ij
∂2 f

∂ξi∂ξ j
= D′

xx
∂2 f
∂ξ2

x
+ D′

yy
∂2 f
∂ξ2

y
+ 2D′

xy
∂2 f

∂ξx∂ξy
. (10)

Here, FP1 represents the ‘drift’ term of the FP collision operator while FP2 corresponds to
the ‘diffusion term’.

We then define the rate of change of the central moment of order (m + n) under
collision via the FP model, by taking the inner product of each term in the right hand side
of Equation (9) along with the attendant terms in Equation (10), with the central moment
weights of order (m + n) given in Equation (8), as in(

δΠmn

δt

)FP

coll
= ωFP

[〈
δ f
δt

FP1
, Wmn

〉
+

〈
δ f
δt

FP2
, Wmn

〉]
= ωFP

[
δΠFP1

mn
δt

+
δΠFP2

mn
δt

]
. (11)

Next, we take these inner products in Equation (11) term by term, starting with the first term

δΠFP1
mn

δt
=

〈
∂

∂ξx
((ξx − ux) f ), Wmn

〉
+

〈
∂

∂ξy
((ξy − uy) f ), Wmn

〉
. (12)
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To simplify this last term, consider the following chain rule ∂
∂ξi

((ξi − ui) f ) = f + (ξi −
ui)

∂ f
∂ξi

and then using this to rewrite Equation (12), and absorbing the (ξi − ui) term into
the respective central moment weight, Wmn, as

δΠFP1
mn

δt
=

〈
∂ f
∂ξx

, Wm+1,n

〉
+

〈
∂ f
∂ξy

, Wm,n+1

〉
+ 2⟨ f , Wmn⟩. (13)

We now further evaluate the right hand side of Equation (13) term by term, starting with
the first term and rewriting it as

〈
∂ f
∂ξx

, Wm+1,n,p

〉
=

 ∞∫
−∞

(ξx − ux)
m+1 ∂ f

∂ξx
dξx

 ∞∫
−∞

(ξy − uy)
ndξy

, (14)

where the first term in the right hand side of Equation (14) can be evaluated via integration
by parts as

∞∫
−∞

(ξx − ux)
m+1 ∂ f

∂ξx
dξx = (ξx − ux)

m+1 f
∣∣∣∣∞
−∞

−
∞∫

−∞

(m + 1)(ξx − ux)
m f dξx.

Assuming that f decays faster than the increase due to any polynomials of ξx − ux, i.e.,
(ξx − ux)m+1 f = 0 as ξx → ±∞, the first term on the right hand side of Equation (13) becomes

〈
∂ f
∂ξx

, Wm+1,n

〉
= −(m + 1)

 ∞∫
−∞

(ξx − ux)
m f dξx

 ∞∫
−∞

(ξy − uy)
ndξy

,

which is simplified to〈
∂ f
∂ξx

, Wm+1,n

〉
= −(m + 1)⟨ f , Wmn⟩ = −(m + 1)Πmn. (15)

Similarly, the second term on the right hand side of Equation (13) is evaluated the same
way as 〈

∂ f
∂ξy

, Wm,n+1

〉
= −(n + 1)Πmn. (16)

Finally, using Equations (15) and (16) back into Equation (13) and simplifying, we obtain
the following expression for the rate of change in the central moment of order (m + n)
under collision due to the drift term in the FP collision model as

δΠFP1
mn

δt
= −(m + n)Πmn. (17)

Next, we consider the rate of change of central moment under collision due to the
diffusion term in the FP collision model by evaluating the second term on the right hand
side of Equation (11) and using Equation (10) as

δΠFP2
mn

δt
=

〈
D′

xx
∂2 f
∂ξ2

x
, Wmn

〉
+

〈
D′

yy
∂2 f
∂ξ2

y
, Wmn

〉
+

〈
2D′

xy
∂2 f

∂ξx∂ξy
, Wmn

〉
. (18)

The first term on the right hand side of Equation (18) is evaluated as

〈
D′

xx
∂2 f
∂ξ2

x
, Wmn

〉
= D′

xx

 ∞∫
−∞

(ξx − ux)
md
(

∂ f
∂ξx

) ∞∫
−∞

(ξy − uy)
ndξy

 (19)
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where the term inside the square brackets on the right hand side of Equation (19) is readily
evaluated via integration by parts as

∞∫
−∞

(ξx − ux)
md
(

∂ f
∂ξx

)
= (ξx − ux)

m ∂ f
∂ξx

∣∣∣∣∞
−∞

−
∞∫

−∞

m(ξx − ux)
m−1

(
∂ f
∂ξx

)
dξx.

As before, assuming (ξx − ux)m ∂ f
∂ξx

= 0 as ξx → ±∞, it follows that

〈
D′

xx
∂2 f
∂ξ2

x
, Wmn

〉
= D′

xx

−m
∞∫

−∞

(ξx − ux)
m−1

(
∂ f
∂ξx

)
dξx

 ∞∫
−∞

(ξy − uy)
ndξy

,

which then yields 〈
D′

xx
∂2 f
∂ξ2

x
, Wmn

〉
= −mD′

xx

〈
∂ f
∂x

, Wm−1,n

〉
. (20)

Subsequently, invoking the identity in Equation (15), we get〈
∂ f
∂ξx

, Wm−1,n

〉
= −(m − 1)⟨ f , Wm−2,n⟩ = −(m − 1)Πm−2,n,

and hence substituting this last equation in Equation (20) results in the following reduced
expression for the latter〈

D′
xx

∂2 f
∂ξ2

x
, Wmn

〉
= m(m − 1)D′

xxΠm−2,n. (21)

Similarly, the second and third terms in the right hand side of Equation (18) follow from
the above considerations as〈

D′
yy

∂2 f
∂ξ2

y
, Wmn

〉
= n(n − 1)D′

yyΠm,n−2,
〈

D′
xy

∂2 f
∂ξx∂ξy

, Wmn

〉
= mnD′

xyΠm−1,n−1. (22)

Thus, the total rate of change of the central moment of order (m + n) under collision due
to the diffusion of the particle distribution function given in Equation (18) follows by
combining the last two equations as

δΠFP2
mn

δt
= m(m − 1)D′

xxΠm−2,n + n(n − 1)D′
yyΠm,n−2 + 2mnD′

xyΠm−1,n−1 (23)

Finally, combining Equations (17) and (23), the net rate of change of central moment of
order (m + n) due to the drift and diffusion processes based on the Fokker-Planck collision
model is given by(

δΠmn

δt

)FP

coll
= ωFP

[
−(m + n)Πmn + m(m − 1)D′

xxΠm−2,n

+n(n − 1)D′
yyΠm,n−2 + 2mnD′

xyΠm−1,n−1

]
.

Since ωFP is a free parameter it can be rescaled by absorbing the prefactor (m + n) of Πmn
appearing inside the square bracket of the right side of the last equation and setting it as
a renormalized relaxation frequency ωmn given by ωmn = (m + n)ωFP. In effect, we can
then recast the central moment FP collision model as a relaxation of Πmn to its “equilibrium
state" ΠMv

mn , which we term as the Markovian central moment attractor of order (m + n), at a
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rate ωmn. Such an attractor can be equivalently obtained from the stationary condition on
the net effect of collision due to drift and diffusion given by[

δΠFP1
mn

δt
+

δΠFP2
mn

δt

]
= 0 when Πmn = ΠMv

mn . (24)

Then, the refined central moment-based FP rate equation under collision can be finally
expressed as (

δ

δt
Πmn

)FP

coll
= ωmn

[
ΠMv

mn − Πmn

]
, (25)

where

ΠMv
mn =

m(m − 1)
m + n

D′
xxΠm−2,n +

n(n − 1)
m + n

D′
yyΠm,n−2 +

2mn
m + n

D′
xyΠm−1,n−1. (26)

A few important remarks are in order here. Clearly, ΠMv
mn involves a recurrence relationship

to evolve a higher central moment of order (m + n) in terms of products of lower central
moments of order (m + n − 2) and the diffusion tensor parameter D′

ij. In other words, the
attractor is a nonlinear function of not only the conserved hydrodynamic moments but also
that of the various lower order non-conserved (kinetic) central moments since as discussed
next, in general, the components of D′

ij themselves are related to the second order central
moments. Moreover, as seen in Equation (25) and also emphasized earlier schematically in
Figure 2, the mathematical character of the central moment formulation of the FP collision
operator is algebraic and local rather than being differential or integral in nature, which lends
itself to an effective numerical implementation using the LBM framework as discussed
later in this section. Finally, since ωmn can differ depending on the order of the moment,
viz., (m + n), the formulation given in Equations (25) and (26) naturally allows the use of
multiple relaxation times or rates for relaxing different central moments to their respective
Marvokian attractors. Such a generalization is analogous to adapting the original BGK
model that uses a single relaxation time to using multiple relaxation times that relax
different moments to their equilibria based on the Maxwell distribution as commonly
adopted in previous LB approaches. However, the central moment FP collision model
as developed here is conceptually different as it arises from modeling the drift-diffusion
processes leading to a more general form for its “equilibria” as noted above.

2.1. Choice of Diffusion Tensor Parameter

The selection of the diffusion tensor parameter D′
ij is a key aspect in the numerical

implementation of the central moment FP collision model. Before discussing it, let’s
introduce the following convenient notation:

D′
20 = D′

xx, D′
02 = D′

yy, D′
11 = D′

xy. (27)

In general, D′
ij is related to the respective components of the variance (or the spread) of

the distribution function f or its second order central moments. Now, if we evaluate the
second order central moment attractors given in Equation (26) and use the notation in the
last equation, we get ΠMv

20 = Π00D′
20, ΠMv

02 = Π00D′
02, and ΠMv

11 = Π00D′
11, which upon

inverting yield D′
20 = ΠMv

20 /Π00, D′
02 = ΠMv

02 /Π00, and D′
11 = ΠMv

11 /Π00. As shown in the
Chapman-Enskog analysis of the continuous kinetic equation with the central moment FP
collision model as developed above (see Appendix A) that for correctly recovering the con-
served momentum fields, the leading components of second order moments Π(0)

20 = ΠMv
20 ,

Π(0)
02 = ΠMv

02 and Π(0)
11 = ΠMv

11 should be isotropic with the diagonal parts related to the

pressure field P = ρc2
s , i.e., Π(0)

20 = Π(0)
02 = ρc2

s and Π(0)
11 = 0. Then, in view of the above,

and noting that Π00 = ρ, it follows that for evolving the conserved modes, which in turn
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require the computation of the rate of change of second order moments, we require the
diffusion coefficient tensor to be chosen based on the equilibrium second order central
moments, i.e., D′

20 = Π(0)
20 /Π00 = c2

s , D′
02 = Π(0)

02 /Π00 = c2
s , and D′

11 = Π(0)
11 /Π00 = 0.

On the other hand, for the physically important and challenging case involving the
simulation of high Reynolds number flows, which are associated with fluids with relatively
low viscosities that depend on the relaxation frequencies of the second order moments
(see Appendix A), we generally have 1/ωI I ≪ 1/ωh, where ωI I is taken as the relaxation
frequency of the second order moments (i.e., (m + n) = 2) and ωh correspond to that of
higher order moments (i.e., (m+ n) > 2). In other words, the second order moments are fast
modes while the higher order ones are slower to relax. In such situations, when evolving the
higher moments, the fast second order moments would have already approached their post-
collision states which are not in equilibrium but contain their non-equilibrium contributions
as well, which should be accounted for in their associated Markovian attractors that depend
on D′

ij. Hence, in such situations, to relax the higher order moments with (m + n) > 2
under collisions, we prescribe D′

ij to be equal to Πij/Π00 or D′
20 = Π20/ρ, D′

02 = Π02/ρ,
and D′

11 = Π11/ρ. One may interpret such modification to the diffusion tensor parameter
for evolving the higher order moments when compared to the second order moments as a
form of renormalization.

Then, in summary, the diffusion tensor parameter appearing in the Markovian central
moment attractor in Equation (26) for evolving the moment Πmn of order (m + n) under
collision is selected as follows:

D′
20 = c2

s , D′
02 = c2

s , D′
11 = 0 for (m + n) ≤ 2,

D′
20 =

Π20

ρ
, D′

02 =
Π02

ρ
, D′

11 =
Π11

ρ
for (m + n) > 2. (28)

2.2. Selected Continuous Markovian Central Moment Attractors in 2D

From the above considerations, we can then evaluate the continuous Markovian
central moment attractors given in Equation (26) for the components of moments that are
independently supported by the D2Q9 lattice, which are required for the LB algorithm
discussed in this section. Then, we get

ΠMv
00 = ρ, ΠMv

10 = 0, ΠMv
01 = 0,

ΠMv
20 = c2

s ρ, ΠMv
02 = c2

s ρ,

ΠMv
21 = 0, ΠMv

12 = 0,

ΠMv
22 =

1
ρ

[
Π20Π02 + 2Π2

11

]
. (29)

Interestingly, the attractor for the fourth order moment is now a nonlinear function of the
second order central moments.

2.3. Central Moment of Boltzmann’s Acceleration Term Due to Body Force in 2D

In addition, where there is a body force, it results in a rate of change contribution
to the distribution function through

(
δ f
δt

)
f orcing

in the continuous Boltzmann equation

(Equation (1)). We define the central moment of the rate of change of the distribution
function due to the body force of order (m + n) as

Γmn =

〈(
δ f
δt

)
f orcing

, Wmn

〉
, (30)
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which can be evaluated by using Equation (3) in Equation (30) to get

Γmn = − Fx

ρ

〈
∂ f
∂ξx

, Wmn

〉
−

Fy

ρ

〈
∂ f
∂ξy

, Wmn

〉
. (31)

Then, from Equations (15) and (16), it follows that
〈

∂ f
∂ξx

, Wmn

〉
= −mΠm−1,n and

〈
∂ f
∂ξy

, Wmn

〉
=

−nΠm,n−1. Hence, the rate of change of the central moment of order (m + n) due to the body
force is given by

Γmn = m
Fx

ρ
Πm−1,n + n

Fy

ρ
Πm,n−1, (32)

which relates it to F = (Fx, Fy) and to the central moment components of f of a lower order
(reduced by a degree of 1) and is exact (see [64]).

A Chapman-Enskog analysis of the 2D central moment-based continuous Boltzmann
equation with the above FP collision model that is directly based on an expansion in terms
of the central moments to establish its consistency with the 2D Navier-Stokes equations is
given in Appendix A.

2.4. Construction of 2D FPC-LBM

We will now discretize the Boltzmann equation (see Equation (1)) with using the
FP guided collision operator given in Equation (25) along with the forcing term (see
Equation (30)) as follows: first we replace the continuous particle velocity ξ with a discrete
particle velocity set eα, with each direction corresponding to a lattice link, such that we
have fα(x, t) = f (x, eα, t), and then integrate the resulting discrete velocity Boltzmann
equation along the particle characteristics over a time step δt that exactly spans a distance
equal to the magnitude of eαδt which then further discretizes both the space and time (see
He et al. [65,66]). In 2D, the standard D2Q9 lattice is used whose discrete particle velocities
eα have the following Cartesian components:

∣∣ex
〉
= (0, 1, 0,−1, 0, 1,−1,−1, 1)†,∣∣ey
〉
= (0, 0, 1, 0,−1, 1, 1,−1,−1)†,

where, henceforth, † denotes the transpose operator and we use the Dirac’s notation of
∣∣·〉

and
〈
·
∣∣ for denoting the column and row vectors, respectively. Then the resulting LBM

can be generically represented as a two-step process involving a collision step which is then
followed by a streaming step:

f̃α(x, t) = fα(x, t) + Ωα(x, t), α = 0, 1, 2, . . . , q (33a)

fα(x, t + δt) = f̃α(x − eαδt, t), (33b)

where q = 9 and Ωα(x, t) represents the cumulative changes in the distribution function fα

due to collision and the effect of body force during a time step δt. In practice, such changes
will be obtained in terms of central moments via the FP-guided collision and source
term updates derived for the continuous Boltzmann equation projected to the countable
independent moments represented by the D2Q9 lattice, which will then be mapped back to
those in terms of the distribution functions. To accomplish this, we first define the discrete
central moments and discrete raw moments of order (m + n) of the distribution function fα,
its corresponding Markovian attractor f Mv

α , and the source term Sα for the body force,
respectively, as follows:
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
κmn

κMv
mn

σmn

 =
8

∑
α=0


fα

f Mv
α

Sα

(eαx − ux)
m(eαy − uy)

n, and (34a)


κ′mn

κMv′
mn

σ′
mn

 =
8

∑
α=0


fα

f Mv
α

Sα

em
αxen

αy. (34b)

Then, the countable independent central moments and raw moments for the D2Q9 lattice
respectively are given by

mc = (κ00, κ10, κ01, κ20, κ02, κ11, κ21, κ12, κ22), (35a)

m = (κ′00, κ′10, κ′01, κ′20, κ′02, κ′11, κ′21, κ′12, κ′22), (35b)

and, similarly, those for the attractors and sources can be listed. Let us also define a
9-dimensional vector f containing the distribution functions via

f = ( f0, f1, f2, . . . , f8)
†, (36)

and one can similarly group the attractors f Mv
α and sources Sα in respective vectors.

To perform the collision step in terms of relaxations of different central moments to
their respective attractors along with source term updates, we need to first successively
map the distribution functions f to raw moments m and then to central moments mc; then
the post-collision central moments need to be transformed back to raw moments and then
to the distribution functions to complete the collision step. To achieve these, we introduce
the mappings between the raw moments and the distribution functions as

m = Pf, f = P−1m, (37)

where P is a matrix dependent on the basis vectors for moments, i.e., via the components
of the monomials

〈
em

x en
y

∣∣∣ given by

P =
[ ∣∣1〉, ∣∣ex

〉
,
∣∣ey
〉
,
∣∣e2

x
〉
,
∣∣e2

y
〉
,
∣∣exey

〉
,
∣∣e2

xey
〉
,
∣∣exe2

y
〉
,
∣∣e2

xe2
y
〉 ]†, (38)

where |1⟩ is a 9-dimensional unit vector given by
∣∣1〉 = ∣∣∣ e0

xe0
y

〉
= (1, 1, 1, 1, 1, 1, 1, 1, 1)†. In

addition, we represent the transformations between central moments and raw moments as

mc = Fm, m = F−1mc, (39)

where both the frame transformation matrix F and its inverse F−1 are lower triangular
matrices dependent on the fluid velocity components u = (ux, uy) and can be readily
evaluated through collecting the coefficients of the binomial expansions and their inversions
(see e.g., [67]).

