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Abstract: An adaptive Free-Form Deformation parameterization method based on a spring anal-
ogy is presented for aerodynamic shape optimization problems. The proposed method effectively
incorporates the gradients of the objective and constraint functions, achieving automatic control
point adjustment based on variances in design variable components. To evaluate the performance
of the adaptive FFD parameterization method, two 2D airfoil optimization design problems are
examined. The optimization of the RAE2822 airfoil with 12, 18 and 24 design variables demonstrates
superior results for the adaptive method compared to uniform parameterization. The adaptive
method requires fewer iterations and achieves lower objective function values. Additionally, the
optimization design from NACA0012 to RAE2822 airfoil with 18 design variables shows that the
adaptive parameterization method achieves a lower drag coefficient while satisfying the optimization
objective. This validates the method’s capability to finely adjust airfoil shapes and capture more
optimal design points by exerting stronger control over local shapes. The proposed adaptive FFD pa-
rameterization method proves highly effective for optimizing aerodynamic shapes, offering stability
and efficiency in the early stages of optimization, even with a limited number of design variables.

Keywords: aerodynamic shape optimization; adaptive free-form deformation; spring analogy method

1. Introduction

Aerodynamic shape optimization design is fundamentally a mathematical optimiza-
tion problem, comprising essential elements such as the objective function, design variables,
constraint functions, and variable limits [1]. For aircraft-related aerodynamic shape opti-
mization, objective function values or constraints are often represented by aerodynamic
forces, such as drag and the drag-to-lift ratio. In CFD-based optimization, evaluating these
objective function values or constraints is time-consuming, and multiple optimization
iterations impose high demands on computational resources.

Optimization methods can be classified into non-gradient-based and gradient-based
approaches, depending on whether gradient information is used [2–4]. Non-gradient-based
optimization methods offer global optimization capabilities, theoretically identifying op-
timal solutions within the design space [5,6]. The choice of design variables, however,
directly influences the problem’s global optimization, creating different optimization chal-
lenges. Non-gradient-based methods can locate an optimal solution for a given problem
but cannot guarantee the best aerodynamic shape for the design physics.

The efficiency of non-gradient-based optimization methods is directly related to the
number of design variables. In three-dimensional aerodynamic optimization, hundreds of
design variables are often required, resulting in substantial computational loads. Surrogate
models can partially reduce the need for objective function evaluations, though the accuracy
of these models remains a concern [7,8].

In comparison, gradient-based methods offer significant efficiency benefits. These
methods require additional gradient calculation steps, and currently, adjoint methods have
become the mainstream approach for gradient calculation [9,10]. The computational cost
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of gradient calculation based on adjoint methods is almost independent of the number
of design variables. However, projecting grid sensitivities onto design variables, along
with calculating geometric quantity gradients via finite differences methods, can lead to
significant computational costs with many design variables [11].

Moreover, excessive design variables in certain optimization problems can compli-
cate finding optimal aerodynamic shapes, potentially requiring additional optimization
iterations [12].

Both non-gradient-based and gradient-based methods rely on the same design vari-
able definition approach. Numerical parameterization methods are used to convert many
grid points into a manageable parameter set. Common parameterization methods in-
clude Hicks–Henne, B-spline, Class Shape Transformation (CST), and Free-Form Deforma-
tion (FFD), with FFD widely applied due to its adaptability in 2D and 3D aerodynamic
design optimization [13,14].

In FFD, control point displacements are the design variables. By mapping control
points to grid points, changes in aerodynamic shape are linked to FFD control point
displacements. However, there is a trade-off in the aerodynamic shape optimization process.
Using a larger number of control points (design variables) can lead to better optimization
results but increases computational complexity. Conversely, using a smaller number of
control points can improve the convergence speed of optimization but may not achieve the
desired optimization performance. Thus, there is still room for research and consideration
in defining the number and positions of control points in the FFD parameterization method.

Design variables play a crucial role in formulating optimization problems and are
closely related to the efficiency and quality of optimization results. In order to improve
the effectiveness of aerodynamic shape optimization, some adaptive parameterization
methods have been adopted, such as progressive parameterization method [15], nested and
self-adaptive Bezier parameterization approach [16], adaptive multilevel algorithm [17],
B-spline knot insertion method [18] and so on. In adaptive FFD parameterization research,
the adjustment or insertion of control points depends on the gradient information of
the corresponding design variables with respect to the objective function, as mentioned
earlier. However, in optimization algorithms based on quadratic programming, the solution
for design variables is based on the Karush–Kuhn–Tucker (KKT) conditions, which not
only include the gradient of the objective function but also the gradient of constraint
functions [19]. In other words, changes in the aerodynamic shape are related to both the
gradients of the objective function and constraint functions. Therefore, both gradients
should be considered when adjusting control point density.

