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Abstract: Cold start causes a high amount of unburned hydrocarbon and particulate matter emissions
in gasoline direct injection (GDI) engines. Therefore, it is necessary to understand the dynamics of
spray during a cold start and develop a predictive model to form a better air-fuel mixture in the
combustion chamber. In this study, an Artificial Neural Network (ANN) was designed to predict
quantitative 3D liquid volume fraction, liquid penetration, and liquid width under different operating
conditions. The model was trained with data derived from high-speed and Schlieren imaging
experiments with a gasoline surrogate fuel, conducted in a constant volume spray vessel. A coolant
circulator was used to simulate the low-temperature conditions (−7 ◦C) typical of cold starts. The
results showed good agreement between machine learning predictions and experimental data, with
an overall accuracy R2 of 0.99 for predicting liquid penetration and liquid width. In addition, the
developed ANN model was able to predict detailed dynamics of spray plumes. This confirms the
robustness of the ANN in predicting spray characteristics and offers a promising tool to enhance GDI
engine technologies.

Keywords: machine learning; Gasoline Direct Injection (GDI); projected liquid volume; tomo-
graphic reconstruction

1. Introduction

In recent decades, Gasoline engines has been recognized as one of the efficient and
widely used internal combustion (IC) engines. Approximately 13 million gasoline cars were
sold in the United States in 2023 [1]. However, it is important to note that Greenhouse gas
emissions increased from 2022 to 2023 by 1.1 percent (36.8 billion Metric Tons) [2]. Gasoline
direct injection (GDI) plays a significant role in contributing to these emissions and typically
offers better fuel efficiency compared to Port Fuel Injection (PFI) engines [3]. Fuel is injected
directly into the combustion chamber in GDI engines. This technique prevents wall wetting
within the port, reduces the time required for fuel transport, provides precise regulation
of fuel entering the combustion chamber, and has the potential for cleaner combustion.
Multiple injections, along with high fuel injection pressure, improve control over the
injection process, leading to a higher vaporization rate and thus overcoming cold start
problems. Most of the technical challenges associated with conventional Port Fuel Injection
(PFI) are overcome in GDI, particularly in achieving higher engine volumetric efficiencies.
In GDI, the absence of vapor in the intake charge allows more air induction into the
combustion chamber. Furthermore, the direct injection prevents engine knocking by using
advanced evaporative cooling which lowers the in-cylinder temperature. However, GDI
engines are facing challenges during start, which can lead to changes in the spray pattern
and, consequently, delayed ignition. This delay can have an impact on the production
of hydrocarbon (HC), carbon monoxide, and nitrogen oxide (NOx). The spray break-
up and mixing properties are affected by cold fuel temperature, which results in the
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deterioration of the combustion process. One of the significant challenges to understanding
the deterioration of the combustion process is the inappropriate injection parameter or
undesired fuel properties. The analysis of spray evolution is notably complex due to the
involvement of turbulent dispersed multiphase flows, as well as the injector design factors
such as nozzle orifice, and the counterbore hole [4]. The spray formation and characteristics
depend on the fuel properties and breakup, which are governed by the atmospheric, cold-
start conditions. To address these challenges of spray behavior in the GDI engines, the
adoption of machine learning could offer substantial improvement in predictive accuracy.

Literature on cold start spray pays attention to the examination of spray characteristics
using non-invasive optical diagnostics [5,6]. The reliability of these optical diagnostic
methods is crucial for acquiring experimental data, which forms the foundation for machine
learning, particularly in training, and developing accurate and reliable predictive models
of spray behavior. Tong et al. [7] focused on evaluating the impact of fuel volatility on the
cold start performance of GDI engines using Planar Laser-Induced Fluorescence (PLIF) and
Mie scattering. They found that during the initial phase of the cold start, low-volatility
fuels result in unstable combustion and higher unburned hydrocarbon (UHC) emissions.
Bruno et al. investigated the effects of injection pressures ranging from 2 MPa to 10 MPa
on spray penetration and fuel distribution during cold starts using optical diagnostics.
The experimental results indicated that degraded cold start performance was observed
at pressures below 5 MPa, while the best performance was achieved at higher injection
pressures combined with a late start of injection (SOI). Various optical diagnostics such as
the Schlieren shadowgraph and high-speed imaging were utilized to examine the dispersion
of liquid vapor and droplet atomization, providing detailed insights into spray dynamics
and accurate data for training machine learning models.