Before we describe our 2D FPC-LBM, we first obtain the expressions for the discrete
central moments of the Markovian attractor κMv

mn and the source term σmn due to force
field by matching the corresponding continuous versions as given in Equation (26) (or
Equation (29)) and Equation (32), respectively, i.e., κMv

mn = ΠMv
mn and σmn = Γmn. Thus, the

discrete central moments of the Markovian attractors for the D2Q9 lattice read as



Fluids 2024, 9, 255 15 of 62

κMv
00 = ρ, κMv

10 = 0, κMv
01 = 0, (40)

κMv
20 = c2

s ρ, κMv
02 = c2

s ρ, κMv
11 = 0,

κMv
21 = 0, κMv

12 = 0,

κMv
22 =

1
ρ
(κ̃20κ̃02 + 2κ̃11κ̃11) .

It can be seen that the fourth order attractor depends on the sum of the products of the
current states of the second order central moments. In practical implementations, we
will consider the post-collision state of the central moments κ20, κ02, and κ11 (designated
by κ̃20, κ̃02, and κ̃11) in evaluating the fourth order Markovian attractor. Moreover, the
contributions of the body force to the various central moments can be listed as follows:

σ00 = 0, σ10 = Fx, σ01 = Fy, (41)

σ20 = 2
Fx

ρ
κ10 = 0, σ02 = 2

Fy

ρ
κ01 = 0, σ11 =

Fx

ρ
κ10 +

Fy

ρ
κ01 = 0,

σ21 = 2
Fx

ρ
κ11 +

Fy

ρ
κ20, σ12 =

Fx

ρ
κ02 +

Fy

ρ
κ11,

σ22 = 2
(

Fx

ρ
κ12 +

Fy

ρ
κ21

)
.

The complete algorithmic details of the implementation of the 2D FPC-LBM using the
D2Q9 lattice are given in Appendix B. The solution method can be briefly summarized as
follows. During every time step, the discrete distribution functions are first mapped to a
set of raw moments and then to central moments. Then, the collision step is performed
by relaxing various central moments to their equilibria based on the Markovian attractors
of the Fokker-Planck collision model discussed earlier. Once the post-collision central
moments are computed, they are transformed back to corresponding raw moments and
then to distribution functions. Subsequently, the streaming step is performed by lock-step
advection of the post-collision distribution functions along the respective lattice directions.
Finally, using these updated distribution functions, the hydrodynamic fields, including
the local density and velocity fields are obtained via taking their kinetic moments, which
completes one time step of the FPC-LBM.

3. Construction and Analysis of 3D Central Moment Fokker-Planck Collision Model of
Boltzmann Equation and 3D FPC-LBM

We will now extend our formulation discussed in the previous section to 3D. Here,
we consider the Boltzmann equation, its acceleration term, and the FP collision operator
given in Equations (1), (3), and (7), respectively, by taking the phase space coordinates,
their derivatives, and the body force as x = (x, y, z), ξ = (ξx, ξy, ξz), ∇ = (∂x, ∂y, ∂z),
∇ξ = (∂ξx , ∂ξy , ∂ξz), and F = (Fx, Fy, Fz). Then, to obtain the rate of change of central
moments of f due to collision guided by the Fokker-Planck model in 3D, we follow the
same procedure as before, by taking the inner product of each term in the Fokker-Planck
collision model with the central moment weights. Here, the inner product of two objects, a
and b, is now defined in 3D as

⟨a, b⟩ =
∞∫

−∞

∞∫
−∞

∞∫
−∞

a b dξx dξy dξz (42)
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and the corresponding central moment weights of order (m + n + p) as

Wmnp = (ξx − ux)
m(ξy − uy)

n(ξz − uz)
p. (43)

Then, the continuous central moment of order (m + n + p) is written as

Πmnp =
〈

f , Wmnp
〉
. (44)

As before, we rewrite the FP collision operator given in Equation (7) conveniently in a

shorthand notation as shown in Equation (9), where δ f
δt

FP1
is given in Equation (10) and

δ f
δt

FP2
now modifies in 3D to

δ f
δt

FP2
= D′

xx
∂2 f
∂ξ2

x
+ D′

yy
∂2 f
∂ξ2

y
+ D′

zz
∂2 f
∂ξ2

z
+ 2D′

xy
∂2 f

∂ξx∂ξy
+ 2D′

xz
∂2 f

∂ξx∂ξz
+ 2D′

yz
∂2 f

∂ξy∂ξz
, (45)

which expresses the total rate of change of f under collision due to its diffusion in different
possible directions in the velocity space, and whose magnitude is determined by diffusion
tensor parameter D′

ij. For ease of presentation, we rewrite the latter by following a slightly
more general and compact notation:

D′
200 = D′

xx, D′
020 = D′

yy, D′
002 = D′

zz, D′
110 = D′

xy, D′
011 = D′

yz, D′
101 = D′

xz. (46)

Then, as in Equation (11), we define the rate of change of the central moment of order
(m + n + p) under collision via the FP model, by taking the inner product of each term

in the right hand side of Equation (9) using the attendant terms δ f
δt

FP1
in Equation (10)

and δ f
δt

FP2
in Equation (45) with the central moment weights of order (m + n + p) given in

Equation (43) as

(
δΠmnp

δt

)FP

coll
= ωFP

[〈
δ f
δt

FP1
, Wmnp

〉
+

〈
δ f
δt

FP2
, Wmnp

〉]
= ωFP

[
δΠFP1

mnp

δt
+

δΠFP2
mnp

δt

]
. (47)

Now, following the derivation given in the previous section, the central moments of the
derivatives of the distribution function in different directions in the velocity space can be
expressed as follows:〈

∂ f
∂ξx

, Wmnp

〉
= −mΠm−1,n,p,

〈
∂ f
∂ξy

, Wmnp

〉
= −nΠm,n−1,p,

〈
∂ f
∂ξz

, Wmnp

〉
= −pΠm,n,p−1. (48)

Using these successively in pairs, we get the central moments of the cross-diffusion terms
in the velocity space as〈

∂2 f
∂ξxξy

, Wmnp

〉
= mnΠm−1,n−1,p,

〈
∂2 f

∂ξyξz
, Wmnp

〉
= npΠm,n−1,p−1,〈

∂2 f
∂ξxξz

, Wmnp

〉
= mpΠm−1,n,p−1. (49)

Also, the central moments of the diffusion terms in the principal directions in the velocity
space read as〈

∂2 f
∂ξ2

x
, Wmnp

〉
= m(m − 1)Πm−2,n,p,

〈
∂2 f
∂ξ2

y
, Wmnp

〉
= n(n − 1)Πm,n−2,p,〈

∂2 f
∂ξ2

z
, Wmnp

〉
= p(p − 1)Πm,n,p−2, (50)
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Using the above identities, the drift and diffusion contributions to the rate of change of
central moment of order (m + n + p) under collision can be written as follows:

δΠFP1
mnp

δt
=

〈
∂ f
∂ξx

, Wm+1,n,p

〉
+

〈
∂ f
∂ξy

, Wm,n+1,p

〉
+

〈
∂ f
∂ξz

, Wm,n,p+1

〉
+ 3
〈

f , Wmnp
〉

= −(m + n + p)Πmnp. (51)

and

δΠFP2
mnp

δt
= m(m − 1)D′

200Πm−2,n,p + n(n − 1)D′
020Πm,n−2,p + p(p − 1)D′

002Πm,n,p−2 +

2mnD′
110Πm−1,n−1,p + 2npD′

011Πm,n−1,p−1 + 2mpD′
101Πm−1,n,p−1. (52)

As such, from these last two equations, it can be seen that the drift represents a depletion
process, while the diffusion is a gain process under collision. Combining them and since
the characteristic Fokker-Planck inverse time scale ωFP is a free parameter, we can rescale
it using (m + n + p) as ωmnp = (m + n + p)ωFP, such that it can then be used to effectively
control the rate of relaxation of the central moment Πmnp to its attractor designated as
ΠMv

mnp. Then, the central moment FP collision operator can be compactly rewritten in 3D as

(
δ

δt
Πmnp

)FP

coll
= ωmnp

[
ΠMv

mnp − Πmnp

]
, (53)

where the attendant Markovian central moment attractor reads as

ΠMv
mnp = D′

200
m(m − 1)

(m + n + p)
Πm−2,n,p + D′

020
n(n − 1)

(m + n + p)
Πm,n−2,p + (54)

D′
002

p(p − 1)
(m + n + p)

Πm,n,p−2 + 2D′
110

mn
(m + n + p)

Πm−1,n−1,p +

2D′
011

np
(m + n + p)

Πm,n−1,p−1 + 2D′
101

mp
(m + n + p)

Πm−1,n,p−1.

We emphasize that all the key remarks made regarding the Markovian central moment
attractor for the 2D case in the paragraph below Equation (26) is applicable for the above
Equation (54) as well by replacing (m + n) with (m + n + p) along with Equation (53) by
replacing ωmn with ωmnp.

3.1. Choice of Diffusion Tensor Parameter

The choice of the diffusion tensor parameter D′
ij, which may also be referred to

as the second order Kramers-Moyal expansion coefficients [42], plays a crucial role in
the performance of the numerical simulations that use the central moment FP collision
formulation. A detailed discussion of the considerations involved in their selection in the 2D
case is given earlier in Section 2.1, which also readily extends for the present 3D model given
above. Following this, for evolving moments of second order (i.e., (m + n + p) = 2) that is
used to update the hydrodynamic fields, we require D′

200 = Π(0)
200/Π(0)

000, D′
020 = Π(0)

020/Π(0)
000,

D′
002 = Π(0)

002/Π(0)
000, D′

110 = Π(0)
110/Π(0)

000, D′
101 = Π(0)

101/Π(0)
000, and D′

011 = Π(0)
011/Π(0)

000, where

Π(0)
mnp = ΠMv

mnp = c2
s ρ for (mnp) = (200), (020) and (002), and Π(0)

mnp = ΠMv
mnp = 0 for

(mnp) = (110), (101) and (011); on the other hand, for evolving higher moments (i.e.,
(m + n + p) > 2), we prescribe D′

200 = Π200/Π000, D′
020 = Π020/Π000, D′

002 = Π002/Π000,
D′

110 = Π110/Π000, D′
101 = Π101/Π000, and D′

011 = Π011/Π000. Then, using Π000 =

Π(0)
000 = ρ, in summary, the diffusion tensor parameter appearing in the Markovian central
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moment attractor in Equation (54) for evolving the moment Πmnp of order (m + n + p)
under collision is selected as follows:

D′
200 = D′

020 = D′
002 = c2

s , for (m + n + p) ≤ 2,

D′
110 = D′

101 = D′
011 = 0,

D′
200 =

Π200

ρ
, D′

020 =
Π020

ρ
, D′

002 =
Π002

ρ
, for (m + n + p) > 2, (55)

D′
110 =

Π110

ρ
, D′

101 =
Π101

ρ
, D′

011 =
Π011

ρ
.

3.2. Selected Continuous Markovian Central Moment Attractors in 3D

Based on the above selection of the diffusion tensor parameter, in anticipation of
constructing the FPC-LBM in 3D later in this section we now evaluate the continuous
Markovian central moment attractor given in Equation (54) for the components indepen-
dently supported by the D3Q27 lattice. Up to the third moments, which directly appear in
the hydrodynamics in the Chapman-Enskog analysis, they read as

ΠMv
000 = ρ, ΠMv

100 = ΠMv
010 = ΠMv

001 = 0, (56)

ΠMv
110 = ΠMv

101 = ΠMv
011 = 0, ΠMv

200 = ΠMv
020 = ΠMv

002 = c2
s ρ,

ΠMv
120 = ΠMv

102 = ΠMv
210 = ΠMv

012 = ΠMv
201 = ΠMv

021 = ΠMv
111 = 0.

In addition, the higher order continuous central moment attractors from the fourth to the
sixth order, which complete all the 26 independent moments that can be evolved when
using the D3Q27 lattice, are given by

ΠMv
220 =

1
ρ

[
Π200Π020 + 2Π2

110

]
, ΠMv

202 =
1
ρ

[
Π200Π002 + 2Π2

101

]
,

ΠMv
022 =

1
ρ

[
Π020Π002 + 2Π2

011

]
, ΠMv

211 =
1
ρ
[Π200Π011 + 2Π110Π101],

ΠMv
121 =

1
ρ
[Π020Π101 + 2Π110Π011], ΠMv

112 =
1
ρ
[Π002Π110 + 2Π101Π011],

ΠMv
122 =

2
5ρ

[Π020Π102 + Π002Π120 + 4Π011Π111 + 2(Π101Π021 + Π110Π012)],

ΠMv
212 =

2
5ρ

[Π200Π012 + Π002Π210 + 4Π101Π111 + 2(Π110Π102 + Π011Π201)],

ΠMv
221 =

2
5ρ

[Π200Π021 + Π020Π201 + 4Π110Π111 + 2(Π011Π210 + Π101Π120)],

ΠMv
222 =

1
3ρ

[Π200Π022 + Π020Π202 + Π002Π220 + 4(Π110Π112 + Π101Π121 + Π011Π211)]. (57)

It can be seen from the above set of equations that the Markovian central moment attractors
of 4th and higher orders involve various combinations of the quadratic products of the
lower order central moments, analogous, but differing in detail, to those appearing in
the transformations involved between central moments and cumulants before performing
collision using the latter in the cumulant LBM [11]. On the other hand, the factorized
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LBM [10] prescribes products of lower moments for higher moment attractors in a rather
ad hoc manner with substantially fewer terms as the order of the moment increases. Thus,
in terms of complexity, we may regard the central moment FP collision model to be
intermediate between the factorized and cumulant formulations of the LBM while derivable
from refining a collision model of the Boltzmann equation that also has various other
applications in statistical mechanics and beyond as noted in the introduction.

Another interesting point to note here is that the representation of the collision step as a
set of relaxations to quadratically nonlinear combinations of lower order central moments
implies that it cannot be written in a matrix form, just like the cumulant LBM, even if the
mappings needed prior to and following collision be expressed in that way; by contrast,
in other existing LB models, typically a matrix formulation is contrived to represent the
effect of collisions, which effectively implies considering relaxations to central moment
equilibria that are linear functions of non-conserved lower order moments. As such, there
is no a priori physical reason to express the effect of collisions in a matrix form noting
that the Boltzmann’s collision integral term itself is quadratically nonlinear in terms of the
distribution functions and the present central moment FP formulation broadly reflects such
nonlinearity in the attractors.

3.3. Central Moment of Boltzmann’s Acceleration Term Due to Body Force in 3D

To account for the effect of any external body force F = (Fx, Fy, Fz), as in the 2D
case discussed earlier, we first introduce the central moment of the rate of change of the
distribution function due to the body force of order (m + n + p) as

Γmnp =

〈(
δ f
δt

)
f orcing

, Wmnp

〉
. (58)

Evaluating this last equation using Equation (3) along with the identities for the central
moments of the derivatives of f in the velocity space given in Equation (48), we obtain the
rate of change of the central moment of order (m + n + p) due to the body force given by

Γmnp = m
Fx

ρ
Πm−1,n,p + n

Fy

ρ
Πm,n−1,p + p

Fz

ρ
Πm,n,p−1, (59)

which generalizes the expression derived earlier for the 2D case to 3D [64].
For completeness, consistency of the above central moment-based FP collision model to

the 3D Navier-Stokes equations is shown using a Chapman-Enskog analysis in Appendix C.

3.4. Construction of 3D FPC-LBM

We will now construct a FPC-LBM in 3D on the D3Q27 lattice, with particle velocities
eα, where α = 1, 2, · · · , 26, whose cartesian components are given by∣∣ex

〉
= (0, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1)†,∣∣ey

〉
= (0, 0, 0, 1,−1, 0, 0, 1, 1,−1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1, 1,−1,−1, 1, 1,−1,−1)†,∣∣ez

〉
= (0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1, 1, 1,−1,−1,−1,−1)†.

Following the discretization process as outlined in the 2D case, we arrive at a LB scheme
with the standard collide-and-stream steps generically represented in Equations (33a) and
(33b), where q = 27. To express the collision step in terms of changes to various central
moments via their relaxations to attractors as prescribed by the FP collision model along
with those due to the body force for the D3Q27 lattice, we first define the discrete central
moments and discrete raw moments of order (m + n + p) of the distribution function fα,
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its corresponding Markovian attractor f Mv
α , and the source term Sα for the body force,

respectively, as follows:
κmnp

κMv
mnp

σmnp

 =
26

∑
α=0


fα

f Mv
α

Sα

(eαx − ux)
m(eαy − uy)

n(eαz − uz)
p, and (60a)


κ′mnp

κMv′
mnp

σ′
mnp

 =
26

∑
α=0


fα

f Mv
α

Sα

em
αxen

αyep
αz. (60b)

Then, the countable independent central moments and raw moments for the D3Q27 lattice
are, respectively, given by

mc = (κ000, κ100, κ010, κ001, κ110, κ101, κ011, κ200, κ020, κ002, κ120, κ102, κ210, κ012,

κ201, κ021, κ111, κ220, κ202, κ022, κ211, κ121, κ112, κ122, κ212, κ221, κ222), (61a)

and

m = (κ′000, κ′100, κ′010, κ′001, κ′110, κ′101, κ′011, κ′200, κ′020, κ′002, κ′120, κ′102, κ′210, κ′012,

κ′201, κ′021, κ′111, κ′220, κ′202, κ′022, κ′211, κ′121, κ′112, κ′122, κ′212, κ′221, κ′222), (61b)

and, similarly, one can write those for the attractors and sources. In addition, we can also
express a 27-dimensional vector f containing the distribution functions via

f = ( f0, f1, f2, · · · , f26). (62)

To express the collision step in terms of relaxations of different central moments to
their respective attractors along with source term updates, we have previously introduced
the mappings between distribution functions f to raw moments m (see Equation (37))
and those between the raw moments m and central moments mc(see Equation (39)). The
projection matrix P appearing in the former case for the D3Q27 lattice can be written as

P =
[∣∣1〉, ∣∣ex

〉
,
∣∣ey
〉
,
∣∣ez
〉
,
∣∣exey

〉
,
∣∣exez

〉
,
∣∣eyez

〉
,
∣∣e2

x
〉
,
∣∣e2

y
〉
,
∣∣e2

z
〉
,
∣∣exe2

y
〉
,
∣∣exe2

z
〉
,∣∣e2

xey
〉
,
∣∣eye2

z
〉
,
∣∣e2

xez
〉
,
∣∣e2

yez
〉
,
∣∣exeyez

〉
,
∣∣e2

xe2
y
〉
,
∣∣e2

xe2
z
〉
,
∣∣e2

ye2
z
〉
,
∣∣e2

xeyez
〉
,∣∣exe2

yez
〉
,
∣∣exeye2

z
〉
,
∣∣exe2

ye2
z
〉
,
∣∣e2

xeye2
z
〉
,
∣∣e2

xe2
yez
〉
,
∣∣e2

xe2
ye2

z
〉]†

in which |1⟩ is a 27-dimensional vector with unit elements forming a basis for the zeroth
moment given by |1⟩ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)†; the
frame transformation matrix F (as well as its inverse F−1) appearing in the latter case
depend on the local fluid velocity components u = (ux, uy, uz) and are low triangular
matrices in structure that can be readily obtained via extracting the coefficients of the
binomial expansions of central moments in terms of raw moments (see e.g., [68]).