The updated design variables after each optimization sub-iteration reflect the com-
bined effects of the gradients. Hence, using the updated design variable solution as the
basis for the adaptive positioning of FFD control points is more reasonable. The objec-
tive of this study is to apply the FFD parameterization method with a fixed number of
control points. Based on the updated design variable information, the spring analogy
method is used to automatically adjust the chord-wise positions of control points. This
adjustment enables control points with a significant impact on the objective function and
constraint functions to gather closely, while control points with a lesser impact are more
widely spaced. The newly positioned control points are then re-parameterized, and the
performance of this parameterization strategy in aerodynamic shape optimization design
for airfoils is analyzed.

The organization of this paper is as follows: Section 2 introduces the SU2 optimization
framework used in this study, the principles of the adaptive FFD parameterization method
based on spring analogy, and the validation of adaptive control point adjustment for spline
curve fitting capability. Section 3 discusses the results of the 2D airfoil optimization design
based on adaptive FFD parameterization, including optimization of the Rae2822 airfoil and
the design transformation from NACA0012 to Rae2822.
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2. Methodology

The open–source suite SU2 has been used as the optimization framework in this study
and has been applied in numerous aerodynamic optimization design researches [20]. This
section provides a concise explanation of the different functional modules incorporated
within the SU2 optimization framework, as well as the fundamental principle underlying
the adaptive FFD parameterization method, which is based on the spring analogy approach.

2.1. Optimization Frame

In the SU2 optimization framework, the CFD module serves as an unstructured
flow solver. The flow is governed by the compressible RANS equations and employs
the Spalart–Allmaras (SA) turbulence model [21]. To handle the flow’s inviscid terms,
the Jameson–Schmidt–Turkel scheme (second order in space) is utilized, striking a favorable
balance between accuracy and efficiency for the optimization problem addressed in this
paper. For the turbulence model, a scalar upwind solver is employed. The Green–Gauss
method [22] is applied to estimate the spatial gradients of the flow at the cell faces, which
are crucial for determining the viscous fluxes. The time integration of the flow equations
and turbulence model employs the Euler implicit scheme. To solve the linear system, the
Flexible Generalized Minimum Residual (FGMRES) method [23] is employed with ILU
preconditioning. The function sensitivity of the flow variables is obtained through discrete
adjoint equations using Algorithmic Differentiation.

Mesh deformation operation is applied to the design variables, which are the mesh
coordinates parameterized by FFD method. The linear elasticity equation is used to deform
the volume mesh surrounded FFD control points. Cell stiffness is scaled by distance to
nearest solid surface.

FFD based on B-spline basis function is adopted as the parameterization method of
optimization problem in this work and the relationship between global and parametric
mesh coordinates is described by the following equation (Equation (1)):

X(u, v, w) =
l−1

∑
i=0

m−1

∑
j=0

n−1

∑
k=0

Ni,p(u)Nj,q(v)Nk,r(w)Bi,j,k (1)

where N is the open uniform B-spline basis function and B denotes the control point of
FFD (namely, design variable). When a parametric coordinate (u,v,w) is given, a global
mesh coordinate (X(u,v,w)) is determined and basis functions define the projection rela-
tionship of the two coordinates. The parameter coordinates are iteratively solved using
Newton’s method.

The optimization method employed in this study is the Sequential Least Squares
Programming (SLSQP) algorithm [24] implemented in Scipy library. The optimizer uses a
quasi-Newton Hessian approximation and an L1-test function in the line search algorithm.

2.2. The Adaptive FFD Parameterization Strategy Based on the Spring Analogy Method
2.2.1. Spring Analogy Method

Achieving adaptive positioning of parameterized control points, Gnoffo introduced
the spring analogy method [25]. In this method, the parameterized control points are
modeled as nodes connected by springs of varying stiffness. Specifically, considering a 1-D
spring system where the nodes move solely in the x-direction, the equilibrium state of the
system results in a balance equation involving the elastic forces between the i − 1, i and
i + 1 spring nodes, given by the equation

Ki+1/2(xi+1 − xi) = Ki−1/2(xi − xi−1) (2)
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where xi is the 1-D coordinate of the spring node, Ki+1/2 is the stiffness of spring between
the ith and (i + 1)th spring knot and is modeled as

Ki+1/2 = 1 + (A − 1)F(
fi + fi−1

2
) (3)