Computational fluid dynamics (CFD) simulation also offers a detailed and cost-
effective approach to understanding spray dynamics, designing new sprays, and opti-
mizing device operating conditions. The predominant method to simulate sprays is the
Lagrangian simulations [8]. Daniele [9] investigated the air-fuel mixing under a Spray
G injector using a 3D CFD model. The simulation results agreed with the experimental
measurements in terms of wall film formation and spray characteristics. Filippo et al. [10]
studied the impact of the initial droplet distribution on the predicted spray physics using
Lagrangian and Eulerian methods in liquid fuel atomization. They compared the results
with the spray conditions of the baseline spray G from the ECN. The study found that
accurate predictions of liquid and vapor penetration can be achieved through a careful
selection of the initial mean droplet size, in conjunction with standard evaporation and
breakup models. Despite the development of CFD, achieving precise details of spray
evolution under cold start remains challenging due to complex spray dynamics associated
with changes in fuel properties according to fuel and ambient temperatures.

Given this complexity, as simulations incorporate more complex phenomena, compu-
tational expenses rise. Selective use of machine learning offers a practical method to reduce
computational costs [11,12]. To obtain more information on spray behavior and atomiza-
tion, such as flow patterns, velocities, turbulence, and the breakup of liquid gasoline into
smaller droplets, large datasets are necessary for CFD simulations. In contrast, machine
learning can effectively predict both macroscopic and microscopic spray characteristics
with only limited training data [13]. For a more in-depth insight into spray behavior,
researchers commonly rely on Reynolds-Averaged Navier–Stokes (RANS). RANS averages
flow properties over time to solve the governing equations for fluid flow and also provide
a deeper understanding of the cold start behavior [14]. This detailed data from RANS
simulations can serve as a useful foundation for supervised training in machine learning,
which enhances its predictive capabilities in fluid dynamics [15]. Meanwhile the large
eddy simulation (LES) approach seems to be better at predicting flow separation and is
well-suited for unsteady or transient flows as it captures the large-scale turbulent struc-
tures [16]. Moreover, LES can be effectively combined with machine learning to enhance
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simulations of spray phenomena and reduce memory occupation in overall combustion
simulations [17,18].

Understanding the quantitative effects of various conditions on fuel spray behavior
requires reliable experimental data that can serve as input to mathematical models capable
of predicting fuel spray characteristics and spray dynamics. Recently, machine learning has
become a viable approach to predict spray dynamics [19,20]. The continuous advancement
of precise measurements and simulations is rapidly increasing the generation of vast
amounts of data to cover a wide array of fields associated with classification, regression,
and computer vision. The application of machine-learning algorithms to analyze extensive
datasets is driving innovative advancements across a diverse range of fields. Nowadays,
artificial neural network (ANN) models are used to investigate spray behavior in relation
to various parameters, including nozzle design and engine-specific parameters. ANNs
are employed due to their robust capacity for nonlinear fitting, with this fitting ability
contingent upon the number of hidden layers, neurons, and hidden functions. Junjian [21]
studied the spray tip penetration of octanol diesel by the ANN model. The study established
15 ANN models, and the results showed that models had a high prediction accuracy with
an R2 value of 0.99901, which was in good agreement with the experimental results of the
20% octanol-blended fuel. The use of ANN models allowed for better prediction results
compared to existing mathematical models, avoiding prediction errors. The work of Hwang
et al. [22] investigated the capability of a machine-learning algorithm to predict the spray
morphology under ECN spray G conditions. They developed a predictive model based on a
variant of linear regression and trained it using data from spray experiments carried out in
a constant-flow spray vessel. The computed tomographic algorithm was used to construct a
3D spray from the projected liquid volume data at three viewing angles 0◦, 11.25◦, and 22.5◦.
The results from the predictive model showed excellent agreement with the experimental
data, demonstrating the efficacy of linear regression with a set of nine input features to
predict spray performance. Thangaraja [23] applied ANN to generate a wide range of
thermophysical properties such as density, viscosity, specific heat, thermal conductivity,
and more, for biodiesel fuels based on their composition and temperature. Following ANN
applications, Seo et al. [24] estimated cold start emissions using an ANN. They developed
various models that accurately predict the surge in carbon monoxide levels. Giannelli
et al. [25] conducted an analysis of cold start emissions by using a series of Gaussian
functions and a semi-empirical equation involving tractive power. The study considered
the effect of catalyst warm-up and fast idle on emissions. Sabatini et al. [26] developed a
semi-empirical temperature model to simulate thermal transients in a catalytic converter.
They found that during the cold start, the model can estimate the high-off temperature.