The discrete Markovian central moment attractors κMv
mnp needed in the construction of

the 3D FPC-LBM are obtained, as in the 2D case, by matching the corresponding continuous
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versions given in Equations (56) and (57), i.e., κMv
mnp = ΠMv

mnp for all the independent
countable moments supported by the D3Q27 lattice. Thus, we get

κMv
000 = ρ, κMv

100 = 0, κMv
010 = 0, κMv

001 = 0,

κMv
110 = 0, κMv

101 = 0, κMv
011 = 0, κMv

200 = ρc2
s , κMv

020 = ρc2
s , κMv

002 = ρc2
s ,

κMv
120 = 0, κMv

102 = 0, κMv
210 = 0, κMv

012 = 0, κMv
201 = 0, κMv

021 = 0, κMv
111 = 0,

κMv
220 =

1
ρ
(κ̃200κ̃020 + 2κ̃110κ̃110) , κMv

202 =
1
ρ
(κ̃200κ̃002 + 2κ̃101κ̃101) ,

κMv
022 =

1
ρ
(κ̃020κ̃002 + 2κ̃011κ̃011) ,

κMv
211 =

1
ρ
(κ̃200κ̃011 + 2κ̃110κ̃101) , κMv

121 =
1
ρ
(κ̃020κ̃101 + 2κ̃110κ̃011) ,

κMv
112 =

1
ρ
(κ̃002κ̃110 + 2κ̃011κ̃101) ,

κMv
122 =

2
5ρ

(κ̃020κ̃102 + κ̃002κ̃120 + 4κ̃011κ̃111 + 2(κ̃101κ̃021 + κ̃011κ̃012)) ,

κMv
212 =

2
5ρ

(κ̃200κ̃012 + κ̃002κ̃210 + 4κ̃101κ̃111 + 2(κ̃110κ̃102 + κ̃011κ̃201)) ,

κMv
221 =

2
5ρ

(κ̃200κ̃021 + κ̃020κ̃201 + 4κ̃110κ̃111 + 2(κ̃011κ̃210 + κ̃101κ̃120)) ,

κMv
222 =

1
3ρ

(κ̃200κ̃022 + κ̃020κ̃202 + κ̃002κ̃220 + 4(κ̃110κ̃112 + κ̃101κ̃121 + κ̃011κ̃211)) .

Thus, the above form a chain of attractors, especially for the fourth and higher central
moments, each of which depends on certain combinations of the most recent (current)
state of the adjacent and relevant lower moment, differing by a degree of two. In practical
implementations, such lower central moments needed in the attractors are already in the
post-collision states and the updated values will be used to prescribe the attractors for the
higher central moments when they relax under collision. In addition, the source terms to
the various central moments expressing the contributions from the presence of any body
force is expressed from matching with their continuous counterparts given in Equation (59),
which can be compactly written as

σmnp = m
Fx

ρ
κm−1,n,p + n

Fy

ρ
κm,n−1,p + p

Fz

ρ
κm,n,p−1. (63)

The implementation details of the 3D FPC-LBM using the D3Q27 lattice are given in
Appendix D.

4. Results and Discussion

We now demonstrate numerically the accuracy and stability properties of the new LB
schemes based on central moment Fokker-Planck guided collision model, viz., the FPC-
LBMs developed in the previous sections through a series of simulations of benchmark flow
problems in two and three dimensions respectively. In two dimensions using the D2Q9
lattice, we show the accuracy of the FPC-LBM using a common test case, viz., the lid-driven
square cavity flow, by comparing simulation results with those found in literature. Next,
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the stability of the FPC-LBM is demonstrated in two dimensions with the double periodic
shear layer simulations, which give a visual representation of stability. Specifically, in
this test case, two shear layers with an initial perturbation begin to roll up on themselves.
When the grid resolution is relatively too coarse, secondary vortices begin to form at the
thinnest parts of each layer for some of the LBM formulations, especially the SRT and MRT
formulations. On the other hand, the central moment based LBM collision models are found
to more robustly deal with such instabilities and this is shown visually when the secondary
vortices mentioned above do not form for the same simulation parameters as those used
with a less stable method. Furthermore, we show a direct comparison between two central
moment collision models, the FPC-LBM and the MCM-LBM, which uses Maxwellian central
moments for equilibria, by simulating this flow problem at relatively high Mach numbers
as well as beyond the usual limits of the relaxation parameter for the bulk viscosity when
the simulation is generally accurate, and demonstrate the superior numerical performance
of the former compared to the latter.

Then, in three dimensions, the lid-driven cubic cavity flow benchmark is used to
indicate both accuracy and stability characteristics of FPC-LBM using the D3Q27 lattice.
The orthogonal crossing shear wave test is then used to show how the FPC-LBM can deal
with numerical hyperviscosity effects that arise in simulations of flows with extremely
small physical fluid viscosities. For these cases, when appropriate, we show comparisons of
the FPC-LBM with various other existing collision models in LBM. These include the single
relaxation time (SRT)-LBM, the non-orthogonal raw moments-based multiple relaxation
time (MRT)-LBM, the cascaded collision model with non-orthogonal moment basis using
Maxwellian central moments for equilibria referred to as the MCM-LBM, the factorized
LBM, and the cumulant LBM. Lastly, we show the capability of FPC-LBM in accurately and
robustly resolving complex flows by simulating the canonical turbulent channel flow and
comparing the resulting statistics against a recent direct numerical simulations (DNS) data
available in the literature.

4.1. Two-Dimensional Lid-Driven Square Cavity Flow: An Accuracy Study

The benchmark known as lid-driven cavity flow consists of a square cavity with a
viscous fluid inside; the cavity has a lid moving in the horizontal or x direction with
constant velocity U. In turn, the moving lid acts to shear the fluid which then forms
vortical structures due to interaction with the surrounding stationary walls of the cavity.
Furthermore, as the Reynolds number is increased, the characteristic velocity of the flow is
then increased which causes counter-rotating vortices of varying sizes to form in the corners
of the cavity. Here, we perform an accuracy study by comparing the results obtained using
the FPC-LBM with those of Ghia et al. (1982) [69] for the cases of Reynolds numbers of
Re = 1000, 3200, 5000, and 7500. Here, the Reynolds number is defined as Re = UoLo/ν,
where Uo is the characteristic plate velocity or U, Lo is the characteristic length of one side
of the square cavity, and ν is the kinematic viscosity of the fluid. The relaxation parameters
related to the kinematic viscosity of the fluid, which depends on the choice of Re, are set
according to Equation (A22) (or Equation (A54) in the 3D case), and, unless otherwise stated,
that related to the bulk viscosity ζ and the others for relaxing third and higher moments
are set to unity; the speed of sound cs is taken to be 1/

√
3 in all the simulations reported

in this work. We used a grid resolution of 500 × 500 and performed all our simulations at
various Reynolds numbers noted above until they reach steady state by ensuring that the
2-norm of the residual error is less than 1 × 10−15.

Shown in Figure 3 are the streamlines that come from the results using the FPC-LBM,
and are found to be consistent with those found in literature [69]. However, to make a direct
comparison, we find the location of the (x, y) coordinates of the center of each of the corner
vortices and compare them with the reference data reported by Ghia et al. (1982) [69] for all
the cases of Re noted above. These results are tabulated in Table 1, side by side with our
comparison case, and are found to be in relatively very good quantitative agreement. More-
over, the centerline horizontal and vertical components of the velocity profiles computed
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using the FPC-LBM for all the above four representative Re are in excellent agreement with
the reference results [69] (see Figures 4 and 5).

(a) Re = 1000 (b) Re = 3200

(c) Re = 5000 (d) Re = 7500

Figure 3. Streamlines for two-dimensional lid-driven square cavity flow computed using the FPC-
LBM at Reynolds numbers of Re = 1000, 3200, 5000, and 7500. The formation of secondary and
tertiary vortices is consistent with those in the benchmark results of Ghia et al. (1982) [69] for each
Reynolds number shown here.

Table 1. Comparison of the location of the center of various vortices in a 2D lid-driven square cavity
flow for different Reynolds numbers. Computed results are obtained using the FPC-LBM with a grid
resolution of 500 × 500 and are compared with those of Ghia et al. (1982) [69]. PV—Primary Vortex,
BR1—Bottom Right 1, BR2—Bottom Right 2, BL—Bottom Lefft, TL—Top Left.

Vortex Model Re = 1000 Re = 3200 Re = 5000 Re = 7500

PV FPC-LBM (0.5306, 0.5650) (0.5185, 0.5395) (0.5158, 0.5344) (0.5138, 0.5318)
PV Ghia et al. (0.5313, 0.5625) (0.5165, 0.5469) (0.5117, 0.5352) (0.5117, 0.5322)

BR1 FPC-LBM (0.8646, 0.1115) (0.8249, 0.0834) (0.8054, 0.0720) (0.7913, 0.0643)
BR1 Ghia et al. (0.8594, 0.1094) (0.8125, 0.0859) (0.8086, 0.0742) (0.7813, 0.0625)
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Table 1. Cont.

Vortex Model Re = 1000 Re = 3200 Re = 5000 Re = 7500

BR2 FPC-LBM (0.9929, 0.0057) (0.9903, 0.0083) (0.9795, 0.0172) (0.9533, 0.0401)
BR2 Ghia et al. (0.9922, 0.0078) (0.9844, 0.0078) (0.9805, 0.0195) (0.9492, 0.0430)

BL FPC-LBM (0.0830, 0.0771) (0.0810, 0.1191) (0.0736, 0.1344) (0.0649, 0.1510)
BL Ghia et al. (0.0859, 0.0781) (0.0859, 0.1094) (0.0703, 0.1367) (0.0645, 0.1504)

TL FPC-LBM N/A (0.0574, 0.8974) (0.0635, 0.9089) (0.0669, 0.9102)
TL Ghia et al. N/A (0.0547, 0.8984) (0.0625, 0.9102) (0.0664, 0.9141)
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(c) Re = 5000
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(d) Re = 7500

Figure 4. Comparisons of the horizontal velocity component along the vertical centerline in a
two-dimensional lid-driven square cavity flow at different Reynolds numbers computed using
the FPC-LBM with the reference results of Ghia et al. (1982) [69]. (a) Re = 1000, (b) Re = 3200,
(c) Re = 5000, (d) Re = 7500.

4.2. Doubly Periodic Shear Layers: Numerical Performance Study

The benchmark commonly known as doubly periodic shear layers [70] is employed
here to indicate a level of stability of the FPC-LBM as compared to other collision models
such as MCM-LBM, which uses the Maxwellian based equilibria, i.e., κ

eq
mn = Π(0)

mn =〈
f M, Wmn

〉
, where f M is given in Equation (6). Since the SRT-LBM and MRT-LBM are

already known to be less stable compared to central moment-based LB formulations, our
focus will be on comparing the different possible central moment-based LB scheme for
simulating this flow problem. The key idea is that a pair of shear layers in a periodic box
will roll up on themselves if given an initial perturbation in the direction perpendicular to
the shear layers. Then, looking at the resulting vorticity field at a dimensionless time equal
to one, we observe if the flow field is fully resolved. When using a relatively fine enough
grid resolution, the layers will each be shown to roll up in a single vortex at the location
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of the initial perturbation for any LBM collision operator being used, which is considered
to be a fully resolved flow field. However, if the discretized grid is made to be relatively
coarse, then spurious secondary vortices can form at the thinnest parts of each layer due to
the presence of numerical artifacts associated with the numerical method being used, which
could ultimately destabilize the simulation. Furthermore, the Mach number is used here to
enforce the characteristic speed of the shear layers, which can trigger numerical instabilities
when made progressively larger for a chosen grid resolution, and one of the goals is to
determine which one of the central moment LB formulation sustains stable simulations
relative to the other in such cases.
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Figure 5. Comparisons of the vertical velocity component along the horizontal centerline in a
two-dimensional lid-driven square cavity flow at different Reynolds numbers computed using
the FPC-LBM with the reference results of Ghia et al. (1982) [69]. (a) Re = 1000, (b) Re = 3200,
(c) Re = 5000, (d) Re = 7500.

The following equation is used to initialize the flow field u(t = 0) = (ux, uy) by non-
dimensionalizing the spatial coordinates with the side length of the periodic square domain, Lo:

ux =

Uo tanh(4(y − 0.25)/w) y ≤ 0.5,

Uo tanh(4(0.75 − y)/w) y > 0.5,
(64)

uy = δ sin(2π(x + 0.25)),

where δ is related to the magnitude of the initial perturbation and w is related to the
thickness of the shear layers; here, we use δ = 0.05 and w = 0.05. In all of the following
simulations, we set the Reynolds number to Re = 30,000, where the Reynolds number for
this problem is defined by Re = UoLo/ν. The Mach number associated in the simulations
is defined as Ma = Uo/cs, where cs = 1/

√
3, and the characteristic time scale reads as
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T = Lo/Uo. Here, we compare the different collision models by running simulations over
a range of grid resolutions as well as Mach numbers, and compare the resulting flow fields
at the dimensionless time t, obtained by scaling time using T, of 1.0.

In what follows, we make a direct comparison of the resulting vorticity fields between
the FPC-LBM and the MCM-LBM. The results shown in Figures 6 and 7 consist of base-
line cases using the MCM-LBM and FPC-LBM, respectively, using the Mach numbers of
Ma = 0.05, 0.2, and 0.3 along with grid resolutions of L2 = 642, 1282, and 2562. As such,
the Mach numbers are generally in the lower range and hence all of the cases were found
to be numerically stable without the formation of any spurious secondary vortices, and the
results from both the collision models are almost indistinguishable. This generally shows
the robustness of central moment collision models and also indicates that we must consider
more extreme parametric conditions to see significant differences between them.
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Figure 6. Vorticity contours of doubly periodic shear layers that roll up due to an applied perturbation
at t = 1 for different sets of lower Mach numbers of 0.05, 0.2 and 0.3 (along rows) and at grid resolutions
of 642, 1282, and 2562 (along columns) computed using the Maxwellian equilibria based MCM-LBM.
The MCM-LBM is seen to sufficiently capture the physics of this case for all of the grid resolutions and
Mach numbers considered here as it has not caused the formation of any spurious secondary vortices.
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Figure 7. Vorticity contours of doubly periodic shear layers that roll up due to an applied perturbation
at t = 1 for different sets of lower Mach numbers of 0.05, 0.2 and 0.3 (along rows) and at grid
resolutions of 642, 1282, and 2562 (along columns) computed using the Fokker-Planck equilibria based
FPC-LBM. The FPC-LBM is seen to sufficiently capture the physics of this case for all of the grid
resolutions and Mach numbers considered here as it has not caused the formation of any spurious
secondary vortices. The FPC-LBM and MCM-LBM results are almost indistinguishable from one
another for these cases indicating the robustness of central moment collision models in general and
that we must consider more extreme cases to see significant differences between them.

In this regard, we perform two more comparison studies that attempt this by first
using larger Mach numbers and second by using a relatively large increase in bulk viscosity
that exceeds the point of having positive effects. The results from the larger Mach number
cases of Ma = 0.4, 0.5, and 0.6, and using the same three different grid resolutions as before
are presented in Figure 8 using MCM-LBM and Figure 9 using FPC-LBM. Evidently, from
Figure 8, the MCM-LBM simulations show the formation of spurious secondary vortices
for all cases of these higher Ma for the coarsest grid resolution of 642, and these artifacts
progressively become more prominent as Ma increases. On the other hand, the results from
the FPC-LBM (see Figure 9) show no such spurious secondary vortices for those same cases,
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which indicates that the FPC-LBM can sustain stable simulations without any noticeable
artifacts even at large Mach numbers and coarse grid resolutions.
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Figure 8. Vorticity contours of doubly periodic shear layers that roll up due to an applied perturbation
at t = 1 for different sets of higher Mach numbers of 0.4, 0.5 and 0.6 (along rows) and at grid
resolutions of 642, 1282, and 2562 (along columns) computed using the Maxwellian equilibria based
MCM-LBM. It is seen that at larger Mach numbers and coarse grid resolutions, the MCM-LBM
becomes unstable with the formation of spurious secondary vortices which form on the layers for the
cases of Ma = 0.4, 0.5, and 0.6 at L2 = 642.
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Figure 9. Vorticity contours of doubly periodic shear layers that roll up due to an applied perturbation
at t = 1 for different sets of higher Mach numbers of 0.4, 0.5 and 0.6 (along rows) and at grid
resolutions of 642, 1282, and 2562 (along columns) computed using the Maxwellian equilibria based
MCM-LBM.Vorticity contours at t = 1. It is seen that the FPC-LBM remains stable and no spurious
vortices are formed for the same cases of higher Mach numbers and grid resolutions as those shown
previously for the MCM-LBM which did not remain stable (see Figure 8). This indicates that the
FPC-LBM is a more robust collision model when compared to the MCM-LBM for simulations at
coarse grid resolutions and at relatively large Mach numbers.