In Equation (3), parameter A represents the ratio between the maximum and minimum
node spacing in the spring system, reflecting the density of the adapted parameterized
control points. fi = (ai − amin)/(amax − amin), where ai and ai−1 determine the relative
magnitude of stiffness Ki−1/2. For general aerodynamic shape optimization problems,
they represent the sensitivities of the objective function (or constraint) with respect to
the design variables. amin and amax are the maximum and minimum values of sensitivity
among all design variables, respectively. After normalization, 1/2( fi + fi−1) is within
the range of [0, 1], ensuring that F( f ) also falls within [0, 1]. Nakahashi [26] suggested
F( f ) = f B, where B is a positive constant. In this study, F( f ) = min{1.0, 2 sin( f )} so
that the ratio of the maximum and minimum node spacing in the spring system depends
solely on A. Additionally, this setting allows for the maximum node spacing ratio and a
wider adaptive range for parameterized control points. Similarly, for the 1-D problem,
the unknown positions of the nodes, to be solved using the spring analogy method, form a
linear equation system. To solve this system, Ki+1/2 is first calculated and stored, followed
by solving a tri-diagonal linear equation system concerning xi, as shown below

K1/2 + K3/2 −K3/2
−K3/2 K3/2 + K5/2 −K5/2

. . .
. . .

. . .
−KN−5/2 KN−5/2 + KN−3/2 −KN−3/2

−KN−3/2 KN−1/2 + KN−3/2




x2
x3
...

xN−1

 =

 K1/2x1
...

KN−1/2 xN

 (4)

In Equation (4), x1 and xN are the two endpoints of the spring system. In general,
these two points are kept fixed.

2.2.2. Verification of Control Points Adaptive Spline Curve Fitting Capability

The FFD parameterization method uses spline functions as basis functions, so the
influence of control point positions on the basis functions can be examined through their
impact on B-spline curves.

a. B-spline Curve fitting

A B-spline curve is given by P(t) = ∑n+1
i=1 Bi Ni,k(t), where Ni,k(t) denotes the basis

function, Bi represents the control points, and Di is the fitting target point. Their relationship
is shown schematically in Figure 1. Utilizing the gradient descent algorithm, we compute
a set of t values that minimize the root mean square of the difference between the y-
coordinates of the given points Di and the points on the B-spline curve (with Bi as the
control points) with the same y-coordinates. This implies that, even when the fitting points
remain unaltered, different control points yield different parameter values t for the B-spline
curve. Consequently, in order to generate points on the B-spline curve with x-coordinates
matching the fitting points (within a tolerance of 0.01), adjustments in the control points
become necessary. The number of control points Bi significantly influences the ability of
the B-spline to accurately describe the shape. In cases where the number of control points
Bi is fixed, modifying their positions allows for control over the shape of the spline curve.
Moreover, the density or sparsity of the control points plays a vital role in the local shape
representation of the B-spline. The adaptive control point B-spline curve fitting approach
presented in this paper is based on these principles.
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Figure 1. B-spline curve fitting.

b. Verification test

In this study, the method is tested by fitting a segmented function defined as follows:{
−(x − 0.5)2 + 0.25 0 ≤ x < 0.4 ∪ 0.6 ≤ x ≤ 1

−8 ∗ (x − 0.5)2 + 0.32 0.4 ≤ x < 0.6
(5)

The above function consists of three segments of parabolic curves, where the curvature
varies as a function of x. The locations of high curvature correspond to the breakpoints of
the segmented function and the extremal points of the function. These positions exhibit
rapid changes in the function gradient, making it challenging to fit this curve using a
B-spline curve with a small number of control points. The curve and its curvature are
illustrated in Figure 2.

x
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10

15Curve
Curvature

Figure 2. The curve and its curvature of the segmented function defined by Equation (5).

Initially, a uniform open B-spline curve of degree 3 with 10 control points is used to
fit this curve. A total of 50 points are uniformly sampled on the curve, and the proposed
method is employed to generate 50 points on the desired B-spline curve. These points
are adjusted to match the x-coordinates of the given points (within a certain tolerance).
Subsequently, the y-coordinates of the 50 points on the B-spline curve are calculated to
approximate the given points. This process leads to an optimization problem, where the
design variables are the y-coordinates of the B-spline curve, and the objective function
f represents the root mean square difference between the y-coordinates of the 50 points
on the B-spline curve and the given points. Two optimization algorithms, namely the
gradient-based method and the non-gradient-based method, are used to solve this opti-
mization problem. It is verified that both methods converge to the same minimum value
of the objective function, indicating that the objective function for this type of problem
is unimodal.