In this study, the objective is to evaluate the capability of an ANN to accurately
predict cold start spray dynamics and provide detailed quantitative information based on
operational conditions such as fuel temperature and injection pressure. While previous
studies have employed ANNs to model spray characteristics, a significant gap persists in
developing models capable of accurately predicting the intricate 3D spray dynamics specific
to cold-start conditions in GDI engines. By integrating data obtained from high-speed and
Schlieren imaging into the ANN model, this research aims to develop a reliable tool that
can predict 3D spray dynamics, liquid penetration, and liquid width. The predicted spray
dynamics from the ANN model are compared with experimental data to ensure the model's
validity. This tool is crucial for analyzing how the air-fuel mixture distribution behaves
during the cold start of GDI engines, a key factor in reducing emissions and enhancing
engine performance.

2. Experimental Setup
2.1. Injector Configuration and Test Fuel

The spray test was conducted under engine conditions in a constant volume vessel,
controlled in pressure and temperature. A high-pressure GDI fuel injector is used to
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inject fuel at seven different pressure levels, ranging from 50 bar to 350 bar. Its geometric
parameters are listed in Table 1.

Table 1. Injector Nozzle Geometry.

Parameter Specification

Nozzle type Multi-hole nozzle
Number of Nozzles 8
Nozzle Shape Axisymmetric
Nozzle Angle 26.6◦

Inner Orifice Diameter 150.6 µm
Counter-bore Diameter 360.4 µm

The injector was preconditioned by circulating coolant to guarantee uniformity in the
experiment. The fuel and injector temperature were measured using a 1/16 thermocouple.
The lowest temperature reached by the injector tip was −7 ◦C. Despite efforts to lower it
further, this was limited by the heat exchange with the coolant lines. A Teledyne ISCO
65X syringe pump (Teledyne labs, Mason, OH, USA) was used to generate the target fuel
injection pressure.

A surrogate fuel designated as PACE-20 was used as the testing fuel due to its excellent
performance in terms of RON, distillation curve evaluations, and its ability to accurately
capture the realistic evaporative spray characteristics. Table 2 lists the properties of PACE-
20 fuel.

Table 2. PACE-20 Fuel Properties.

PACE-20

RON 92.1
MON 84.2
H:C 1.97
PMI 1.5
Ethanol [wt%] 10.2
Total Aromatics [wt%] 28.6
Total Olefins [wt%] 4.9
HOV [KJ/kg] 407.5
Density@ 15 ◦C [kg/L] 0.74

2.2. Optical Techniques

The experiments were carried out in a constant-volume vessel. Figure 1 represents the
high-speed imaging setup. Schlieren imaging and high-speed extinction techniques are
employed to capture the vapor and liquid phases, respectively. Two optical windows are
specifically designated for these tasks. The high-speed visualization is achieved using five
quartz windows, each having a diameter of 90 mm. The liquid phase spray is identified
through diffused backlight illumination extinction imaging. A green LED with 60 ns TTL
modulation is used to provide high visibility, paired with a Fresnel lens with a diameter
and focal length of 150 mm each. The light is then directed through an engineered diffuser
to evenly distribute it. To further enhance the accuracy and clarity of the image, we employ
a band-pass filter with a bandwidth of 20 nm.