Lastly, we consider cases in the lower Mach number ranges again (Ma = 0.05, 0.2
and 0.3) and with the same sets of grid resolutions as before, but at an extremely large
bulk viscosity by setting the relaxation parameter associated with the bulk viscosity to
ω3 = 0.35. Figure 10 shows the vorticity contours at t = 1 computed using MCM-LBM. In
general, increasing the bulk viscosity dampens any spurious pressure waves; however, by
increasing the relaxation time τ3 = 1/ω3 associated with the bulk viscosity to 2.857 from
being ∼1.0 or smaller, the range of beneficial limits is exceeded, and instead the simulations
begin to numerically destabilize with MCM-LBM with the incipient spurious secondary
vortices at the coarsest resolution even with the usage of lower range of Mach numbers
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(see Figure 10); by contrast, as shown in Figure 11 using the FPC-LBM does not result in
spurious vortices for these cases and the simulations remain stable. This again indicates
that the FPC-LBM is a more robust central moment LB scheme than the MCM-LBM.
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Figure 10. Vorticity contours of doubly periodic shear layers that roll up due to an applied per-
turbation at t = 1 for different sets of lower Mach numbers of 0.05, 0.2 and 0.3 (along rows) and
at grid resolutions of 642, 1282, and 2562 (along columns) at an extremely large bulk viscosity by
setting the relaxation parameter associated with the bulk viscosity to ω3 = 0.35 and computed using
the Maxwellian equilibria based MCM-LBM. It is seen that MCM-LBM becomes unstable under an
extreme increase in bulk viscosity, especially for coarse grid resolutions which become progressively
worse as the Mach number is increased. By increasing the relaxation time τ3 = 1/ω3 associated with
the bulk viscosity to 2.857 from being ∼ 1.0 or smaller, the range of beneficial limits is exceeded, and
instead the simulations begin to numerically destabilize with MCM-LBM.

4.3. Three-Dimensional Lid-Driven Cubic Cavity Flow: An Accuracy Study

Next, let’s validate the 3D FPC-LBM by performing simulations of flow inside a cubic
cavity driven by the motion of one of its lids and compare the results with the benchmark
numerical data available in the literature [71,72]. This problem is set up with a cubic grid
domain of Lx × Ly × Lz = 150 × 150 × 150, with a lid, located at y = Ly, that moves
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with a constant velocity, Uo, in the x direction. The characteristic plate velocity is set by
specifying the Mach number to be relatively small, with Ma = Uo/cs = 0.1, so that the
flow is maintained in the weakly compressible range; the choice of the Reynolds number,
defined by Re = UoLo/ν with Lo = Lx = Ly = Lz, sets up the fluid viscosity ν. All of the
other walls are stationary, and the standard half-way bounce back boundary condition is
applied to all boundaries in order to enforce the no slip condition on each wall, including a
momentum correction to the moving wall.
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Figure 11. Vorticity contours of doubly periodic shear layers that roll up due to an applied perturba-
tion at t = 1 for different sets of lower Mach numbers of 0.05, 0.2 and 0.3 (along rows) and at grid
resolutions of 642, 1282, and 2562 (along columns) at an extremely large bulk viscosity by setting
the relaxation parameter associated with the bulk viscosity to ω3 = 0.35 and computed using the
Fokker-Planck equilibria based FPC-LBM. It is seen that the FPC-LBM remains stable even for the
cases with an extreme increase in bulk viscosity shown previously, where the MCM-LBM did not
remain stable (see Figure 10). This indicates that the FPC-LBM is numerically more stable when
compared to the MCM-LBM in such cases as well.

Then, we simulate the three-dimensional lid-driven cavity flow for Reynolds num-
bers of Re = 100, 400, 1000. Figure 12 shows the computed streamlines at these Reynolds
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numbers along three different centerplanes. As Re increases, the flow patterns become
progressively more complex with additional vortical structures near the corner edges, and
the observed patterns are consistent with those reported in [71,72]. In addition, compar-
isons of the horizontal and vertical velocity profiles computed using the FPC-LBM along
different directions in the centerplanes for the above three Re with the prior numerical
results obtained from Navier-Stokes solvers [71,72] are presented in Figure 13. Very good
quantitative agreement is seen for all the cases considered. These results give an indication
that the 3D FPC-LBM accurately simulates flow fields with rather complex structures.

(a) Re = 100 (b) Re = 100 (c) Re = 100

(d) Re = 400 (e) Re = 400 (f) Re = 400

(g) Re = 1000 (h) Re = 1000 (i) Re = 1000

Figure 12. Streamlines for three-dimensional lid-driven cubic cavity flow at Reynolds numbers of
Re = 100, 400 and 1000 computed using the FPC-LBM along the z = 0.5L centerplane shown in
(a,d,g), the y = 0.5L centerplane shown in (b, e,h), and the x = 0.5L centerplane shown in (c,f,i).
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Figure 13. Comparisons of the horizontal velocity u/U along the vertical coordinate y/L at x = 0.5L
and z = 0.5L (left) and vertical velocity v/U along the horizontal coordinate x/L at y = 0.5L and
z = 0.5L (right) in a three-dimensional cubic cavity flow at different Reynolds numbers computed
using the FPC-LBM with the reference results of Ku et al. (1987) [71] and Shu et al. (2003) [72].
(a,b) Re = 100, (c,d) Re = 400, (e,f) Re = 1000.

One of the major advantages of the LBM is its natural parallelization property. We have
parallelized our implementation of the 3D FPC-LBM using the Message Passing Interface
(MPI) library via a domain decomposition approach. We then performed simulations of the
cubic cavity flow resolved with 150× 150× 150 using p = 16, 32, 64, 128, 256, 512 processors
in our in-house computer cluster (see https://ccm-docs.readthedocs.io/en/latest/alderaan
(accessed on 10 October 2024)). Figure 14 shows the parallel performance of our 3D FPC-
LBM. Evidently, near-linear speed-up is seen, which is ideal for simulating large domain
size problems effectively. We will exploit this feature for turbulent channel flow simulations
discussed later.

https://ccm-docs.readthedocs.io/en/latest/alderaan
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Figure 14. Parallel performance of the MPI implementation of our 3D FPC-LBM for lid-driven cubic
cavity flow simulations using a grid resolution of 150 × 150 × 150 in our in-house computer cluster.

4.4. Three-Dimensional Lid-Driven Cubic Cavity Flow: A Stability Study

In order to further illustrate the numerical properties of the 3D FPC-LBM in perspec-
tive with other existing LB collision models, next we investigate their stability character-
istics in the simulation of three-dimensional, lid-driven cubic cavity flow. If ωj, where
j = 110, 101, 011, 2d1, and 2d2 represent the relaxation parameters of the second order
moments that determine the fluid viscosity ν (see Equation (A54)), for brevity in discussion,
we let them to be related to a relaxation time τ via τ = 1/ωj. It is well known that as τ
approaches 1/2 or equivalently, as the viscosity becomes relatively small, the LB schemes
are susceptible to numerical instabilities that can cause any errors in simulations to grow
exponentially large, and different collision models can exhibit such behavior to a different
degree depending on when a certain threshold viscosity or the Reynolds number is reached
before they become unstable. Here, we leverage this feature to form a description for the
numerical stability properties of the FPC-LBM as compared to other collision models.

We use the three-dimensional lid driven cavity flow simulation as a prototypical exam-
ple in this regard (see e.g., Ref. [73] for a recent such simulation study using the cascaded
LBM and other collision models). In this regard, we start with the case that we know
is numerically unstable, namely τ = 0.5, which has a corresponding Reynolds number,
Re = ∞, when the characteristic velocity and length scales are fixed, as the relaxation
time τ is related to the fluid viscosity, ν. We then systematically increase the relaxation
time until the simulation can remain stable, and report the resulting threshold Reynolds
number associated with that relaxation time as being the maximum possible Reynolds
number for which the simulation is stable. Specifically, we increase the relaxation time as
τnew = τold + δ, where δ is the amount of increase for each case after the previous simulation
has become unstable. Here, we use δ = 5 × 10−5, and we consider any simulation that
reaches 500,000 time steps to be stable. Furthermore, after we find the minimum value
for the relaxation time that allows the simulation to remain stable for 500,000 time steps,
we then validate that every value above this minimum also remains stable for at least
ten more increments in it. At this point, we define the simulation as having crossed the
threshold from unstable to stable, and we note the Reynolds number at the edge of that
threshold. We perform this study using four different grid resolutions and compare the
results from five different collision models. The grid resolutions we consider for the cubic
cavity of dimension Lx × Ly × Lz = L3, are L = 48, 64, 80, and 96 and the plate velocity
U0 is based on the Mach number via Uo = Ma × cs by fixing Ma = 0.2 in all cases. We
then compare the results of these cases across the MRT-LBM, MCM-LBM, factorized LBM,
cumulant LBM, and the FPC-LBM approaches, but do not consider the SRT-LBM as it is
already known to be the least stable approach in LBM in general. As a result, this study
gives an indication of the numerical stability features of the FPC-LBM as compared to other
collision models. Figure 15 shows the maximum possible Reynolds number achieved using
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different collision models at various resolutions. In general, the central moment-based
schemes (MCM-LBM, factorized LBM, and FPC-LBM) are more stable compared to the raw
moment-based MRT-LBM. Among the central moment-based schemes, MCM-LBM is the
least stable and the FPC-LBM consistently outperforms it by a factor greater than 2 for the
maximum threshold Re, and the latter is more stable than the ad hoc factorized LBM as
well. As such, we find that the FPC-LBM has stability characteristics that are very close to
those observed for the cumulant LBM (see Figure 15).
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Figure 15. The maximum possible Reynolds number for which the three-dimensional lid-driven cubic
cavity flow simulations remain stable at different grid resolutions of 483, 643, 803 and 963 for different
types of LB collision models—raw moments-based MRT-LBM, Maxwellian central moments-based
MCM-LBM, factorized central moments-based Factorized LBM, cumulant LBM, and Fokker-Planck
central moments-based FPC-LBM.

A note regarding the computational cost of various LB schemes is in order here. In
general, depending on the computing platform used, the stream-and-collide procedure of
the LB methods are known to be memory-bound rather than compute-bound and hence the
computational efforts associated with different collision models do not vary significantly. On
a per-iteration basis, for example, the raw moment-based MRT-LBM requires about 20–30%
more computational time than the simplest of the collision models, viz., the SRT-LBM. Our
FPC-LBM, which is based on central moments and using Markovian attractors, requires
similar computational effort as the Maxwellian-based central moment (MCM)-LBM and
involves fewer operations than the state-of-the-art cumulant LBM. As such, while our
FPC-LBM requires about 50% additional overhead when compared to the SRT-LBM, it is
offset by the several numerical advantages associated with the Fokker-Planck formulation
using central moments as discussed in this work, including its dramatically improved
numerical stability for simulations of fluid flows at lower viscosities or higher Reynolds
numbers much more effectively.

4.5. Orthogonal Crossing Shear Waves: A Numerical Hyperviscosity Study

This benchmark is applied in effort to asses the presence of a numerical artifact known
as hyperviscosity that has been observed in some of the LBM formulations, especially those
that relax different moments at different rates during collision [10,11]. More specifically,
when computing flows with relatively very small fluid viscosities, there can exist large
disparities between the relaxation rates of the second order moments compared to the
higher order moments. In turn, depending on the choice of equilibria in such cases, the
contributions from such higher order moments involve terms similar to the non-equilibrium
momentum fluxes (related to the strain rate tensor) which can dominate the corresponding
physical contributions from the second order non-equilibrium moments, and manifest as
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numerical hyperviscosities [11]. Such a numerical artifact can be investigated by studying
the decay rate of three-dimensional crossing shear waves [10].

If we consider the fluid velocities and the pressure gradients to be small, and in
the absence of body forces or boundaries, for a pair of three-dimensional crossing shear
waves involving orthogonal wave vectors, the Navier-Stokes equations can be simplified
to obtain the following analytical solution based on the product solution of the respective
shear waves:

uy(t) = Uy cos(kxx) cos(kzz) exp(−νk2
x) exp(−νk2

z), (65)

where kx = 2π/Lx and kz = 2π/Lz are the wavenumbers in the two orthogonal coordinate
directions x and z, respectively, Uy is the initial amplitude of the wave perturbed along
the y direction, and ν is the fluid viscosity. Thus, starting from the initial condition in a
periodic box

ux = 0, uz = 0, uy = Uy cos(kxx) cos(kzz), (66)

according to Equation (65), the crossing shear waves decay at a rate that depends on the
wavenumbers and the viscosity of the fluid. Furthermore, given that the decay rate depends
on the fluid viscosity, the presence of any numerical hyperviscosities can significantly alter
the amplitude decay rate from the predictions above. Here, we discretize such a periodic
box with a relatively coarse grid resolution and apply the initial conditions above, so
that we can study different LBM formulations and investigate their ability to predict the
decay rate.

As in [10], we consider an extreme case of relatively small fluid viscosity of ν = 1× 10−7,
with wavenumbers defined using Lx = Lz = 30 and an initial amplitude of Uy = 1 × 10−5,
and we study the decay rate for simulations using various LBM collision formulations
relative to the analytically predicted decay rate shown above. Namely, we compare the
decay rates as produced by the single relaxation time collision model or the SRT-LBM, the
central moment collision model which uses the Maxwellian central moments for equilibria
or the MCM-LBM, the central moment collision model with the Fokker-Planck guided colli-
sions or the FPC-LBM, and the cumulant LBM involving relaxations based on cumulants
during collision.

The results in Figure 16a indicate that the decay rate for the MCM-LBM is much higher
than the analytically derived decay rate because the velocity amplitude decays rapidly
to zero, and thus is not able to effectively overcome the hyperviscosity artifact. On the
other hand the SRT-LBM, FPC-LBM, and the cumulant LBM have apparently similar decay
rates as compared to what is predicted analytically. Figure 16b shows a closer view of
these results, which more clearly illuminates the key features of the other three collision
models shown here. To begin with, the SRT-LBM produces a decay rate for the crossing
shear waves that is consistent with what is expected; however it has other features which
cause noise in the decay rate, and this is consistent with observations shown in [10]. On
the other hand, we observed that the FPC-LBM and cumulant LBM both produce nearly
identical decay rates in this benchmark, which are in agreement with those predicted by
the analytical solution. As such, it underscores the importance of equilibria in reducing
the hyperviscosity effects dramatically. Specifically, with the FPC-LBM, the choice of the
central moment equilibria based on the Markovian attractor given in Equation (54) and its
attendant tensor diffusion parameter as presented in Equation (55) (which controls the rate
of diffusion of the distribution function in different directions in the velocity space) play a
crucial role in this regard.
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Figure 16. A comparison of the decay rates produced by different LB collision models—SRT-LBM,
Maxwellian central moments-based MCM-LBM, cumulant LBM, and Fokker-Planck central moments-
based FPC-LBM as compared to the analytically predicted decay rate for the simulation of orthogonal
crossing shear waves. Figure (a) indicates that the MCM-LBM fails to produce a decay rate similar
to that of the analytical solution, and thus is not able to deal with the numerical hyperviscosity
effects associated with this problem. Figure (b), which is a highly zoomed version of the left figure,
indicates that the SRT-LBM can deal with the hyperviscosity effects but also contains unwanted noise.
Furthermore, the cumulant LBM and the FPC-LBM are seen to have nearly identical decay rates that
are consistent with the analytical solution.

4.6. Fully Developed Turbulent Channel Flow: Demonstration Case Study of FPC-LBM for
Turbulence Simulations

In our final case study, we demonstrate the capability of the FPC-LBM to perform
turbulence simulations using a prototypical example involving the turbulent channel flow
and compare the computed turbulence statistics against a recent DNS data of Lee and
Moser (2015) [74]. To reduce the computational effort, we perform simulations within a
domain that encompasses only the half-channel height H by utilizing a specular refection
boundary condition on the symmetry plane [75]. For resolving the turbulent flow structures
adequately, the computational domain is taken to have an aspect ratio of 2πH × πH × H.
The flow is driven by a body force along the periodic streamwise direction given by

Fx = − dP
dx = τw

H = ρu2
∗

H , where τw is the wall shear stress and u∗ is the shear or friction
velocity, which satisfies u∗ = (τw/ρ)1/2. For performing turbulence simulations, we
consider a shear Reynolds number Re∗ = 180, where Re∗ = u∗H/ν with ν being the
molecular viscosity of the fluid, by resolving the computational domain using the above
aspect ratio by taking H = 100 grid nodes in the wall normal direction. We choose a similar
approach as that of [75], where we perform large eddy simulations (LES) by utilizing
a common subgrid scale model known as the Smagorinsky model along with the van
Driest wall dampening function to represent the variations in the subgrid effects near the
wall. The characteristic length scale near the wall is the viscous length scale δν = ν/u∗,
which can be used to express the characteristic time scale of eddy as T∗ = H/u∗. The
initial run for the simulations are performed using the 3D FPC-LBM for a duration of
50T∗ until stationary turbulence statistics (such as the invariance in the Reynolds stress
profiles) is achieved; then an additional run for a period of 30T∗ is carried out to collect
the turbulence statistics by averaging the flow field and turbulence fluctuations in time
and in space along the homogeneous directions (i.e., the horizontal planes). Large eddy
simulations performed using parallel computations with 512 processors of our in-house
cluster took less than 24 h of wall-clock time to complete and to collect the turbulence
statistics. Figure 17 shows comparisons of the mean streamwise velocity, root-mean-square
(rms) velocity fluctuations, and the Reynolds stress as a function of the distance from
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the wall in wall units, i.e., z+ = z/δν computed using the FPC-LBM with the DNS data
of Lee and Moser (2015) [74]. For completeness, also shown is the related experimental
data of Kreplin and Eckelmann (1979) [76]. Evidently, good agreement is seen, which
demonstrates that the FPC-LBM is well-suited for simulating turbulent flows accurately
and effectively.
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Figure 17. Comparisons of turbulence statistics for fully developed turbulent channel flow at a shear
Reynolds number of Re∗ = 180 computed using the FPC-LBM and compared to the direct numerical
simulations (DNS) data of Lee and Moser (2015) [74] and experimental data of Kreplin and Eckelmann
(1979) [76]. (a) Mean streamwise velocity, (b) Root-mean-square (rms) velocity fluctuations, and
(c) Reynolds stress along the streamwise-wall normal direction.