The fitting result of the B-spline curve with 10 control points, uniform open, and
degree 3 is shown in Figure 3. The root mean square error between the B-spline fitting
points and the data points is 0.0074. It can be observed that at positions where the curvature
of the data points’ curve changes slightly, the difference between the B-spline fitting and the
data points is minimal. Larger fitting errors occur at positions with significant curvature
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variations. Next, based on the spring analogy method, the control points of the B-spline
curve are adaptively adjusted to fit the data points. The adaptivity is based on the curvature
of the data points’ curve. Since the data points do not coincide with the control points of the
B-spline curve, linear interpolation is used to map the curvature values from the data points
to the control points. The different curvature values of the control points are reflected in the
stiffness of the spring system, where higher curvature values correspond to greater stiffness,
resulting in shorter distances between the two nodes of the spring after system equilibrium.
Figure 4 presents the fitting result using adaptive control point B-spline curve fitting with
10 control points, uniform open, and degree 3. The root mean square error between the
B-spline fitting points and the data points is 0.0027. The fitting error is significantly reduced
compared to the non-adaptive approach, indicating an improved fitting accuracy.

x

y

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4 GivenP
ControlPoint
Fit

Figure 3. Fitting result of the B-spline curve with 10 control points, uniform open, and degree 3.

x
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0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4 GivenP
ControlPoint
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Figure 4. Fitting result using adaptive control point B-spline curve fitting with 10 control points,
uniform open, and degree 3.

2.2.3. Optimization Process for Adaptive Control Point Parameterization Based on FFD

Adaptive control point parameterization requires an indicator. In this study, the in-
dicator is chosen as the updated design variables corresponding to each control point
after the main iteration of the quadratic programming optimizer. Therefore, the updated
position of control points comprehensively reflects the impact of the objective function
and the gradients of active constraints. The control point adaptation operation occurs in
the optimization framework after the main iteration step. The updated design variables
are introduced into the spring system to calculate the new positions of the control points.
Since FFD control point positions have changed, the aerodynamic surface grid points need
to be re-parameterized, and the gradients of the objective function and constraints are
calculated. It should be noted that based on ∂J

∂X = ∂J
∂S

∂S
∂X , where ∂J

∂S is the adjoint derivative,
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it is independent of the parameterization method and does not require resolving. The FFD
control point adaptive process does not incur significant computational costs. The detailed
optimization process is as follows:

Step 1: Evaluate the objective function, constraint function, and their gradients with
respect to the design variables.

Step 2: Determine convergence based on the KKT conditions.
Step 3: If convergence is achieved, stop the optimization; otherwise, update the design

variables using the SLSQP algorithm.
Step 4: When the adaptive condition for control points is satisfied, use the spring

analogy method with the current design variables to adaptively adjust the control point
positions as shown in Figure 5, and then re-parameterize and re-project the gradients.

Step 5: Solve for new design variables based on the updated gradient information.
Step 6: Update the grid based on the new design variables and repeat steps 1–6.
A schematic diagram of the optimization framework is shown in Figure 6.

 

x1 x2 x3 xN-1 xNxN-2

Design Variables

K1/2 K3/2 KN-1/2KN-3/2Stiffness

Control Points

Figure 5. Diagram of adaptive FFD control points based on spring analogy method.
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function

Adjoint 
gradient

Updated design 
variables

Optimizer

Parameterization

Re-project 
gradient

Mesh 
deformation

New design

Project 
gradient

Spring analogy 
method

Convergence?

Adaptive 
parameterization

Figure 6. Optimization frame of Control Point Adaptive Parameterization based on FFD.

3. Optimization Results

To evaluate the performance of adaptive FFD parameterization in aerodynamic shape
optimization, two optimization design cases were implemented: the RAE2822 airfoil
under cruise conditions and the NACA0012 airfoil, with the RAE2822 airfoil under cruise
conditions as the design point.
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3.1. Optimization Design of RAE2822 Airfoil Based on Adaptive FFD Parameterization Method

In this study, the optimization objective for all cases is the RAE2822 airfoil in viscous,
transonic flow, framed as an optimization problem. The flow conditions are defined by
a freestream Mach number of 0.734 and Reynolds number of 6.5 × 106. To achieve the
optimal design, several constraints are imposed, including a maximum lift coefficient of
0.824, a minimum pitching moment coefficient (evaluated at the quarter-chord) of −0.092,
and a requirement to maintain the airfoil area during optimization. The optimization
problem is mathematically summarized in Table 1.

Table 1. Optimization Problem.

Function/Variable Description Quantity

Minimize CD Drag coefficient -
With respect to α Angle of attack 1/1/1

z FFD control point z-coordinates 6/12/24
Subject to CL = 0.824 Lift coefficient constraint 1

Cm > −0.092 Moment coefficient constraint 1
A ≥ Abase Area constraint 1

The computational grid adopts a hybrid form, with a quadrilateral grid near the airfoil
and gradually transitioning to a fully triangular grid in the far-field direction. The grid
resolution is adjusted by controlling the number of grid points on the airfoil and the
stretching ratio of the viscous grid. In this study, five sets of grids are generated to verify
grid convergence. Table 2 shows the number of elements and the coefficient results for drag
and moment of the four grids. Considering both computational effort and accuracy, all
cases in this study use Level 3 as the initial grid for the optimization design as shown in
Figure 7.