1. Top of Form

A Phantom (V611) camera (Vision Research Inc., Wayne, NJ, USA), renowned for its
high-speed imaging capabilities, was utilized in this study. It was set with a higher shutter
speed (14,000 fps) and a resolution of 608 × 608 pixels. For detailed imaging of the spray
evolution, the camera was equipped with two lenses: an autofocus Nikkor lens with a
50 mm focal length and a wide maximum aperture of f/1.8.
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The DBIE optical method was implemented to selectively capture the liquid phase
(indicated by the green LED) and isolate it from the vapor phase. An injector with a
rotating adapter was installed in the vessel chamber, enabling the adjustment of viewing
angles in a clockwise direction at 0◦, 11.25◦, and 22.5◦. These specific angles facilitate 3D
tomographic reconstruction.

In this study, a Schlieren z-type configuration is employed for the visualization of
vapor phases due to its high sensitivity to changes in the refractive index of air that occur
when fuel vaporizes [27]. A red LED light is focused through a Nikkor lens and aperture.
The light is then passed through a concave mirror that collimates the light and directs it
through the test region. The light was then directed to a second concave mirror, which
collects the parallel light rays. To enhance the sensitivity, a knife edge with a 50% cut-off at
the focal point was used. The Schlieren and extinction imaging setups are identical and the
components of the optical arrangement for the Schlieren setup are summarized in Table 3.
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Table 3. Schlieren Optical Configuration Imaging Setup.

Component Description

Camera and Lens High-Speed Camera; Prime Lens: AF-S Nikkor 85 mm f/1.8G (Nikon)
Light Source and Lens Red LED, 500 ns; Collection Lens: Nikkor, 50 mm f/1.8
Aperture and Collimation 0.5 mm diameter aperture; Collimating Mirror: GSO, 152 mm f/6.0 (Concave)
Light Path and Enhancement Through spray region; Knife-Edge at focal point, ~50% cut-off

2.3. Schlieren Photography

In a Schlieren imaging setup, light travels uniformly through the spray test region.
However, when it enters a medium with a different refractive index, the light rays are
refracted. The corresponding linear relationship (Gladstone–Dale relation) relates the
refractive index of the medium with the gas density [28]:

n − 1 = kρ (1)

where n represents the refractive index, ρ denotes the density, and k is the molar refractivity.
Moreover, the change in the direction of a ray propagating in the z direction can be
expressed as follows:

εx =
L
n0

∂n
∂x

εy =
L
n0

∂n
∂y

Plane (x − y) (2)
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where L and n0 represent the optical distance and the index of refraction of the surroundings,
respectively. Equations (1) and (2) demonstrate a clear correlation between the variations
in the deflection angle and the gas density, which can be effectively captured through
Schlieren imaging. Consequently, the deflection of light rays that pass through the spray
region can be visualized and is dependent on the sensitivity of the Schlieren setup, resulting
in an image with a distinctive background.

In order to isolate the spray region and remove background Schlieren fluctuation, an
appropriate background intensity I0 was subtracted from the spray image I. The detection
of the vapor envelope was achieved using the “imgradient” function, which is available
in the image-processing tool in MATLAB. Subsequently, an area detection method based
on “bwperim” function was implemented. This function allows the identification of spray
macroscopic characteristic parameters such as vapor penetration length which is defined
as the distance between the nozzle tip and the furthest point on the vapor boundary
at each injection. It is noteworthy that prior to using machine learning, the resultant
images obtained by high-speed and Schlieren imaging might undergo preprocessing,
including intensity normalization, noise reduction, and z-score normalization [29]. Such
preprocessing is important for achieving accurate spray predictions [30].