5. Summary and Conclusions

Collision models play a critical role in determining the numerical accuracy and stability
of simulations using LBM. Fokker-Planck (FP) kinetic equation, which represents stochastic
processes such as the prototypical Brownian motion, can be used as a model for the collision
integral of the Boltzmann equation and involves variations in the distribution function
under collision due to its drift and diffusion in the phase space. In this paper, we have
derived a new approach based on a FP-guided central moment collision operator for the
LBM. It effectively involves relaxation of different central moments to their respective
attractors or “equilibria” that depend on the products of lower order central moments and
the components of the diffusion coefficient tensor; the latter is related to the variance of the
distribution function or its second order central moments. We designate such attractors as
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the Markovian central moment attractors reflecting the repeated randomness nature of the
collision process.

We have constructed central moment LB algorithms based on the FP collision model,
which is referred to as the FPC-LBM, in 2D and 3D using D2Q9 and D3Q27 lattices,
respectively, through a matching principle, viz., by matching the changes in different
discrete central moments independently supported by the lattice under collision to those
given by the continuous Boltzmann equation with its collision term expressed in terms
of the FP model. We have shown the consistency of our approach to the Navier-Stokes
equations via a Chapman-Enskog analysis based directly on expansions of central moments
about their attractors. The development of the continuous central moment based FP
collision model and their use in the construction of novel LB schemes based on discrete
velocities highlighted the important role of the rates of diffusion of the distribution function
along different directions in the velocity space, or the second order central moments, in
determining the evolution of still higher order moments, which can in turn influence their
overall numerical properties.

Simulations of a variety of benchmark problems in both 2D and 3D established its
accuracy and demonstrated its superior numerical properties such as enhanced numerical
stability and an ability to avoid numerical hyperviscosities in simulations with extremely
low physical viscosities of the fluid. It is shown to have cumulant LBM-like behavior in
terms of stability while being simpler, and does not involve ad hoc factorized collision
formulation to reduce hyperviscosity effects in central moment LBMs as it is rooted and
derived directly from a well-founded kinetic model based on the Fokker-Planck formulation.
The FPC-LBM is also shown to be effective in computing wall-bounded turbulent flows
as it is able to predict turbulence statistics accurately that is in very good agreement
when compared to state-of-the-art direct numerical simulations (DNS) data based on a
NS-based solver.
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Appendix A. Chapman-Enskog Analysis of 2D Central Moment Formulation of the
Boltzmann Equation with Fokker-Planck Collision Model

We will now perform a Chapman-Enskog (C-E) analysis of the central moment system
of the continuous Boltzmann equation with the FP collision model. Thus, the starting point
for the consistency analysis of the continuous Boltzmann equation with the Fokker-Planck
collision model to derive the macroscopic fluid dynamical equations is to convert the
LHS of Equation (1), i.e., the streaming (Liouville) operator, in a central moment form by

https://meetings.aps.org/Meeting/DFD20/Session/F10.5
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taking an inner product with the weight Wmn given in Equation (8) and then evaluating the
necessary definite integrals. The resulting central moment system after simplification (as
formulated by Premnath [77]), is given by

〈
∂ f
∂t

+ ξ ·∇ f , Wmn

〉
=

DΠmn

Dt
+ mΠm−1,n

Dux

Dt
+ nΠm,n−1

Duy

Dt
(A1)

+Πmn[(m + 1)∂xux + (n + 1)∂yuy] + ∂xΠm+1,n

+∂yΠm,n+1 + nΠm+1,n−1∂xuy + mΠm−1,n+1∂yux,

where D
Dt (· · · ) is the Lagrangian (material) derivative involving the fluid velocity and

given by
D
Dt

= ∂t + u ·∇. (A2)

Combining Equation (A1) with the rate of change of the central moment of order (m + n) due
to the Fokker-Planck collision model (Equation (25)) and forcing (Equation (32)) then provides
the complete system of central moments of the continuous model Boltzmann equation.

In order to derive slow space/time variation limit of such a representation, i.e., the
fluid dynamical equations, we introduce a small perturbation parameter ε in the collision

term
(

δΠmn
δt

)FP

coll
given in Equation (25) so that the space/time derivatives are ε order smaller

than the relaxation time. This is the first step in the C-E analysis to obtain the so-called
normal solution. Hence, we get

DΠmn

Dt
+ mΠm−1,n

Dux

Dt
+ nΠm,n−1

Duy

Dt
+ Πmn[(m + 1)∂xux + (n + 1)∂yuy] (A3)

+∂xΠm+1,n + ∂yΠm,n+1 + nΠm+1,n−1∂xuy + mΠm−1,n+1∂yux

=
ωmn

ε

[
ΠMv

mn − Πmn

]
+ m

Fx

ρ
Πm−1,n + n

Fy

ρ
Πm,n−1.

The parameter ε serves for book keeping by avoiding the closure problem and may be
absorbed into ωmn by setting ε = 1 at the end of the analysis. Then, expanding the
distribution function about its attractor f (0) = f Mv as well as using a multiple time
expansion of ∂t in terms of the perturbation parameter as

f = f (0) + ε f (1) + ε2 f (2) + . . . , (A4a)

∂t = ∂t0 + ε∂t1 + ε2∂t2 + . . . . (A4b)

The first expansion can be equivalently rewritten directly in terms of central moment
expansion as

Πmn = Π(0)
mn + εΠ(1)

mn + ε2Π(2)
mn + . . . , (A5)

where Π(0)
mn = ΠMv

mn . The solvability conditions arising via the collision invariants of mass
and momentum are

Π(0)
00 = ρ, Π(0)

10 = Π(0)
01 = 0,

Π(n)
00 = Π(n)

10 = Π(n)
01 = 0, n ≥ 1,
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which will be needed to obtain the hydrodynamics of the above central moment system
shown in Equation (A3). Defining the leading order Lagrangian derivative

D
Dt0

= ∂t0 + u ·∇, (A6)

and substituting Equation (A4b), Equation (A5), and Equation (A6) in Equation (A3), then
the leading O(ε0) central moment system becomes

DΠ(0)
mn

Dt0
+ mΠ(0)

m−1,n
Dux

Dt0
+ nΠ(0)

m,n−1
Duy

Dt0
+ Π(0)

mn[(m + 1)∂xux + (n + 1)∂yuy] (A7)

+∂xΠ(0)
m+1,n + ∂yΠ(0)

m,n+1 + nΠ(0)
m+1,n−1∂xuy + mΠ(0)

m−1,n+1∂yux

= −ωmnΠ(1)
mn + m

Fx

ρ
Π(0)

m−1,n + n
Fy

ρ
Π(0)

m,n−1.

Next, the O(ε1) central moment system arising from the asymptotic expansion reads

∂Π(0)
mn

∂t1
+

DΠ(1)
mn

Dt0
+ mΠ(1)

m−1,n
Dux

Dt0
+ mΠ(0)

m−1,n
∂ux

∂t1
+ nΠ(1)

m,n−1
Duy

Dt0
(A8)

+nΠ(0)
m,n−1

∂uy

∂t1
+ Π(1)

mn[(m + 1)∂xux + (n + 1)∂yuy] + ∂xΠ(1)
m+1,n

+∂yΠ(1)
m,n+1 + nΠ(1)

m+1,n−1∂xuy + mΠ(1)
m−1,n+1∂yux

= −ωmnΠ(2)
mn + m

Fx

ρ
Π(1)

m−1,n + n
Fy

ρ
Π(1)

m,n−1.

It may be noted that the leading order of central moments due to the attractors, i.e.,
Π(0)

mn = ΠMv
mn are given in Equation (29). In order to separate out the trace of the diagonal

part (isotropic part) of the momentum transfer, i.e., the bulk viscosity effects from the shear
viscosity related transport, we define

Π2s = Π20 + Π02, Π2d = Π20 − Π02. (A9)

Then, we prescribe them to relax at their own individual relaxation rates ω2s and ω2d,
respectively via modified representations of Equation (25):(

δ

δt
Π2s

)FP

coll
= ω2s

[
ΠMv

2s − Π2s

]
, (A10a)

(
δ

δt
Π2d

)FP

coll
= ω2d

[
ΠMv

2d − Π2d

]
, (A10b)

where ΠMv
2s = ΠMv

20 + ΠMv
02 = 2ρc2

s = Π(0)
2s and ΠMv

2d = ΠMv
20 − ΠMv

02 = 0 = Π(0)
2d . All other

higher central moments follow Equation (25), and are relaxed at their own relaxation rate
ωmn, e.g., (mn) = (11), (21), (12), and (22).
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We first list the O(ε0) evolution equations for (mn) = (00), (10), and (01), respectively
using Equation (A7) as

DΠ00

Dt
+ Π00(∂xux + ∂yuy) = 0, or

Dρ

Dt0
+ ρ(∂xux + ∂yuy) = 0, (A11a)

Π00
Dux

Dt
+ ∂xΠ(0)

20 = Fx, or ρ
Dux

Dt0
+ ∂x(c2

s ρ) = Fx, (A11b)

Π00
Duy

Dt
+ ∂yΠ(0)

02 = Fy, or ρ
Duy

Dt0
+ ∂y(c2

s ρ) = Fy. (A11c)

Then the diagonal components (mn) = (20) and (02), in view of Equations (A10a) and (A10b)
and using Π2s = Π(0)

2s + εΠ(1)
2s + . . . and Π2d = Π(0)

2d + εΠ(1)
2d + . . . , we separately take

the sums and difference of the LHS of Equation (A7) evaluated for (mn) = (20) and (02)
and apply Equations (A10a) and (A10b) on its RHS, respectively. As a result, and using
Π(0)

20 = Π(0)
02 = ρc2

s , we have the following for (mn) = (2s) and (2d), respectively:

D
Dt0

Π(0)
2s + 4Π(0)

20 (∂xux + ∂yuy) + ∂xΠ(0)
30 + ∂yΠ(0)

03 = −ω2sΠ(1)
2s , (A12a)

D
Dt0

Π(0)
2d + 2Π(0)

20 (∂xux − ∂yuy) + ∂xΠ(0)
30 + ∂yΠ(0)

03 = −ω2dΠ(1)
2d . (A12b)

For the continuous case Π(0)
30 = Π(0)

03 = 0, which follows from Π(0)
30 = ΠMv

30 = 2D′
20Π10 = 0,

etc (while they are O(u3) in the LB formulation using discrete velocities for the standard
D2Q9 lattice due to the aliasing effects and they are usually neglected or are corrected for
in some cases). Simplifying Equations (A12a) and (A12b), we obtain

2c2
s

Dρ

Dt0
+ 4ρc2

s (∂xux + ∂yuy) = −ω2sΠ(1)
2s , (A13a)

2ρc2
s (∂xux − ∂yuy) = −ω2dΠ(1)

2d . (A13b)

Also, evaluating Equation (A7) for the remaining off-diagonal central moment, i.e., (mn) = (11),
we get

2Π(0)
11 (∂xux + ∂yuy) + ∂xΠ(0)

21 + ∂yΠ(0)
12 + Π(0)

20 ∂xuy + Π(0)
02 ∂yux = −ω11Π(1)

11 .

Using Π(0)
11 = Π(0)

21 = Π(0)
12 = 0 and Π(0)

20 = Π(0)
02 = c2

s ρ, the above equation simplifies to

ρc2
s (∂xuy + ∂yux) = −ω11Π(1)

11 . (A14)

The above equations, Equations (A11a)–(A11c), need to be respectively combined with
the O(ε) central moment evolution equations for the components (mn)= (00), (10), and (01)
to obtain the desired hydrodynamic equations. Hence, the first three components of the
O(ε) central moment system from Equation (A8) are given by

∂Π(0)
00

∂t0
= 0 or

∂ρ

∂t0
= 0, (A15a)

Π(0)
00

∂ux

∂t1
+ ∂xΠ(1)

20 + ∂yΠ(1)
11 = 0 or ρ

∂ux

∂t1
+ ∂xΠ(1)

20 + ∂yΠ(1)
11 = 0, (A15b)

Π(0)
00

∂uy

∂t1
+ ∂xΠ(1)

11 + ∂yΠ(1)
02 = 0 or ρ

∂uy

∂t1
+ ∂xΠ(1)

11 + ∂yΠ(1)
02 = 0. (A15c)
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where in Equations (A15b) and (A15c), Π(1)
20 and Π(1)

02 can be rewritten using the defi-
nitions of the nonequilibrium combined diagonal second order moments (analogous to
Equation (A9)) Π(1)

2s =
(

Π(1)
20 + Π(1)

02

)
and Π(1)

2d =
(

Π(1)
20 − Π(1)

02

)
as

Π(1)
20 =

1
2

(
Π(1)

2s + Π(1)
2d

)
, Π(1)

02 =
1
2

(
Π(1)

2s − Π(1)
2d

)
. (A16)

Hence, the equations, Equations (A15a)–(A15c), become

∂ρ

∂t1
= 0, (A17a)

ρ
∂

∂t1
ux + ∂x

[
1
2

Π(1)
2s +

1
2

Π(1)
2s

]
+ ∂yΠ(1)

11 = 0, (A17b)

ρ
∂

∂t1
uy + ∂xΠ(1)

11 + ∂y

[
1
2

Π(1)
2s − 1

2
Π(1)

2s

]
= 0. (A17c)

Then, we combine O(1) and O(ε) evolution equations for the conserved moments, i.e.,
Equations (A11a)–(A11c) + ε [Equations (A17a)–(A17c)], by using ∂t = ∂t0 + ε∂t1 , and
setting the book keeping parameter ε = 1 we get

Dρ

Dt
+ ρ(∂xux + ∂yuy) = 0, (A18a)

ρ
Dux

Dt
+ ∂x(c2

s ρ) + ∂x

[
1
2

Π(1)
2s +

1
2

Π(1)
2d

]
+ ∂yΠ(1)

11 = Fx, (A18b)

ρ
Duy

Dt
+ ∂y(c2

s ρ) + ∂xΠ(1)
11 + ∂y

[
1
2

Π(1)
2s − 1

2
Π(1)

2d

]
= Fy. (A18c)

In order to get the non-equilibrium central moments Π(1)
2s , Π(1)

2d , and Π(1)
11 , we consider

Equations (A13a), (A13b), and (A14) and use (A11a) to replace Dρ
Dt0

in terms of−ρ
(
∂xux + ∂yuy

)
.

Thus, we get

Π(1)
2s = −2ρc2

s
ω2s

(
∂xux + ∂yuy

)
, Π(1)

2d = −2ρc2
s

ω2d

(
∂xux − ∂yuy

)
,

Π(1)
11 = − ρc2

s
ω11

(
∂xuy + ∂yux

)
. (A19)

Defining the bulk viscosity ζ and shear viscosity ν based on the respective relaxation
parameters as

ζ =
c2

s
ω2s

, ν =
c2

s
ω2d

=
c2

s
ω11

. (A20)

and using Equations (A19) and (A20) in Equations (A18a)–(A18c) and simplifying we get

Dρ

Dt
+ ρ∇ · u = 0, (A21)

ρ
Dux

Dt
= −∂xP + ∂x[ρν(2∂xux −∇ · u) + ρζ∇ · u] + ∂y

[
ρν(∂xuy + ∂yux)

]
+ Fx,

ρ
Duy

Dt
= −∂yP + ∂x

[
ρν(∂xuy + ∂yux)

]
+ ∂y

[
ρν(2∂yuy −∇ · u) + ρζ∇ · u

]
+ Fy,
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where P = c2
s ρ. Hence, the Navier-Stokes Equations (NSE) is a consistent long-time and

coarse-grained behavior of the Boltzmann equation with the Fokker-Planck collision model
specified in a central moment formulation. It may be noted that the above Chapman-
Enskog analysis of the central moment system of the Boltzmann equation can also be
readily extended to study the evolution of the higher order moments. In addition, we note
that when we approximate the Boltzmann equation using a discrete set of particle velocities
and integrate it along the particle characteristics, the resulting LBM recovers the NSE with
the relation between the viscosities and the relaxation parameters modified by replacing
1/ωij with (1/ωij − 1/2), i.e., based on the Hénon correction. Hence, for the discrete 2D
FPC-LBM, Equation (A20) changes to

ζ = c2
s

(
1

ω2s
− 1

2

)
, ν = c2

s

(
1

ω2d
− 1

2

)
= c2

s

(
1

ω11
− 1

2

)
. (A22)

Appendix B. Algorithmic Details of 2D FPC-LBM Using the D2Q9 Lattice

Step 1: Convert the pre-collision distribution functions into pre-collision raw moments
using m = Pf as

κ′00 = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8, (A23)

κ′10 = f1 − f3 + f5 − f6 − f7 + f8,

κ′01 = f2 − f4 + f5 + f6 − f7 − f8,

κ′20 = f1 + f3 + f5 + f6 + f7 + f8,

κ′02 = f2 + f4 + f5 + f6 + f7 + f8,

κ′11 = f5 − f6 + f7 − f8,

κ′21 = f5 + f6 − f7 − f 8,

κ′12 = f5 − f6 − f7 + f8,

κ′22 = f5 + f6 + f7 + f8.