Table 2. Mesh convergence.

Level Mesh Cells Quantity α/◦(CL = 0.824) CD Cm

1 3205 3.01 0.022083 −0.093304
2 7698 2.94 0.021246 −0.094703
3 12,537 3.24 0.023112 −0.085896
4 23,426 3.22 0.022827 −0.086603
5 29,812 3.20 0.022580 −0.086949

 
Figure 7. Original mesh for RAE2822 optimization.

In the distribution of FFD control points, the upper and lower control points have
the same vertical position, forming a rectangular frame. This point distribution method,
compared to placing points along the upper and lower surfaces of the airfoil, provides
similar control capabilities for the grid points, and the optimization results are essentially
the same. The design variables in this study are the displacement of FFD control points
in the y-direction. The control points at the leading and trailing edges of the airfoil are
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thickness variables, moving in opposite directions to ensure that the positions of the leading
and trailing edge points of the airfoil remain essentially unchanged. In addition to the
design variables related to FFD control points, there is also an angle of attack variable.
The angle of attack can vary in each optimization iteration step to achieve the target
lift coefficient.

In Figure 8, FFD control points enclosing the RAE2822 airfoil shows the distribution of
FFD control points enclosing the RAE2822 airfoil. The design variables generated involve
displacements in the z-direction for all control points. To prevent large curvatures at the
leading and trailing edges of the airfoil, the displacements of the upper and lower control
points at the leading and trailing edges are set to be opposite in sign.

Figure 8. FFD control points enclosing the RAE2822 airfoil.

3.1.1. Uniform FFD Control Point

Before evaluating the optimization effectiveness of the adaptive FFD parameterization
method, the influence of different numbers of FFD control points on the optimization results
is analyzed. In total, three different control point quantities, namely 14, 20, and 26, are
selected. Based on the previously defined design variable formulation, the number of design
variables for each case is 12, 18, and 24, respectively. The convergence history of the drag
coefficient for these three optimization cases is shown in Figure 9. It is observed that as the
number of design variables increases, the converged drag coefficient becomes smaller, but a
larger number of iterations are required for convergence. The peaks in the curve are due to
the SLSQP line search encountering infeasible points. Regarding the pressure distribution,
all three design variable cases eliminate the shockwave at the 0.6c location on the upper
surface of the airfoil, exhibiting similar upper surface pressure distribution and airfoil shape
as shown in Figure 10. The major difference lies in the airfoil’s leading edge, where the
optimized shapes do not exhibit a strong suction peak in the pressure distribution compared
to the initial shape. Moreover, increasing the number of design variables reduces the suction
at that location. Significant differences are observed in the pressure distribution on the lower
surface of the airfoil among the different design variable optimization cases. All three results
exhibit increased leading edge loading and reduced trailing edge loading compared to the
initial shape, indicating that the optimization process tends to raise the airfoil nose to reduce
drag. Consequently, the optimal values appear at the boundary of the feasible domain in
the optimization problem. Analyzing the FFD control point displacements corresponding
to the optimal values, it is observed that the displacements of the control points on the
upper surface of the airfoil are relatively small, as shown in Figure 11. However, these small
displacements have a significant impact on reducing drag by weakening the shockwave on
the airfoil. In this case, complex changes to the airfoil shape are not necessary, and the three
cases result in almost identical upper surface curves. There are no significant differences
observed among the different design variables. As for the control points on the lower
surface, the FFD control points corresponding to the 24 design variables are more densely
distributed, providing stronger control capability over the leading and trailing edge curves
and resulting in more complex curvature changes. The variations in the displacements
of the FFD control points along the chordwise direction in these cases indicate that the
optimization trend for the aerodynamic shape of the airfoil may not result in significant
curvature changes across the entire chordwise span. Intense changes in the shape curvature
may only occur locally (typically at the leading and trailing edges) for two-dimensional
problems. Therefore, to achieve effective control over local shapes and enhance drag
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reduction effects, positions with large curvature changes should have more control points,
while fewer control points can meet the shape control requirements at other positions.

 iter
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20 40 60 80132
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140
12DV
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24DV

Figure 9. Convergence history of the drag coefficient for these three optimization cases with uniform
FFD control points.
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Figure 10. Pressure distribution and airfoil of original and optimized case with uniform FFD control
points ((Left): Pressure distribution, (Right): Airfoil).

 24DV

12DV

18DV

Figure 11. Control points position of three optimized cases.