3. Image Processing Technique
3.1. Extinction Imaging Method

Extinction imaging is a quantitative method for measuring liquid fuel concentra-
tion that provides more accurate measurements of spray characteristics compared to the
standard Mie scattering method. The Mie scattering imaging technique is known to face
challenges due to the inherent nature of its scattering process, which generates undesired
signals in areas with dense particle concentrations. Consequently, extinction imaging is
now recognized as a fundamental diagnostic technique in the field of spray research. The
Projected Liquid Volume (PLV) along a defined line of sight is determined based on factors
such as droplet size, the extinction coefficient, and liquid particle size. The formula to
determine the optical thickness uses the Beer-Lambert law that relates the reduction in light
intensity to the characteristics of the medium it passes through. The formula is defined
as follows:

τ = −In
(

I
I0

)
(3)

where I and I0 represent the transmitted and incident light intensities, respectively. This
level of transmission is suitable for detecting the spray “edge” above the camera noise floor.
However, it is important to take into account factors like vapor-phase beam steering. The
optical depth, referred to as τ, is calculated and used to determine the Projected Liquid
Volume (PLV). This suggests a spatial integration of the Liquid Volume Fraction (LVF)
across the measurement domain, particularly in the cross-stream direction (y), as expressed
in the following formula:

PLV = τ
πd3/6

Cext
=

∫ y∞

−y∞

(LVF).dy (4)

where d and Cext are droplet diameter and extinction coefficient, respectively. The extinction
coefficient (Cext) represents the extent to which droplets in the medium attenuate light
through absorption. Its value depends on the size of the droplets, the wavelength of light,
the refractive index of the medium, and the collection angle of the optical setup. It was
assumed, based on measurements taken during the injection across the plume, that the
Sauter Mean Diameter (SMD) consistently approximated 12 µm. In addition, Cext was
determined to be 272 × 10−6 mm2, based on a droplet diameter of 12 µm. This value was
obtained for individual experimental setups using MiePlot v4.6 available at [31].
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3.2. 3D Tomographic Reconstruction

The CT algorithm was used to construct a 3D spray from the liquid volume fraction
(LVF) data at three different viewing angles 0◦, 11.25◦, and 22.5◦. The reconstruction tech-
nique was carried out with MATLAB R2023b using a function like “iradon” for performing
the inverse Radon transform and to support GPU computing. The reconstruction proce-
dure was executed on axial sections extending from the nozzle tip to a position z = 60 mm
downstream, with a hamming filter parameter value of 0.3. This approach offers detailed
information about the distribution and movement of the plumes and better spatial and
temporal resolution.

4. Machine Learning Method and Computational Framework
4.1. Machine Learning Networks

A multilayer feed-forward ANN has emerged as a modeling technique in predicting
spray dynamics due to its high efficiency in identifying the nonlinear relationships between
sets of input and output data. ANN accepts an input, propagates it through numerous
layers of hidden neurons, and generates a prediction that links the input of all the neurons.

A neural network is essential because it involves adjusting the weights and biases of
the neurons based on the input data. More specifically, Feed-forward ANN architecture
comprises three types of layers: the input layer, the output layer, and hidden layers in
between, as shown in Figure 2.
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An artificial neuron consists of numerous analog signal-processing elements known
as “neurons”. A neuron within the hidden layers can receive one or more input data
[X1, X2, . . . , Xm]. These inputs are transferred to the artificial neuron and subsequently
multiplied by their respective synaptic weights Wi. An additional input signal, known
as bias input w0, is introduced to the artificial neuron alongside the input data. The
neuron subsequently employs an activation function f(z), converts the weighted sum of
input signals into output signals, and forwards the outcome to all the neurons in the
subsequent layer.

y = f(z) = f
(

w0 + ∑N
i=1 wixi

)
(5)

This process enables the network to learn from the data and enhances its ability to
make accurate predictions and informed decisions.