Step 2: Map the pre-collision raw moments into pre-collision central moments using
mc = Fm as

κ00 = κ′00, (A24)

κ10 = κ′10 − uxκ′00,

κ01 = κ′01 − uyκ′00

κ20 = κ′20 − 2uxκ′10 + u2
xκ′00,

κ02 = κ′02 − 2uyκ′01 + u2
yκ′00,

κ11 = κ′11 − uyκ′10 − uxκ′01 + uxuyκ′00,

κ21 = κ′21 − 2uxκ′11 + u2
xκ′01 − uyκ′20 + 2uxuyκ′10 − u2

xuyκ′00,

κ12 = κ′12 − 2uyκ′11 + u2
yκ′10 − uxκ′02 + 2uxuyκ′01 − uxu2

yκ′00,

κ22 = κ′22 − 2uxκ′12 + u2
xκ′02 − 2uyκ′21 + 4uxuyκ′11 − u2

x2uyκ′01 + u2
yκ′20 (A25)

−2uxu2
yκ′10 + u2

xu2
yκ′00.
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Step 3: Collision update—Relax different central moments to their attractors and aug-
ment them with source terms First, to independently evolve the effects of shear and bulk
viscosities, we combine the diagonal second order central moments as

κ2s = κ20 + κ02, κ2d = κ20 − κ02. (A26)

Next, we compute the lower order Markovian attractors using

κMv
00 = ρ, κMv

10 = 0, κMv
01 = 0, κMv

20 = c2
s ρ, (A27)

κMv
02 = c2

s ρ, κMv
11 = 0, κMv

21 = 0, κMv
12 = 0,

and also combine the second order attractors in the same way as

κMv
2s = κMv

20 + κMv
02 , κMv

2d = κMv
20 − κMv

02 .

If an external body force is present, combine similar second order attractors due to them
through σ2s = σ20 + σ02 and σ2d = σ20 − σ02. Then, we relax various central moments up
to the third order (i.e., (m + n ≤ 3) to their attractors along with contributions due to the
source terms and the resulting post-collision central moments read as

κ̃00 = κ00 + ω0(κ
Mv
00 − κ00) + (1 − ω0/2)σ00δt, (A28)

κ̃10 = κ10 + ω1(κ
Mv
10 − κ10) + (1 − ω1/2)σ10δt,

κ̃01 = κ01 + ω2(κ
Mv
01 − κ01) + (1 − ω2/2)σ01δt,

κ̃2s = κ2s + ω3(κ
Mv
2s − κ2s) + (1 − ω3/2)σ2sδt,

κ̃2d = κ2d + ω4(κ
Mv
2d − κ2d) + (1 − ω4/2)σ2dδt,

κ̃11 = κ11 + ω5(κ
Mv
11 − κ11) + (1 − ω5/2)σ11δt,

κ̃21 = κ21 + ω6(κ
Mv
21 − κ21) + (1 − ω6/2)σ21δt,

κ̃12 = κ12 + ω7(κ
Mv
12 − κ12) + (1 − ω7/2)σ12δt,

where σmn is given in Equation (41). Then, decompose the post-collision second order
combined central moments via

κ̃20 = 0.5(κ̃2s + κ̃2d), κ̃02 = 0.5(κ̃2s − κ̃2d). (A29)

which is then used to define the Markovian attractor for the fourth order central moment as

κMv
22 =

1
ρ
(κ̃20κ̃02 + 2κ̃11κ̃11), (A30)

Following this, the fourth order central moment is relaxed and updated as follows:

κ̃22 = κ22 + ω8(κ
Mv
22 − κ22) + (1 − ω8/2)σ22. (A31)

Step 4: Transform post-collision central moments into post-collision raw moments via
m̃ = F−1m̃c as

κ̃′00 = κ̃00, (A32)

κ̃′10 = κ̃10 + uxκ̃00,

κ̃′01 = κ̃01 + uyκ̃00,

κ̃′20 = κ̃20 + 2uxκ̃10 + u2
xκ̃00,
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κ̃′02 = κ̃02 + 2uyκ̃01 + u2
yκ̃00,

κ̃′11 = κ̃11 + uxκ̃01 + uyκ̃10 + uxuyκ̃00,

κ̃′21 = κ̃21 + 2uxκ̃11 + uyκ̃20 + u2
xκ̃01 + 2uxuyκ̃10 + u2

xuyκ̃00,

κ̃′12 = κ̃12 + 2uyκ̃11 + uxκ̃02 + 2uxuyκ̃01 + u2
yκ̃10 + uxu2

yκ̃00,

κ̃′22 = κ̃22 + 2uxκ̃12 + 2uyκ̃21 + 4uxuyκ̃11 + u2
yκ̃20 + u2

xκ̃02 + 2u2
xuyκ̃01

+2uxu2
yκ̃10 + u2

xu2
yκ̃00.

Step 5: Transform post-collision raw moments into post-collision distribution functions
through f̃ = P−1m̃ as

f̃0 = κ̃′00 − κ̃′20 − κ̃′02 + κ̃′22, (A33)

f̃1 = 0.5(κ̃′10 + κ̃′20 − κ̃′12 − κ̃′22),

f̃2 = 0.5(κ̃′01 + κ̃′02 − κ̃′21 − κ̃′22),

f̃3 = 0.5(−κ̃′10 + κ̃′20 + κ̃′12 − κ̃′22),

f̃4 = 0.5(−κ̃′01 + κ̃′02 + κ̃′21 − κ̃′22),

f̃5 = 0.25(κ̃′11 + κ̃′21 + κ̃′12 + κ̃′22),

f̃6 = 0.25(−κ̃′11 + κ̃′21 − κ̃′12 + κ̃′22),

f̃7 = 0.25(κ̃′11 − κ̃′21 − κ̃′12 + κ̃′22),

f̃8 = 0.25(−κ̃′11 − κ̃′21 + κ̃′12 + κ̃′22).

Step 6: Perform streaming step via lock-step advection along different discrete particle
directions

fα(x, t + δt) = f̃α(x − eαδt, t), α = 0, 1, 2, . . . , 8, (A34)

and apply wall boundary conditions, as appropriate.
Step 7: Compute hydrodynamic fields via zeroth and first discrete velocity moments as

ρ =
8

∑
α=0

fα, ρu =
8

∑
α=0

fαeα +
1
2

Fδt, (A35)

and P = ρc2
s . The Steps 1 through 7 represent the computations involved in the FPC-LBM

during one time step δt, which are repeated as many times as required depending on
the nature of the flow simulation. A note regarding the relaxation parameters ωj, which
satisfy 0 < ωj < 2, is in order here. For the relaxation parameters for the second order
moments ω3 = ω2s and ω4 = ω5 = ω2d, they are based on the choice of the bulk and shear
viscosities, ζ and ν, respectively, according to Equation (A22) to recover the Navier-Stokes
equations. The rest of ωj, where j = 0, 1, 2, 6, 7, 8 are free parameters and are selected based
on numerical stability considerations of simulations.

Appendix C. Chapman-Enskog Analysis of 3D Central Moment Formulation of the
Boltzmann Equation with Fokker-Planck Collision Model

From Equation (1), taking
〈

∂ f
∂t + ξ ·∇ f , Wmnp

〉
and setting it equal to the sum of(

δΠmnp
δt

)FP

coll
and

(
δΠmnp

δt

)
f orcing

, and, as in the 2D case, a small perturbation parameter ε

is introduced into the collision term to obtain the normal solutions in the low-frequency
hydrodynamical limit for the C-E expansion, we get [77]
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DΠmnp

Dt
+ mΠm−1,n,p

Dux

Dt
+ nΠm,n−1,p

Duy

Dt
+ pΠm,n,p−1

Duz

Dt
(A36)

+Πmnp[(m + 1)∂xux + (n + 1)∂yuy + (p + 1)∂zuz] + ∂xΠm+1,n,p

+∂yΠm,n+1,p + ∂zΠm,n,p+1 + nΠm+1,n−1,p∂xuy + pΠm+1,n,p−1∂xuz

+mΠm−1,n+1,p∂yux + pΠm,n+1,p−1∂yuz + mΠm−1,n,p+1∂zux

+nΠm,n−1,p+1∂zuy =
ωmnp

ε

[
ΠMv

mnp − Πmnp

]
+ Γmnp,

where Γmnp is given in Equation (59) and the material derivative D
Dt is defined in Equation (A2).

As in the 2D case, we expand f and ∂t given in Equation (A4a) and Equation (A4b),
respectively, and the corresponding central moment expansion is

Πmnp = Π(0)
mnp + εΠ(1)

mnp + ε2Π(2)
mnp + · · · , (A37)

where Π(0)
mnp = ΠMv

mnp, with the solvability conditions arising via the collision invariants of
mass and momentum given by

Π(0)
000 = ρ, Π(0)

001 = Π(0)
010 = Π(0)

001 = 0, (A38)

Π(n)
000 = Π(n)

001 = Π(n)
010 = Π(n)

001 = 0. n ≥ 1

Using the definition of the leading order Lagrangian derivative D
Dt0

given in Equation (A6),
and substituting Equation (A37) in Equation (A36) by invoking Equation (A38), we get
the evolution equations of the central moment of (m + n + p) at various O(εn), where
n = 0, 1, . . . .

At O(ε0), we obtain

DΠ(0)
mnp

Dt0
+ mΠ(0)

m−1,n,p
Dux

Dt0
+ nΠ(0)

m,n−1,p
Duy

Dt0
+ pΠ(0)

m,n,p−1
Duz

Dt0
(A39)

+Π(0)
mnp[(m + 1)∂xux + (n + 1)∂yuy + (p + 1)∂zuz] + ∂xΠ(0)

m+1,n,p

+∂yΠ(0)
m,n+1,p + ∂zΠ(0)

m,n,p+1 + nΠ(0)
m+1,n−1,p∂xuy + pΠ(0)

m+1,n,p−1∂xuz

+mΠ(0)
m−1,n+1,p∂yux + pΠ(0)

m,n+1,p−1∂yuz + mΠ(0)
m−1,n,p+1∂zux

+nΠ(0)
m,n−1,p+1∂zuy = −ωmnpΠ(1)

mnp + Γ(0)
mnp,

where

Γ(0)
mnp = m

Fx

ρ
Π(0)

m−1,n,p + n
Fy

ρ
Π(0)

m,n−1,p + p
Fz

ρ
Π(0)

m,n,p−1. (A40)
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Then, the O(ε(1)) system reads as

∂Π(0)
mnp

∂t1
+

DΠ(1)
mnp

Dt0
+ mΠ(1)

m−1,n,p
Dux

Dt0
+ mΠ(0)

m−1,n,p
∂ux

∂t1
(A41)

+nΠ(1)
m,n−1,p

Duy

Dt0
+ nΠ(0)

m,n−1,p
∂uy

∂t1
+ pΠ(1)

m,n,p−1
Duz

Dt0
+ pΠ(0)

m,n,p−1
∂uz

∂t1

+Π(1)
mnp[(m + 1)∂xux + (n + 1)∂yuy + (p + 1)∂zuz] + ∂xΠ(1)

m+1,n,p

+∂yΠ(1)
m,n+1,p + ∂zΠ(1)

m,n,p+1 + nΠ(1)
m+1,n−1,p∂xuy + pΠ(1)

m+1,n,p−1∂xuz

+mΠ(1)
m−1,n+1,p∂yux + pΠ(1)

m,n+1,p−1∂yuz + mΠ(1)
m−1,n,p+1∂zux

+nΠ(1)
m,n−1,p+1∂zuy = −ωmnpΠ(2)

mnp + Γ(1)
mnp,

where

Γ(1)
mnp = m

Fx

ρ
Π(1)

m−1,n,p + n
Fy

ρ
Π(1)

m,n−1,p + p
Fz

ρ
Π(1)

m,n,p−1.

Next, in order to separate out the isotropic or the trace of the diagonal part of the
viscous momentum transfer, i.e., the bulk viscosity effects from those due to the shear
viscosity, we define the following combinations of second order moments:

Π2s1 = Π200 + Π020 + Π002, Π2d1 = Π200 − Π020, Π2d2 = Π200 − Π002. (A42)

Conversely, from the combined moments Π2s1, Π2d1, and Π2d2, the separate components
Π200, Π020, and Π002 may be retrieved via

Π200 =
1
3
(Π2s1 + Π2d1 + Π2d2), (A43a)

Π020 =
1
3
(Π2s1 − 2Π2d1 + Π2d2), (A43b)

Π002 =
1
3
(Π2s1 + Π2d1 − 2Π2d2). (A43c)

Then, we prescribe those combined moments to relax at their own individual relaxation
rates ω2s1, ω2d1, and ω2d2 under collision rather than undergoing changes separately as(

δ

δt
Π2s

)FP

coll
= ω2s1

[
ΠMv

2s1 − Π2s

]
, (A44a)

(
δ

δt
Π2d1

)FP

coll
= ω2d1

[
ΠMv

2d1 − Π2d1

]
, (A44b)

(
δ

δt
Π2d2

)FP

coll
= ω2d2

[
ΠMv

2d2 − Π2d2

]
, (A44c)

where, from Equation (A42), the attractors of the combined components of the diagonal
parts of the second order moments are given by ΠMv

2s1 = ΠMv
200 + ΠMv

020 + ΠMv
002 = 3c2

s ρ,
ΠMv

2d1 = ΠMv
200 − ΠMv

020 = 0, and ΠMv
2d2 = ΠMv

200 − ΠMv
002 = 0. All other second order moments

and higher, such as (mnp) = (110), (101), (011), (120), (102), (210), (012), (201), (021), etc relax
according to Equation (53).



Fluids 2024, 9, 255 49 of 62

We first list O(ε0) evolution equations for the conserved moments, i.e., (mnp) = (000),
(100), (010), and (001) respectively, using Equation (A39) as

DΠ(0)
000

Dt0
+ Π(0)

000∇ · u = 0 or
Dρ

Dt0
+ ρ∇ · u = 0, (A45a)

Π(0)
000

Dux

Dt0
+ ∂xΠ(0)

200 = Fx or ρ
Dux

Dt0
+ ∂x(c2

s ρ) = Fx, (A45b)

Π(0)
000

Duy

Dt0
+ ∂yΠ(0)

020 = Fy or ρ
Duy

Dt0
+ ∂y(c2

s ρ) = Fy, (A45c)

Π(0)
000

Duz

Dt0
+ ∂zΠ(0)

002 = Fz or ρ
Duz

Dt0
+ ∂z(c2

s ρ) = Fz. (A45d)

Similarly, for the second order off-diagonal moments (mnp) = (110), (101), and (011) respec-
tively, we have

Π(0)
200∂xuy + Π(0)

020∂yux = −ω110Π(1)
110 or ρc2

s (∂xuy + ∂yux) = −ω110Π(1)
110, (A46a)

Π(0)
200∂xuz + Π(0)

002∂zux = −ω101Π(1)
101 or ρc2

s (∂xuz + ∂zux) = −ω101Π(1)
101, (A46b)

Π(0)
020∂yuz + Π(0)

002∂zuy = −ω011Π(1)
011 or ρc2

s (∂yuz + ∂zuy) = −ω011Π(1)
011. (A46c)

As in the 2D case, we consider the combinations of the second order diagonal moments
(200), (020), and (002) in the LHS of Equation (A39) for Π2s1, Π2d1, and Π2d2, where
Π2s1 = Π(0)

2s + εΠ(0)
2s1 + . . . , Π2d1 = Π(0)

2d1 + εΠ(0)
2d1 + · · · , and Π2d2 = Π(0)

2d2 + εΠ(0)
2d2 + · · · , and

then use them in equations, Equations (A44a)–(A44c), for the collision terms on their RHS. In
view of this, and using Π(0)

200 = Π(0)
020 = Π(0)

002 = ρc2
s , and by setting Π(0)

300 = Π(0)
030 = Π(0)

003 = 0
in the continuous case (see the Chapman-Enksog analysis for the 2D case given earlier
for related discussion), we get the following evolution equations for the moments with
(mnp) = (2s1), (2d1), and (2d2), respectively, as

D
Dt0

Π(0)
2s1 + 5Π(0)

200
(
∂xux + ∂yuy + ∂zuz

)
= −ω2sΠ(1)

2s , (A47a)

D
Dt0

Π(0)
2d1 + 2Π(0)

200
(
∂xux − ∂yuy

)
= −ω2d1Π(1)

2d1, (A47b)

D
Dt0

Π(0)
2d2 + 2Π(0)

200(∂xux − ∂zuz) = −ω2d2Π(1)
2d2. (A47c)

Simplifying the above three equations, we get

3c2
s

Dρ

Dt0
+ 5ρc2

s
(
∂xux + ∂yuy + ∂zuz

)
= −ω2sΠ(1)

2s , (A48a)

2ρc2
s (∂xux − ∂yuy) = −ω2d1Π(1)

2d1, (A48b)

2ρc2
s (∂xux − ∂zuz) = −ω2d2Π(1)

2d2. (A48c)

From equations, Equations (A46a)–(A46c) and Equations (A48a)–(A48c), and after
using Equation (A45a) to replace Dρ

Dt0
in terms of −ρ∇ · u in Equation (A48a), we can

then obtain the non-equilibrium second order central moment components, which read
as follows:
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Π(1)
110 = − ρc2

s
ω110

(∂xuy + ∂yux), Π(1)
101 = − ρc2

s
ω101

(∂xuz + ∂zux),

Π(1)
011 = − ρc2

s
ω011

(∂yuz + ∂zuy),

Π(1)
2s1 = −2

ρc2
s

ω2s
∇ · u, Π(1)

2d1 = −2
ρc2

s
ω2d1

(∂xux − ∂yuy),

Π(1)
2d2 = −2

ρc2
s

ω2d2
(∂xux − ∂zuz). (A49)

Analogous to Equations (A45a)–(A45d), we obtain the evolution equations for the con-
served central moments with components (000), (100), (010), and (001) at O(ε) level from
Equation (A41), respectively, as

∂ρ

∂t1
= 0, (A50a)

ρ
∂

∂t1
ux + ∂xΠ(1)

200 + ∂yΠ(1)
110 + ∂zΠ(1)

101 = 0, (A50b)

ρ
∂uy

∂t1
+ ∂xΠ(1)

110 + ∂yΠ(1)
020 + ∂zΠ(1)

011 = 0, (A50c)

ρ
∂uz

∂t1
+ ∂xΠ(1)

101 + ∂yΠ(1)
011 + ∂zΠ(1)

002 = 0. (A50d)

The individual diagonal components Π(1)
200, Π(1)

020, and Π(1)
002 in Equations (A50a)–(A50d) will

then be rewritten in terms of the known combined non equilibrium central moments Π(1)
2s1,

Π(1)
2d1, and Π(1)

2d2 via using the definitions Equations (A43a)–(A43c) and rewriting for the
non-equilibrium parts as

∂ρ

∂t1
= 0, (A51a)

ρ
∂ux

∂t1
+ ∂x

[
1
3
(Π(1)