3.1.2. Adaptive FFD Control Point

The purpose of adaptive FFD parameterization is to automatically adjust the distribu-
tion of FFD control points by aggregating and dispersing them based on a relatively small
number of design variables. The objective is to have more control points at locations with
significant curvature changes and fewer control points at locations with minor curvature
changes, while keeping the control points unchanged. In the implementation of the spring
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analogy method described in this paper, the local density of control points is adjusted by
tuning parameter A. Based on the analysis presented earlier, certain local positions require
a sufficient number of control points to achieve more precise shape control. In the case with
14 design variables, the number of control points is too small. Computational experiments
have shown that even after local aggregation, the control points still do not reach the desired
density. Increasing the parameter A to further increase the local control point density is not
feasible because there is an upper limit to the ratio between the maximum and minimum
distances between control points. When this limit is reached, increasing parameter A cannot
further increase the local control point density. Taking these factors into consideration, this
paper selects the case with 20 control points (18 design variables) as the evaluation case for
adaptive FFD parameterization. The goal is to adaptively aggregate a certain number of
control points locally by adjusting parameter A, so that the minimum distance between
control points in this case is similar to the distance between the 26 uniformly distributed
control points. The aim is to examine the improvement in drag reduction achieved by
this method.

In addition to the issue of control point density, there is also the question of when
to initiate the adaptive process. If the adaptive process starts too late, even close to
convergence, although further improvement in the objective function can be achieved
through control point adjustments, the optimization efficiency is relatively low, and more
iterations are still required. On the other hand, if the adaptive process starts too early,
when the aerodynamic shape is still in the preliminary adjustment phase, adapting the
control points is unnecessary. In the context of this paper’s case study, during the initial
stages of optimization, the most sensitive region for drag reduction is the shock wave
area on the upper surface of the airfoil. The optimization process at this stage aims to
eliminate the shock wave, and the upper surface undergoes less pronounced curvature
changes. A coarser distribution of control points can effectively control the shape, and a
few iterations are sufficient to achieve shockfree optimization.

To determine the timing for parameterized adaptation, a common criterion is to use
the slope of the objective function convergence history. In the early stages of optimization,
the objective function decreases rapidly, resulting in a large slope, while in the later stages,
the objective function changes less, with the slope approaching zero. The slope criterion for
initiating adaptation should lie between these two extremes. In this paper, the ratio between
the current iteration step’s slope and the previous iteration step’s slope is selected as the
criterion. The slope is calculated using forward difference. When this ratio, Si/Si−1 < 0.1,
the adaptive control point positioning begins. The threshold of 0.1 indicates that the current
step’s reduction in the objective function is 0.1 times that of the previous step. This ratio
reflects the changing trend of the objective function for three adjacent iterations. In the
early stages of optimization, this ratio is close to 1, indicating a continuous decrease in
the objective function. When this ratio suddenly decreases, it indicates that the design
variables have started to undergo minor updates, and the optimization process has entered
the fine-tuning phase of the shape, which is a suitable time to initiate adaptation.

The following discussion focuses on the performance of aerodynamic shape optimiza-
tion using the slope ratio as the criterion for FFD parameterized control point adaptation in
the case with 18 design variables. The convergence history of the objective function for three
optimization processes is shown in Figure 12: the case with 18 design variables and uniform
control points, the case with 18 design variables and adaptive control points, and the case
with 24 design variables and uniform control points. In the case of adaptive control points,
the automatic adjustment of chordwise position of the control points was performed only
once, occurring at the 33th iteration step, where the slope ratio, Si/Si−1 = 0.1, satisfying
the condition for starting the adaptation process. The specific operation of the adaptation
process involves inputting the updated design variable solution from the current step
into the spring system, solving the system to generate new chordwise positions for the
control points, performing FFD parameterization based on the new control points and the
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aerodynamic shape, and then starting the optimization process to find the optimal solution
for the new problem.
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Figure 12. Convergence history of the drag coefficient for these three optimization cases with uniform
FFD control points.

In this paper, the parameter A is set to 20, and the adaptive control points tend
to cluster around two regions: the leading edge and approximately 80% of the chord
length. This clustering results in local minimum chordwise normalized distances of 0.061
and 0.055, which are smaller than the uniform control point spacing of 0.083 in the case
with 24 design variables, as shown in Figure 13. From the perspective of optimization
convergence history, the objective function of the adaptive case continues to decrease after
the control point adjustment, and the objective function of subsequent iteration steps is
generally lower than that of the case with 24 design variables. The final convergence result
of the objective function is better for the adaptive case than for the case with 24 design
variables. This indicates that the proposed adaptive method for control point chordwise
positions not only maintains the characteristics of rapid objective function decrease with
fewer design variables but also achieves lower objective function convergence results with
more design variables.