There are different types of activation functions including linear, tangent, sigmoid,
and hyperbolic. Among the mentioned functions, the sigmoid takes any real value as input
and output values in the range 0 to 1.

In this paper, the sigmoid function is employed for all hidden layers and linear for the
output layer, as it exhibits a satisfactory performance in terms of prediction. The coefficient
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of determination and mean square error are taken as a valuable indicator of how well
the input variables (injection pressure and fuel temperature) in our model explain the
variations in the dependent variables, which is spray tip penetration.

The coefficient of determination and mean square error can be calculated as follows:

R2 = 1 − ∑m
i=1

(
Yi − Yi,model)

2

∑m
i=1

(
Yi − Yi)2

(6)

MSE =
1
n

{(
Yi − Yi,model)

2
}

(7)

Yi: The value of the variable to be predicted.
Yi,model: Predicted value of Yi.
Yi: The mean of the sample.
n: The number of values in the sample.

4.2. Computational Setup

Computational analyses were performed on a high-performance workstation equipped
with an AMD Ryzen Threadripper 7980X (3.2 GHz, 64 cores), GeForce RTX 4090 24 GB
GDDR6X, and 64 GB DDR5/6800MHz Kingston FURY Renegade memory, on a GIGABYTE
TRX50 AERO D motherboard.

In this study, the projected liquid volume was measured through experiments and used
as the target for the ANN. This ANN model is trained using input and target tables, which
facilitates the management of extensive PLV data under various operational conditions.
This approach enables the development of flexible networks that are optimized for efficient
file size management, reduce storage demands, and improve computational efficiency
while maintaining high accuracy. For training, we used two features—temperature and
pressure—which served as inputs for the trained neural network. Each training step
incorporates projected liquid volume (PLV) values obtained from experiments. It should
also be noted that since our model is linear and does not contain complex terms such as
products or power terms, we did not standardize these features.

For PACE-20 fuel, we predict LVF cold spray at −7 ◦C at pressures of 100 bar and
350 bar. Each condition, such as (−7 ◦C, 100 bar), is represented by a 1 × 300 cell array that
captures the evolution of the spray. Within each cell of the array, there is a 608 × 608-pixel
image of the spray, taken at distinct intervals within the 0 to 2 ms spray evolution.

4.3. Image Regression Modeling

In this study, the regression model for spray images of size (M × N) was trained
using temperature and pressure as input vectors, and the associated PLV data vector as
the output. This study focuses on predicting the behavior of cold spray across a range
of pressures and at various times. For each temperature, the ANN is trained using input
tables paired with a range of injection pressures (50 bar to 350 bar). For the target, we
organize the PLV data into 608 tables, each with dimensions of 608 × 7. We construct each
table by extracting the first column from each set of PLV data images and placing it into the
first of these 608 tables. We then proceed with the second column for the second table, and
so forth. After assembling these tables, each one is trained individually. Once the ANN
training is complete, we employ the reverse process, recompiling the trained columns back
into 608 × 608 images. Figure 3 illustrates the schematic of the training algorithm for a
spray image.