2s1 + Π(1)
2d1 + Π(1)

2d2)

]
+ ∂yΠ(1)

110 + ∂zΠ(1)
101 = 0, (A51b)

ρ
∂uy

∂t1
+ ∂xΠ(1)

110 + ∂y

[
1
3
(Π(1)

2s1 − 2Π(1)
2d1 + Π(1)

2d2)

]
+ ∂zΠ(1)

011 = 0, (A51c)

ρ
∂uz

∂t1
+ ∂xΠ(1)

101 + ∂yΠ(1)
011 + ∂z

[
1
3
(Π(1)

2s1 + Π(1)
2d1 − 2Π(1)

2d2)

]
= 0. (A51d)

We then combine O(1) and O(ε) evolution equations for the conserved moments,
i.e., Equation (A45a) + ε× Equations (A51a), Equation (A45b) + ε× Equations (A51b),
Equation (A45c) + ε× Equation (A51c), and Equation (A45d) + ε× Equation (A51d) and
then using ∂t = ∂t0 + ε∂t1 and Dt = Dt0 + ε∂t1 , and setting the book keeping parameter
ε = 1. These steps then lead to the following equations for the conserved fields:
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Dρ

Dt
+ ρ∇ · u = 0 (A52a)

ρ
D
Dt

ux + ∂x(c2
s ρ) + ∂x

[
1
3
(Π(1)

2s1 + Π(1)
2d1 + Π(1)

2d2)

]
+ ∂yΠ(1)

110 + ∂zΠ(1)
101 = Fx, (A52b)

ρ
D
Dt

uy + ∂y(c2
s ρ) + ∂xΠ(1)

110 + ∂y

[
1
3
(Π(1)

2s1 − 2Π(1)
2d1 + Π(1)

2d2)

]
+ ∂zΠ(1)

011 = Fy, (A52c)

ρ
D
Dt

uz + ∂z(c2
s ρ) + ∂xΠ(1)

101 + ∂yΠ(1)
011 + ∂z

[
1
3
(Π(1)

2s1 + Π(1)
2d1 − 2Π(1)

2d2)

]
= Fz. (A52d)

In view of Equation (A49) for the non-equilibrium moments, and in anticipation of arriving
at the Navier-Stokes equations (NSE) from Equations (A52a)–(A52d), we define the bulk
viscosity ζ and shear viscosity ν as

ζ =
2
3

c2
s

ω2s
, (A53a)

ν =
c2

s
ω110

=
c2

s
ω101

=
c2

s
ω011

=
c2

s
ω2d1

=
c2

s
ω2d2

. (A53b)

Then, using Equation (A49) in Equations (A52b)–(A52d) and simplifying by utilizing
Equations (A53a) and (A53b), we finally get the emergent equations for the conserved
fields, which read as

Dρ

Dt
+ ρ∇ · u = 0,

ρ
Dux

Dt
= −∂xP + ∂x

[
ρζ∇ · u + ρν

(
2∂xux −

2
3
∇ · u

)]
+∂y

[
ρν(∂xuy + ∂yux)

]
+ ∂z[ρν(∂xuz + ∂zux)] + Fx,

ρ
Duy

Dt
= −∂yP + ∂x

[
ρν(∂xuy + ∂yux)

]
+ ∂y

[
ρζ∇ · u + ρν

(
2∂yuy −

2
3
∇ · u

)]
+∂z

[
ρν(∂yuz + ∂zuy)

]
+ Fy,

ρ
Duz

Dt
= −∂zP + ∂x[ρν(∂xuz + ∂zux)] + ∂y

[
ρν(∂yuz + ∂zuy)

]
+∂z

[
ρζ∇ · u + ρν

(
2∂zuz −

2
3
∇ · u

)]
+ Fz,

where P = ρc2
s . Hence, the NSE in 3D can be derived consistently from the central moment

formulation of the continuous Boltzmann equation with the Fokker-Planck collision model.
The above analysis may also be readily extended to study the evolution of the higher order
moments in 3D. Also, as noted at the end of Appendix A, when this continuous analysis
is extended for a discrete formulation involving the LBM, the relationships between the
viscosities and the relaxation parameters require the so-called Hénon corrections, i.e., by
replacing 1/ωij with (1/ωij − 1/2). Hence, for the discrete 3D FPC-LBM, Equations (A53a)
and (A53b) is modified to
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ζ =
2
3

c2
s

(
1

ω2s
− 1

2

)
, ν = c2

s

(
1

ωj
− 1

2

)
for j = (110), (101), (011), (2d1), (2d2). (A54)

Appendix D. Algorithmic Details of 3D FPC-LBM Using the D3Q27 Lattice

Step 1: Convert the pre-collision distribution functions into pre-collision raw moments
using m = Pf as

κ′000 = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9 + f10 + f11 + f12 (A55)

+ f13 + f14 + f15 + f16 + f17 + f18 + f19 + f20 + f21 + f22 + f23

+ f24 + f25 + f26,

κ′100 = f1 − f2 + f7 − f8 + f9 − f10 + f11 − f12 + f13 − f14 + f19 − f20

+ f21 − f22 + f23 − f24 + f25 − f26,

κ′010 = f3 − f4 + f7 + f8 − f9 − f10 + f15 − f16 + f17 − f18 + f19 + f20

− f21 − f22 + f23 + f24 − f25 − f26,

κ′001 = f5 − f6 + f11 + f12 − f13 − f14 + f15 + f16 − f17 − f18 + f19 + f20

+ f21 + f22 − f23 − f24 − f25 − f26,

κ′110 = f7 − f8 − f9 + f10 + f19 − f20 − f21 + f22 + f23 − f24 − f25 + f26,

κ′101 = f11 − f12 − f13 + f14 + f19 − f20 + f21 − f22 − f23 + f24 − f25 + f26,

κ′011 = f15 − f16 − f17 + f18 + f19 + f20 − f21 − f22 − f23 − f24 + f25 + f26,

κ′200 = f1 + f2 + f7 + f8 + f9 + f10 + f11 + f12 + f13 + f14 + f19 + f20 + f21

+ f22 + f23 + f24 + f25 + f26,

κ′020 = f3 + f4 + f7 + f8 + f9 + f10 + f15 + f16 + f17 + f18 + f19 + f20 + f21

+ f22 + f23 + f24 + f25 + f26,

κ′002 = f5 + f6 + f11 + f12 + f13 + f14 + f15 + f16 + f17 + f18 + f19 + f20

+ f21 + f22 + f23 + f24 + f25 + f26,

κ′120 = f7 − f8 + f9 − f10 + f19 − f20 + f21 − f22 + f23 − f24 + f25 − f26,

κ′102 = f11 − f12 + f13 − f14 + f19 − f20 + f21 − f22 + f23 − f24 + f25 − f26,

κ′210 = f7 + f8 − f9 − f10 + f19 + f20 − f21 − f22 + f23 + f24 − f25 − f26,

κ′012 = f15 − f16 + f17 − f18 + f19 + f20 − f21 − f22 + f23 + f24 − f25 − f26,

κ′201 = f11 + f12 − f13 − f14 + f19 + f20 + f21 + f22 − f23 − f24 − f25 − f26,

κ′021 = f15 + f16 − f17 − f18 + f19 + f20 + f21 + f22 − f23 − f24 − f25 − f26,

κ′111 = f19 − f20 − f21 + f22 − f23 + f24 + f25 − f26,

κ′220 = f7 + f8 + f9 + f10 + f19 + f20 + f21 + f22 + f23 + f24 + f25 + f26,

κ′202 = f11 + f12 + f13 + f14 + f19 + f20 + f21 + f22 + f23 + f24 + f25 + f26,

κ′022 = f15 + f16 + f17 + f18 + f19 + f20 + f21 + f22 + f23 + f24 + f25 + f26,

κ′211 = f19 + f20 − f21 − f22 − f23 − f24 + f25 + f26,

κ′121 = f19 − f20 + f21 − f22 − f23 + f24 − f25 + f26,
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κ′112 = f19 − f20 − f21 + f22 + f23 − f24 − f25 + f26,

κ′122 = f19 − f20 + f21 − f22 + f23 − f24 + f25 − f26,

κ′212 = f19 + f20 − f21 − f22 + f23 + f24 − f25 − f26,

κ′221 = f19 + f20 + f21 + f22 − f23 − f24 − f25 − f26,

κ′222 = f19 + f20 + f21 + f22 + f23 + f24 + f25 + f26.

Step 2: Map the pre-collision raw moments into pre-collision central moments using
mc = Fm as

κ000 = κ′000, (A56)

κ100 = κ′100 − uxκ′000,

κ010 = κ′010 − uyκ′000,

κ001 = κ′001 − uzκ′000,

κ110 = κ′110 − uxκ′010 − uyκ′100 + uxuyκ′000,

κ101 = κ′101 − uxκ′001 − uzκ′100 + uxuzκ′000,

κ011 = κ′011 − uyκ′001 − uzκ′010 + uyuzκ′000,

κ200 = κ′200 − 2uxκ′100 + u2
xκ′000,

κ020 = κ′020 − 2uyκ′010 + u2
yκ′000,

κ002 = κ′002 − 2uzκ′001 + u2
zκ′000,

κ120 = κ′120 − uxκ′020 − 2uyκ′110 + 2uxuyκ′010 + u2
yκ′100 − uxu2

yκ′000,

κ102 = κ′102 − uxκ′002 − 2uzκ′101 + 2uxuzκ′001 + u2
zκ′100 − uxu2

zκ′000,

κ210 = κ′210 − uyκ′200 − 2uxκ′110 + u2
xκ′010 + 2uxuyκ′100 − u2

xuyκ′000,

κ012 = κ′012 − uyκ′002 − 2uzκ′011 + u2
zκ′010 + 2uyuzκ′001 − uyu2

zκ′000,

κ201 = κ′201 − uzκ′200 − 2uxκ′101 + u2
xκ′001 + 2uxuzκ′100 − u2

xuzκ′000,

κ021 = κ′021 − uzκ′020 − 2uyκ′011 + u2
yκ′001 + 2uyuzκ′010 − u2

yuzκ′000,

κ111 = κ′111 − uxκ′011 − uyκ′101 − uzκ′110 + uxuyκ′001 + uxuzκ′010 + uyuzκ′100

−uxuyuzκ′000,

κ220 = κ′220 − 2uyκ′210 − 2uxκ′120 + u2
xκ′020 + u2

yκ′200 + 4uxuyκ′110 − 2u2
xuyκ′010

−2uxu2
yκ′100 + u2

xu2
yκ′000,

κ202 = κ′202 − 2uzκ′201 − 2uxκ′102 + u2
xκ′002 + u2

zκ′200 + 4uxuzκ′101 − 2u2
xuzκ′001

−2uxu2
zκ′100 + u2

xu2
zκ′000,

κ022 = κ′022 − 2uzκ′021 − 2uyκ′012 + u2
zκ′020 + u2

yκ′002 + 4uyuzκ′011 − 2u2
yuzκ′001

−2uyu2
zκ′010 + u2

yu2
zκ′000,

κ211 = κ′211 − 2uxκ′111 − uyκ′201 − uzκ′210 + u2
xκ011 + 2uxuyκ′101 + uyuzκ′200

+2uxuzκ′110 − u2
xuyκ′001 − u2

xuzκ′010 − 2uxuyuzκ′100 + u2
xuyuzκ′000,

κ121 = κ′121 − 2uyκ′111 − uxκ′021 − uzκ′120 + uxuzκ′020 + 2uxuyκ′011 + u2
yκ′101

+2uyuzκ′110 − uxu2
yκ′001 − 2uxuyuzκ′010 − u2

yuzκ′100 + uxu2
yuzκ′000,
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κ112 = κ′112 − 2uzκ′111 − uxκ′012 − uyκ′102 + uxuyκ′002 + 2uxuzκ′011 + 2uyuzκ′101

+u2
zκ′110 − 2uxuyuzκ′001 − uxu2

zκ′010 − uyu2
zκ′100 + uxuyu2

zκ′000,

κ122 = κ′122 − 2uyκ′112 − 2uzκ′121 − uxκ′022 + 4uyuzκ′111 + 2uxuzκ′021

+2uxuyκ′012 + u2
yκ′102 + u2

zκ′120 − uxu2
yκ′002 − uxu2

zκ′020 − 4uxuyuzκ′011

−2u2
yuzκ′101 − 2uyu2

zκ′110 + 2uxu2
yuzκ′001 + 2uxuyu2

zκ′010 + u2
yu2

zκ′100

−uxu2
yu2

zκ′000,

κ212 = κ′212 − 2uxκ′112 − 2uzκ′211 − uyκ′202 + 4uxuzκ′111 + 2uyuzκ′201

+u2
xκ′012 + u2

zκ′210 + 2uxuyκ′102 − u2
xuyκ′002 − uyu2

zκ′200 − 2u2
xuzκ′011

−4uxuyuzκ′101 − 2uxu2
zκ′110 + 2u2

xuyuzκ′001 + u2
xu2

zκ′010 + 2uxuyu2
zκ′100

−u2
xuyu2

zκ′000,

κ221 = κ′221 − 2uxκ′121 − 2uyκ′211 − uzκ′220 + 4uxuyκ′111 + u2
xκ′021

+u2
yκ′201 + 2uyuzκ′210 + 2uxuzκ′120 − u2

xuzκ′020 − u2
yuzκ′200 − 2u2

xuyκ′011

−2uxu2
yκ′101 − 4uxuyuzκ′110 + u2

xu2
yκ′001 + 2u2

xuyuzκ′010 + 2uxu2
yuzκ′100

−u2
xu2

yuzκ′000,

κ222 = κ′222 − 2uzκ′221 − 2uyκ′212 − 2uxκ′122 + 4uxuyκ′112 + 4uxuzκ′121

+4uyuzκ′211 + u2
xκ′022 + u2

yκ′202 + u2
zκ′220 − 8uxuyuzκ′111 − 2u2

xuzκ′021

−2u2
yuzκ′201 − 2u2

xuyκ′012 − 2uyu2
zκ′210 − 2uxu2

yκ′102 − 2uxu2
zκ′120

+u2
xu2

yκ′002 + u2
xu2

zκ′020 + u2
yu2

zκ′200 + 4u2
xuyuzκ′011 + 4uxu2

yuzκ′101

+4uxuyu2
zκ′110 − 2u2

xu2
yuzκ′001 − 2u2

xuyu2
zκ′010 − 2uxu2

yu2
zκ′100

+u2
xu2

yu2
zκ′000. (A57)

Step 3: Collision update—Relax different central moments to their attractors and augment
them with source terms

Then, based on various combinations that are usually considered in the moment basis
itself, we perform those combinations here on the pre-collision central moments to relax
those groups together later during collision, as

κ2s1 = κ200 + κ020 + κ002, κ2d1 = κ200 − κ020, κ2d2 = κ200 − κ002, (A58)

κ3s1 = κ120 + κ102, κ3m1 = κ120 − κ102, κ3s2 = κ210 + κ012,

κ3m2 = κ210 − κ012, κ3s3 = κ201 + κ021, κ3m3 = κ201 − κ021,

κ4s1 = κ220 + κ202 + κ022, κ4d1 = κ220 + κ202 − κ022, κ4d2 = κ220 − κ202.

We then define all of the lower order, up to the 3rd, Markovian central moment attractors as

κMv
000 = ρ, κMv

100 = 0, κMv
010 = 0, κMv

001 = 0,

κMv
110 = 0, κMv

101 = 0, κMv
011 = 0, κMv

200 = c2
s ρ,

κMv
020 = c2

s ρ, κMv
002 = c2

s ρ, κMv
120 = 0, κMv

102 = 0,

κMv
210 = 0, κMv

012 = 0, κMv
201 = 0, κMv

021 = 0, κMv
111 = 0,

and then perform the same combinations as above for the Markovian attractors as

κMv
2s1 = κMv

200 + κMv
020 + κMv

002 , κMv
2d1 = κMv

200 − κMv
020 , κMv

2d2 = κMv
200 − κMv

002 (A59)
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κMv
3s1 = κMv

120 + κMv
102 , κMv

3m1 = κMv
120 − κMv

102 , κMv
3s2 = κMv

210 + κMv
012 ,

κMv
3m2 = κMv

210 − κMv
012 , κMv

3s3 = κMv
201 + κMv

021 , κMv
3m3 = κMv

201 − κMv
021 .

Then, we relax various central moments to their attractors along with contributions due
to the source terms via σmnp (from Equation (63)) to obtain the respective post-collision
central moments as follows.

κ̃000 = κ000 + ω0(κ
Mv
000 − κ000) + (1 − ω0/2)σ000δt, (A60)

κ̃100 = κ100 + ω1(κ
Mv
100 − κ100) + (1 − ω1/2)σ100δt,

κ̃010 = κ010 + ω2(κ
Mv
010 − κ010) + (1 − ω2/2)σ010δt,

κ̃001 = κ001 + ω3(κ
Mv
001 − κ001) + (1 − ω3/2)σ001δt,

κ̃110 = κ110 + ω4(κ
Mv
110 − κ110) + (1 − ω4/2)σ110δt,

κ̃101 = κ101 + ω5(κ
Mv
101 − κ101) + (1 − ω5/2)σ101δt,

κ̃011 = κ011 + ω6(κ
Mv
011 − κ011) + (1 − ω6/2)σ011δt,

κ̃2s1 = κ2s + ω7(κ
Mv
2s1 − κ2s1) + (1 − ω7/2)σ2s1δt,

κ̃2d1 = κ2d1 + ω8(κ
Mv
2d1 − κ2d1) + (1 − ω8/2)σ2d1δt,

κ̃2d2 = κ2d2 + ω9(κ
Mv
2d2 − κ2d2) + (1 − ω9/2)σ2d2δt.