Adaptive FFD control points

Optimizied FFD control points

Figure 13. Adaptive FFD control points and optimized result.

The pressure distribution and airfoil shape in Figure 14 reveal that the forward loading
is further enhanced in the adaptive case. The positive pressure on the lower surface near
the leading edge is higher compared to the cases with 18 design variables and 24 design
variables. However, in general, the chordwise scale of the positive pressure region is
smaller in the adaptive case compared to the other two cases, indicating that the generated
moment in this region may not change significantly. At approximately 80% of the chord
length, where the control point spacing is at a minimum after adaptation, there is some
fluctuation in the pressure distribution on the lower surface, which can also be observed
on the airfoil shape. The possible reasons for this phenomenon are that the control point
spacing is small, leading to larger differences in spacing values. Additionally, the spline
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basis function used in the FFD parameterization in this paper has an order of 4, which may
exacerbate this issue. Therefore, reducing the value of A and increasing the order of the
basis function may help alleviate this problem.
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Figure 14. Pressure distribution and airfoil of original and optimized case with adaptive FFD control
points ((Left): Pressure distribution, (Right): Airfoil).

3.2. From NACA0012 to RAE2822

The purpose of this section is to demonstrate the aerodynamic optimization design
process from an arbitrary airfoil to an optimized airfoil that meets specific design require-
ments using the adaptive FFD parameterization framework. In this particular case, starting
with the NACA0012 airfoil, the objective and constraint conditions for the RAE2822 airfoil
optimization problem mentioned earlier are given. Through the optimization design pro-
cess based on adaptive FFD parameterization, the optimized RAE2822 airfoil is obtained.
The formulation of this optimization design problem is similar to that in Section 3.1, with
20 FFD control points corresponding to 18 design variables.

This optimization design process raises the following questions: Given the significant
differences between the NACA0012 airfoil and the RAE2822 airfoil, can the optimization
algorithm find the global minimum of the objective function while satisfying the design
conditions? Can the adaptive FFD parameterization further reduce the extremum of the
objective function, and is this extremum the global minimum in the design space?

As mentioned earlier, the design variables in the optimization process in this paper
include both the displacement of the FFD control points and the angle of attack. In each
iteration step, the angle of attack changes to satisfy the lift coefficient constraint, while
other constraints and the objective function form the Lagrangian function for solving the
optimization problem. The optimization problem-solving approach used in this study may
lead to the following situations: First, if the target lift coefficient is too large and exceeds
the maximum lift coefficient of the initial airfoil, it may not be achievable by adjusting the
angle of attack of the initial airfoil. Second, even if the target lift coefficient is satisfied,
the required angle of attack may be very large. This was the case in the optimization from
NACA0012 to RAE2822 in this section. For the flow solver and numerical methods used
in this research, the angle of attack for the NACA0012 airfoil at a lift coefficient of 0.824
is 21.1°, while the optimization results in the previous section indicate that the angle of
attack for the optimized RAE2822 airfoil is between 2 and 4°. The significant difference
between these values necessitates a large number of iterations and may even result in a
suboptimal solution.

To address this issue, the optimization process in this study is divided into two stages:
In the first stage, while keeping the constraint conditions unchanged, a relatively small
target lift coefficient is set to form an optimization problem, and the optimal solution for
this problem is obtained. In the second stage, using the optimal shape from the first stage
as the starting point, the final optimization process of the airfoil is performed with the
target lift coefficient as a constraint.
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For the optimization from NACA0012 to RAE2822, a target lift coefficient of 0.6 was
used for the first stage. The corresponding angle of attack for NACA0012 to achieve
this lift coefficient is 14°. Figure 15 (left) shows the iteration history of the drag and
moment coefficients for the first optimization stage, representing the objective function
and constraints, respectively. At 82nd iteration, the KKT conditions are satisfied, with a
drag coefficient of 0.01095 and an angle of attack of 1.93°. The moment coefficient gradually
approaches the given constraint value of −0.092. At the end of the iteration, the moment
coefficient is smaller than the constraint value, indicating that the optimization result is
not on the boundary of the feasible domain, and the moment constraint did not take effect.
The first stage is an intermediate process in the overall optimization, and finding a local
minimum that is not on the boundary of the feasible domain is acceptable as it does not
affect the final optimization result in the second stage. Figure 15 (right) shows the iteration
history of the drag and moment coefficients of the second optimization stage. In this stage,
the target lift coefficient is 0.824, and the initial iteration starts with an angle of attack of
3.22°. At the 157th iteration, the KKT conditions are satisfied, with an angle of attack of
3.01°, a drag coefficient of 0.01329, and a converged moment coefficient of 0.0088, which
is smaller than the given value. This indicates that this extremum point is not on the
boundary of the feasible domain. Figure 16 also shows the evolution of the airfoil in the
two optimization processes.
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Figure 15. Iteration history of drag coefficient and moment coefficient for optimization from
NACA0012 to RAE2822 airfoil ((Left): First optimization stage, (Right):Second optimization stage).
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Intermidiater airfoil

Figure 16. Airfoil evolution in the two optimization design processes.