The mean processing time for the ANN to process seven images of specified size
608 × 608, corresponding to the seven pressures at a fixed temperature is 1 h. The training
process involved 600 iterations and took nearly 3 h to predict three images from three
different angles for PLV data (spray images). An early stopping mechanism was integrated
to monitor validation performance. If the coefficient of determination (R2) fell below 0.991
for any of the 608 tables, the training was stopped, and adjustments were made to the
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number of neurons in the hidden layers until the model converged with an R2 value greater
than 0.991 before resuming the training process. The use of enhanced GPUs can accelerate
this procedure. Model accuracy can be improved by optimizing the hidden layers or
considering different activation functions. As shown in Figure 4, the ANN prediction
accurately captures the overall shape and distribution of the spray core region. However,
at the edges, there is a presence of minor noise, which may be attributed to the variability
in pixel intensities resulting from the optical techniques used during the experimental
image acquisition.
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The trained regression model predicts the spray dynamics at any time step, thanks
to the strategy of training a time series regression model and methodically repeating this
process. This offers a significant advantage compared to CFD models that require time-
stepping simulations. The ANN enables rapid optimization of complex processes, which
allows for quicker adjustments with fewer simulations for more efficient outcomes [32].
It should also be noted that recent studies have developed a hybrid method combining
machine learning (ML) and numerical methods. This approach aims to address errors in
under-resolved simulations and reduce computational time. Dmitrii et al. [33] introduced
a new approach for solving nonlinear partial differential equations. In this study, ML is
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employed to enhance the approximations within CFD simulations and provide accurate
solutions at each point on a grid that would be considered too coarse to accurately resolve
the dynamics.

5. Results and Discussion
5.1. Experimental and Machine Learning Prediction of Liquid and Vapor Spray

The liquid penetration and liquid width significantly influence the spray morphol-
ogy. Accordingly, the line-of-sight data analysis was performed using a PLV threshold of
0.2 × 103 mm3 (liquid)/mm2. The PLV data represents the average of 20 experimental runs
under each set of working conditions. To ensure reliability, we used the mean standard
errors of both liquid penetration and width, denoted as SEM = σ/

√
n values. These mean

standard errors were found too small to be discernible in the figures. Measurements of
liquid penetration length and liquid width were obtained under different injection pressure
conditions Pinj = [50, 150, 350] bar and Tfuel = [−7, 60] ◦C. Figure 5 illustrates the temporal
evolution of PLV and Schlieren patterns captured at the initial stages of spray formation
under 50 bar and −7 ◦C. Both liquid penetration and liquid width were synchronized
at the time just after the actual start of injection. The experimental images that were ac-
quired indicated the presence of an injection delay, characterized as the time between the
start of electronic command and the start of injection (SOI). As a result, it was observed
that the early spray formation for the hot fuel was faster in comparison to the cold fuel
scenarios due to the reduced viscosity of the hot fuel, which allows fast needle open-
ing. In addition, hot fuel spray promotes better atomization and faster spray formation
from multi-hole injectors [34]. Meanwhile, the cold fuel spray affects stability due to the
straighter edges produced, which indicate weaker vortex formation and reduced mixing
with air [35]. The results showed that as injection pressure increases, both liquid and vapor
penetration lengthen due to enhanced air entrainment and increased flow momentum. It is
also observed that the liquid penetration initially increases linearly during the first phase,
which includes acceleration and the first transition stages, followed by the quasi-steady
stage and second transition, where the penetration reaches its maximum and subsequently
becomes stagnant.

By comparing the liquid and vapor penetration at high and low temperatures, it can be
observed that with an increase in injection pressure, the liquid/vapor at high temperatures
extends further in comparison to low temperatures [36]. At high injection pressure, a
significant difference in liquid width was observed between the distances of 15 mm and
30 mm. Furthermore, in the PLV and Schlieren intermittency images at high tempera-
tures, the spray encountered collapsing, resulting in an accelerated axial penetration of
liquid/vapor due to spray momentum. Based on these, detailed experimental data and
insights serve as the foundation of the ANN model to predict the dynamics of spray under
various operational conditions.