We then decompose the respective combined second order post-collision central moment
combinations as

κ̃200 = (κ̃2s1 + κ̃2d1 + κ̃2d2)/3, κ̃020 = (κ̃2s1 − 2κ̃2d1 + κ̃2d2)/3,

κ̃002 = (κ̃2s1 + κ̃2d1 − 2κ̃2d2)/3,

and then relax the third order central moments towards their respective Markovian attractors as

κ̃3s1 = κ3s1 + ω10(κ
Mv
3s1 − κ3s1) + (1 − ω10/2)σ3s1δt, (A61)

κ̃3m1 = κ3m1 + ω11(κ
Mv
3m1 − κ3m1) + (1 − ω11/2)σ3m1δt,

κ̃3s2 = κ3s2 + ω12(κ
Mv
3s2 − κ3s2) + (1 − ω12/2)σ3s2δt,

κ̃3m2 = κ3m2 + ω13(κ
Mv
3m2 − κ3m2) + (1 − ω13/2)σ3m2δt,

κ̃3s3 = κ3s3 + ω14(κ
Mv
3s3 − κ3s3) + (1 − ω14/2)σ3s3δt,

κ̃3m3 = κ3m3 + ω15(κ
Mv
3m3 − κ3m3) + (1 − ω15/2)σ3m3δt,

κ̃111 = κ111 + ω16(κ
Mv
111 − κ111) + (1 − ω16/2)σ111δt.

The resulting combined third order post-collision central moments are then decomposed via

κ̃120 = (κ̃3s1 + κ̃3m1)/2, κ̃102 = (κ̃3s1 − κ̃3m1)/2, κ̃210 = (κ̃3s2 + κ̃3m2)/2,

κ̃012 = (κ̃3s2 − κ̃3m2)/2, κ̃201 = (κ̃3s3 + κ̃3m3)/2, κ̃112 = (κ̃3s3 − κ̃3m3)/2.

We can then define the fourth order Markovian Attractors using the post collision values of
second order central moments as

κMv
220 =

1
ρ
(κ̃200κ̃020 + 2κ̃110κ̃110), κMv

202 =
1
ρ
(κ̃200κ̃002 + 2κ̃101κ101), (A62)
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κMv
022 =

1
ρ
(κ̃020κ̃002 + 2κ̃011κ̃011), κMv

211 =
1
ρ
(κ̃200κ̃011 + 2κ̃110κ̃101),

κMv
121 =

1
ρ
(κ̃020κ̃101 + 2κ̃110κ̃011), κMv

112 =
1
ρ
(κ̃002κ̃110 + 2κ̃011κ̃101),

and the 4th order combinations as

κMv
4s1 = κMv

220 + κMv
202 + κMv

022 , κMv
4d1 = κMv

220 + κMv
202 − κMv

022 , κMv
4d2 = κMv

220 − κMv
202 .

Subsequently, we relax those fourth order central moments towards their respective Marko-
vian attractors as

κ̃4s1 = κ4s1 + ω17(κ
Mv
4s1 − κ4s1) + (1 − ω17/2)σ4s1δt, (A63)

κ̃4d1 = κ4d1 + ω18(κ
Mv
4d1 − κ4d1) + (1 − ω18/2)σ4d1δt,

κ̃4d2 = κ4d2 + ω19(κ
Mv
4d2 − κ4d2) + (1 − ω19/2)σ4d2δt,

κ̃211 = κ211 + ω20(κ
Mv
211 − κ211) + (1 − ω20/2)σ211δt,

κ̃121 = κ121 + ω21(κ
Mv
121 − κ121) + (1 − ω21/2)σ121δt,

κ̃112 = κ112 + ω22(κ
Mv
112 − κ112) + (1 − ω22/2)σ112δt.

Following these, we decompose those fourth order post-collision combined moments through

κ̃220 = (κ̃4s1 + κ̃4d1 + 2κ̃4d2)/4, κ̃202 = (κ̃4s1 + κ̃4d1 − 2κ̃4d2)/4,

κ̃022 = (κ̃4s1 − κ̃4d1)/2.

Next, we define the fifth order central moment Markovian attractors, which are based
on various combinations of products of lower order, i.e., second and third, post-collision
central moments as

κMv
122 =

2
5ρ

(κ̃020κ̃102 + κ̃002κ̃120 + 4κ̃011κ̃111 + 2(κ̃101κ̃021 + κ̃011κ̃012)), (A64)

κMv
212 =

2
5ρ

(κ̃200κ̃012 + κ̃002κ̃210 + 4κ̃101κ̃111 + 2(κ̃110κ̃102 + κ̃011κ̃201)),

κMv
221 =

2
5ρ

(κ̃200κ̃021 + κ̃020κ̃201 + 4κ̃110κ̃111 + 2(κ̃011κ̃210 + κ̃101κ̃120)),

and then relax the fifth order central moments towards their respective Markovian attractors as

κ̃122 = κ122 + ω23(κ
Mv
122 − κ122) + (1 − ω23/2)σ122δt, (A65)

κ̃212 = κ212 + ω24(κ
Mv
212 − κ212) + (1 − ω24/2)σ212δt,

κ̃221 = κ221 + ω25(κ
Mv
221 − κ221) + (1 − ω25/2)σ221δt.

Finally, we define the sixth order central moment Markovian attractor as products of second
and fourth order moments as

κMv
222 =

1
3ρ

(κ̃200κ̃022 + κ̃020κ̃202 + κ̃002κ̃220 + 4(κ̃110κ̃112 + κ̃101κ̃121 + κ̃011κ̃211)),
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and then relax the sixth order central moments as

κ̃222 = κ222 + ω26(κ
Mv
222 − κ222) + (1 − ω26/2)σ222δt.

Step 4: Transform post-collision central moments into post-collision raw moments via
m̃ = F−1m̃c as

κ̃′000 = κ̃000, (A66)

κ̃′100 = κ̃100 + uxκ̃000,

κ̃′010 = κ̃010 + uyκ̃000,

κ̃′001 = κ̃001 + uzκ̃000,

κ̃′110 = κ̃110 + uxκ̃010 + uyκ̃100 + uxuyκ̃000,

κ̃′101 = κ̃101 + uxκ̃001 + uzκ̃100 + uxuzκ̃000,

κ̃′011 = κ̃011 + uyκ̃001 + uzκ̃010 + uyuzκ̃000,

κ̃′200 = κ̃200 + 2uxκ̃100 + u2
xκ̃000,

κ̃′020 = κ̃020 + 2uyκ̃010 + u2
yκ̃000,

κ̃′002 = κ̃002 + 2uzκ̃001 + u2
z κ̃000,

κ̃′120 = κ̃120 + uxκ̃020 + 2uyκ̃110 + 2uxuyκ̃010 + u2
yκ̃100 + uxu2

yκ̃000

κ̃′102 = κ̃102 + uxκ̃002 + 2uzκ̃101 + 2uxuzκ̃001 + u2
z κ̃100 + uxu2

z κ̃000,

κ̃′210 = κ̃210 + uyκ̃200 + 2uxκ̃110 + u2
xκ̃010 + 2uxuyκ̃100 + u2

xuyκ̃000,

κ̃′012 = κ̃012 + uyκ̃002 + 2uzκ̃011 + u2
z κ̃010 + 2uyuzκ̃001 + uyu2

z κ̃000,

κ̃′201 = κ̃201 + uzκ̃200 + 2uxκ̃101 + u2
xκ̃001 + 2uxuzκ̃100 + u2

xuzκ̃000,

κ̃′021 = κ̃021 + uzκ̃020 + 2uyκ̃011 + u2
yκ̃001 + 2uyuzκ̃010 + u2

yuzκ̃000,

κ̃′111 = κ̃111 + uxκ̃011 + uyκ̃101 + uzκ̃110 + uxuyκ̃001 + uxuzκ̃010

+uyuzκ̃100 + uxuyuzκ̃000,

κ̃′220 = κ̃220 + 2uyκ̃210 + 2uxκ̃120 + u2
xκ̃020 + u2

yκ̃200 + 4uxuyκ̃110

+2u2
xuyκ̃010 + 2uxu2

yκ̃100 + u2
xu2

yκ̃000,

κ̃′202 = κ̃202 + 2uzκ̃201 + 2uxκ̃102 + u2
xκ̃002 + u2

z κ̃200 + 4uxuzκ̃101

+2u2
xuzκ̃001 + 2uxu2

z κ̃100 + u2
xu2

z κ̃000,

κ̃′022 = κ̃022 + 2uzκ̃021 + 2uyκ̃012 + u2
z κ̃020 + u2

yκ̃002 + 4uyuzκ̃011

+2u2
yuzκ̃001 + 2uyu2

z κ̃010 + u2
yu2

z κ̃000,

κ̃′211 = κ̃211 + 2uxκ̃111 + uyκ̃201 + uzκ̃210 + u2
xκ011 + 2uxuyκ̃101

+uyuzκ̃200 + 2uxuzκ̃110 + u2
xuyκ̃001 + u2

xuzκ̃010 + 2uxuyuzκ̃100

+u2
xuyuzκ̃000,

κ̃′121 = κ̃121 + 2uyκ̃111 + uxκ̃021 + uzκ̃120 + uxuzκ̃020 + 2uxuyκ̃011

+u2
yκ̃101 + 2uyuzκ̃110 − uxu2

yκ̃001 + 2uxuyuzκ̃010 + u2
yuzκ̃100

+uxu2
yuzκ̃000,
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κ̃′112 = κ̃112 + 2uzκ̃111 + uxκ̃012 + uyκ̃102 + uxuyκ̃002 + 2uxuzκ̃011

+2uyuzκ̃101 + u2
z κ̃110 + 2uxuyuzκ̃001 + uxu2

z κ̃010 + uyu2
z κ̃100

+uxuyu2
z κ̃000,

κ̃′122 = κ̃122 + 2uyκ̃112 + 2uzκ̃121 + uxκ̃022 + 4uyuzκ̃111 + 2uxuzκ̃021

+2uxuyκ̃012 + u2
yκ̃102 + u2

z κ̃120 + uxu2
yκ̃002 + uxu2

z κ̃020 + 4uxuyuzκ̃011

+2u2
yuzκ̃101 + 2uyu2

z κ̃110 + 2uxu2
yuzκ̃001 + 2uxuyu2

z κ̃010 + u2
yu2

z κ̃100

+uxu2
yu2

z κ̃000,

κ̃′212 = κ̃212 + 2uxκ̃112 + 2uzκ̃211 + uyκ̃202 + 4uxuzκ̃111 + 2uyuzκ̃201

+u2
xκ̃012 + u2

z κ̃210 + 2uxuyκ̃102 + u2
xuyκ̃002 + uyu2

z κ̃200 + 2u2
xuzκ̃011

+4uxuyuzκ̃101 + 2uxu2
z κ̃110 + 2u2

xuyuzκ̃001 + u2
xu2

z κ̃010 + 2uxuyu2
z κ̃100

+u2
xuyu2

z κ̃000,

κ̃′221 = κ̃221 + 2uxκ̃121 + 2uyκ̃211 + uzκ̃220 + 4uxuyκ̃111 + u2
xκ̃021

+u2
yκ̃201 + 2uyuzκ̃210 + 2uxuzκ̃120 + u2

xuzκ̃020 + u2
yuzκ̃200 + 2u2

xuyκ̃011

+2uxu2
yκ̃101 + 4uxuyuzκ̃110 + u2

xu2
yκ̃001 + 2u2

xuyuzκ̃010 + 2uxu2
yuzκ̃100

+u2
xu2

yuzκ̃000,

κ̃′222 = κ̃222 + 2uzκ̃221 + 2uyκ̃212 + 2uxκ̃122 + 4uxuyκ̃112 + 4uxuzκ̃121

+4uyuzκ̃211 + u2
xκ̃022 + u2

yκ̃202 + u2
z κ̃220 + 8uxuyuzκ̃111 + 2u2

xuzκ̃021

+2u2
yuzκ̃201 + 2u2

xuyκ̃012 + 2uyu2
z κ̃210 + 2uxu2

yκ̃102 + 2uxu2
z κ̃120

+u2
xu2

yκ̃002 + u2
xu2

z κ̃020 + u2
yu2

z κ̃200 + 4u2
xuyuzκ̃011 + 4uxu2

yuzκ̃101

+4uxuyu2
z κ̃110 + 2u2

xu2
yuzκ̃001 + 2u2

xuyu2
z κ̃010 + 2uxu2

yu2
z κ̃100

+u2
xu2

yu2
z κ̃000.

Step 5: Transform post-collision raw moments into post-collision distribution functions
through f̃ = P−1m̃ as

f̃0 = κ̃′000 − κ̃′200 − κ̃′020 − κ̃′002 + κ̃′220 + κ̃′202 + κ̃′022 − κ̃′222, (A67)

f̃1 =
(
κ̃′100 + κ̃′200 − κ̃′120 − κ̃′102 − κ̃′220 − κ̃′202 + κ̃′122 + κ̃′222

)
/2,

f̃2 =
(
−κ̃′100 + κ̃′200 + κ̃′120 + κ̃′102 − κ̃′220 − κ̃′202 − κ̃′122 + κ̃′222

)
/2,

f̃3 =
(
κ̃′010 + κ̃′020 − κ̃′210 − κ̃′012 − κ̃′220 − κ̃′022 + κ̃′212 + κ̃′222

)
/2,

f̃4 =
(
κ̃′010 + κ̃′020 + κ̃′210 + κ̃′012 − κ̃′220 − κ̃′022 − κ̃′212 + κ̃′222

)
/2,

f̃5 =
(
κ̃′001 + κ̃′002 − κ̃′201 − κ̃′021 − κ̃′202 − κ̃′022 + κ̃′221 + κ̃′222

)
/2,

f̃6 =
(
−κ̃′001 + κ̃′002 + κ̃′201 + κ̃′021 − κ̃′202 − κ̃′022 − κ̃′221 + κ̃′222

)
/2,

f̃7 =
(
κ̃′110 + κ̃′120 + κ̃′210 + κ̃′220 − κ̃′112 − κ̃′122 − κ̃′212 − κ̃′222

)
/4,

f̃8 =
(
−κ̃′110 − κ̃′120 + κ̃′210 + κ̃′220 + κ̃′112 + κ̃′122 − κ̃′212 − κ̃′222

)
/4,

f̃9 =
(
−κ̃′110 + κ̃′120 − κ̃′210 + κ̃′220 + κ̃′112 − κ̃′122 + κ̃′212 − κ̃′222

)
/4,

f̃10 =
(
κ̃′110 − κ̃′120 − κ̃′210 + κ̃′220 − κ̃′112 + κ̃′122 + κ̃′212 − κ̃′222

)
/4,

f̃11 =
(
κ̃′101 + κ̃′102 + κ̃′201 + κ̃′202 − κ̃′121 − κ̃′122 − κ̃′221 − κ̃′222

)
/4,

f̃12 =
(
−κ̃′101 − κ̃′102 + κ̃′201 + κ̃′202 + κ̃′121 + κ̃′122 − κ̃′221 − κ̃′222

)
/4,
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f̃13 =
(
−κ̃′101 + κ̃′102 − κ̃′201 + κ̃′202 + κ̃′121 − κ̃′122 + κ̃′221 − κ̃′222

)
/4,

f̃14 =
(
κ̃′101 − κ̃′102 − κ̃′201 + κ̃′202 − κ̃′121 + κ̃′122 + κ̃′221 − κ̃′222

)
/4,

f̃15 =
(
κ̃′011 + κ̃′012 + κ̃′021 + κ̃′022 − κ̃′211 − κ̃′212 − κ̃′221 − κ̃′222

)
/4,

f̃16 =
(
−κ̃′011 − κ̃′012 + κ̃′021 + κ̃′022 + κ̃′211 + κ̃′212 − κ̃′221 − κ̃′222

)
/4,

f̃17 =
(
−κ̃′011 + κ̃′012 − κ̃′021 + κ̃′022 + κ̃′211 − κ̃′212 + κ̃′221 − κ̃′222

)
/4,

f̃18 =
(
κ̃′011 − κ̃′012 − κ̃′021 + κ̃′022 − κ̃′211 + κ̃′212 + κ̃′221 − κ̃′222

)
/4,

f̃19 =
(
κ̃′111 + κ̃′211 + κ̃′121 + κ̃′112 + κ̃′122 + κ̃′212 + κ̃′221 + κ̃′222

)
/8,

f̃20 =
(
−κ̃′111 + κ̃′211 − κ̃′121 − κ̃′112 − κ̃′122 + κ̃′212 + κ̃′221 + κ̃′222

)
/8,

f̃21 =
(
−κ̃′111 − κ̃′211 + κ̃′121 − κ̃′112 + κ̃′122 − κ̃′212 + κ̃′221 + κ̃′222

)
/8,

f̃22 =
(
κ̃′111 − κ̃′211 − κ̃′121 + κ̃′112 − κ̃′122 − κ̃′212 + κ̃′221 + κ̃′222

)
/8,

f̃23 =
(
−κ̃′111 − κ̃′211 − κ̃′121 + κ̃′112 + κ̃′122 + κ̃′212 − κ̃′221 + κ̃′222

)
/8,

f̃24 =
(
κ̃′111 − κ̃′211 + κ̃′121 − κ̃′112 − κ̃′122 + κ̃′212 − κ̃′221 + κ̃′222

)
/8,

f̃25 =
(
κ̃′111 + κ̃′211 − κ̃′121 − κ̃′112 + κ̃′122 − κ̃′212 − κ̃′221 + κ̃′222

)
/8,

f̃26 =
(
−κ̃′111 + κ̃′211 + κ̃′121 + κ̃′112 − κ̃′122 − κ̃′212 − κ̃′221 + κ̃′222

)
/8.

Step 6: Perform streaming step via lock-step advection along different discrete particle
directions

fα(x, t + δt) = f̃α(x − eαδt, t), α = 0, 1, 2, . . . , 26, (A68)

and apply wall boundary conditions, as appropriate.
Step 7: Compute hydrodynamic fields via zeroth and first discrete velocity moments as

ρ =
26

∑
α=0

fα, ρu =
26

∑
α=0

fαeα +
1
2

Fδt, (A69)

and P = ρc2
s . We remark the following regarding the selection of the relaxation parameters

ωj, where 0 < ωj < 2. For the relaxation parameters for the second order moments
ω4 = ω110, ω5 = ω101, ω6 = ω011, ω7 = ω2s, ω8 = ω2d1 and ω9 = ω2d2, they are
based on the choice of the bulk and shear viscosities, ζ and ν, respectively, according to
Equation (A54) to recover the Navier-Stokes equations. The rest are free parameters and
are selected based on numerical stability considerations of simulations.
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