There are some abrupt iteration points in the convergence history of the drag and
moment coefficients. This is due to the large step size in the online search process, which
leads to significant changes in the airfoil shape and results in large fluctuations in the
coefficient values. When this occurs, the optimizer automatically reduces the step size until
the objective function decreases compared to the previous iteration step.

Regarding the second question raised at the beginning of this section—whether the
adaptive FFD parameterization method can find design points with lower drag coefficients
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compared to uniform control points while satisfying the optimization constraints—this
section explores this using the adaptive criterion introduced in Section 3.1. The adaptive
parameterization is only implemented in the second stage of the optimization design. Based
on the criterion that the slope ratio of the objective function with respect to the iteration
step number is Si/Si−1 = 0.1, the adaptive parameterization is performed at the 44th
iteration. Figure 17 shows the convergence history of the drag coefficient for the adaptive
parameterization and uniform parameterization optimization design cases. It can be
observed that the drag coefficient continues to decrease after the adaptive parameterization
is performed, and it satisfies the convergence condition at 438th iteration step with a
converged drag coefficient of 0.01320, which is further reduced compared to the optimized
drag coefficient of the uniform parameterization case. The optimized airfoils and pressure
distributions for the two optimization cases are shown in Figure 18. From the optimized
airfoil perspective, the upper surface shapes of the two cases are almost identical, while
there are significant differences in the lower surface shape, especially in the leading edge.
The adaptive parameterization case shows greater variation in the curvature of the airfoil
shape, and the concavity of the leading edge is more pronounced. The pressure distribution
also reflects the differences in the optimization results. The pressure distributions on the
upper surfaces of the two cases are generally similar. For the adaptive parameterization
case, the pressure is higher at the location corresponding to the concave region of the
lower surface, indicating a certain degree of leading edge suction. These optimization
results demonstrate that adaptive parameterization, with its enhanced control over local
shapes, enables finer adjustments to the airfoil, achieving improved design points compared
to uniform parameterization.
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Figure 17. Convergence history of the drag coefficient for the adaptive parameterization and uniform
parameterization optimization design cases.
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((Left): Pressure distribution, (Right): Airfoil).
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4. Conclusions

This paper proposes an adaptive Free-Form Deformation parameterization method,
based on a spring analogy, to address the balance between design variable count, gradient
calculation cost, and optimization algorithm stability in gradient-based methods for aero-
dynamic shape optimization. In this approach, FFD control points are treated as spring
nodes, with stiffness values that adjust according to the updated design variables during
optimization. The resulting spring system forms a tridiagonal linear equation set, and its
solution provides updated FFD control point positions. By using design variable solu-
tions as the basis for spring stiffness calculations, this method comprehensively reflects
the influence of objective and constraint function gradients on control point adjustment,
allowing automatic density adjustments of control points based on variations in design
variable values.

To evaluate the performance of this adaptive FFD parameterization method, two
2D airfoil optimization cases were studied and analyzed. First, the RAE2822 airfoil was
optimized with 12, 18, and 24 design variables. Starting conditions for adaptation were
set with a slope ratio of 0.09 for the objective function and a control point distance ratio
of 20. Convergence history showed a continuous decrease in the objective function post-
adaptation, achieving lower values than the 24-variable uniform case. The comparison of
the convergence results of the objective function shows that the adaptive parameterization
method is superior to the uniform parameterization method and requires fewer iterations.
This demonstrates the proposed adaptive method’s effectiveness in maintaining rapid
objective function reduction with fewer design variables and achieving lower convergence
results with more variables, surpassing the uniform parameterization approach.

In the second case, optimization from NACA0012 to RAE2822 air-foil was performed
with 18 design variables, applying the same adaptive criterion as in the first case. The opti-
mization results show that the case using the adaptive parameterization method achieves a
lower drag coefficient for the optimized airfoil compared to the uniform parameterization
case while satisfying the optimization objective. This also illustrates that the adaptive
parameterization method, through its stronger control capability over local shapes, can
fine-tune the airfoil and capture more optimal design points. In conclusion, the proposed
adaptive FFD parameterization method demonstrates strong adaptability. It provides
stability and efficiency in early optimization stages with fewer design variables, while its
adaptive adjustments in later stages facilitate the search for more optimal design points.
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