It is widely agreed that factors such as injection pressure and fuel temperature affect
spray penetration and width. However, it is evidently impractical to account for every factor
in the development of an ANN model. The objective of our model is not to create a general
model encompassing liquid penetration and width under various conditions, but rather to
specifically provide quantitative information on the effects of injection and environmental
conditions on the behavior of the spray. With a focus on liquid penetration, width, and 3D
LVF predictions under cold-start conditions using the ML algorithm, successful predictions
in this domain are expected to be applicable to vapor spray behaviors as well. The PLV
dataset resulting from these experiments was used to train an ANN model that predicts the
spray under various operational conditions Pinj = [50, 150, 350] bar and Tfuel = [−7, 60] ◦C.
It is worth noting that the modeling approach is designed to achieve high accuracy. A series
of tests conducted on various ANN architectures revealed that a configuration with two
layers was particularly effective in accurately predicting the spray image. Table 4 illustrates
the ANN architecture, comprising an input layer with two neurons, a hidden layer with two
neurons, and an output layer with a variable neuron. The training of the ANN is performed
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using the Levenberg-Marquardt training algorithms available within the MATLAB Neural
Fitting Tool (nftool). The choice of the best ANN network is based on the coefficient of
determination R2-values for training, validation, and testing. The model is developed using
experimental data from PACE-20. In this process, 70% of the data is randomly selected
for the training set, while 15% is randomly chosen for both testing and validation. The
ANN training process for predicting spray characteristics (liquid penetration and width)
involved 200 iterations, and it took less than 1 min to complete.
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Table 4. ANN configuration.

Criteria Details

Image dimensions 608 × 608
Data input 7 PLV values (images of spray)

Feature set 2 characteristics: Fuel temperature (◦C) and injection
pressure (bar)

ANN Architecture Input layer 2 × hidden layer 2
Training Algorithm function Levenberg Marquardt

Training Data Points (70%) PLV (−7 ◦C): 209,093
Liquid Penetration and Width: 2940

Validation Data Points (15%) PLV (−7 ◦C): 44,806
Liquid Penetration and Width: 630

Figure 6 illustrates the temporal evolution of liquid penetration and width over time
after the start of injection (aSOI) at these conditions. Solid lines are true values from
experiments and symbols are predicted by the machine learning model. In the analysis
of liquid penetration and width, the results indicate that the largest deviations between
the predicted values by the ANN and the experimental data for both the liquid length
and liquid width throughout the injection phase are 3.1 mm with an error of 5.16%, and
0.9 mm with an error of 3.10%, respectively. Similarly, as observed, the developed model
accurately predicts the vapor penetration length and vapor width, with small deviations
between the experimental and predicted results, showing an error of just 0.7%. Moreover,
predicting spray behavior using CFD under various conditions, such as cold starts and hot
fuel scenarios, can be challenging due to complex physical processes that include spray
dynamics, the effects of temperature and pressure variations, and droplet behavior affected
by air entrainment, which increases the turbulence of spray motion [37]. In contrast, the
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developed machine learning model has shown good agreement with the experimental
data in accurately predicting the penetration and width of both liquid and vapor. It is
noteworthy that the results indicate a reasonably strong fit for all datasets that include
both liquid and vapor spray, with an overall R2 of more than 0.99. Figure 7 illustrates the
training accuracy of the ANN model in predicting liquid penetration.
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5.2. Liquid Volume Fraction Prediction and Validation

The spatio-temporal evolution of the spray is displayed in Figure 8. Several interesting
findings arise from the 3D liquid volume fraction (LVF). Notably, it is observed that at
higher fuel temperatures and injection pressure, the spray morphology exhibits a strong
plume collapsing toward the core area of the spray. The variation in fuel plume shape is
influenced by the number of injector holes and their length-to-diameter (L/D) ratios. As
the number of holes in the injector increases, the fuel plume broadens, leading to a larger
collapse length. It should be noted that at higher injection pressures, the fuel plumes ejected
from the orifices may interact with each other. This trend is clearly noticeable in 3D LVF
at 350 bar. The collapsed spray then merges and forms a continuous closed region that
blocks ambient gas from entering the central region. This leads to a decrease in pressure
within the central area as the spray moves downward. The collapse of the plume can be
attributed to an increase in the plume cone angle or a deviation in the plume direction from
the injector axis. The edges of the plume cones overlap, leading to an increase in velocity
at the intersection of the plumes. Then, the plumes start to merge into a single formation,
which is characterized by a single velocity peak. It is important to emphasize that with an
increase in ambient density, the central recirculation zone disappears, leading to a collapse
of the plumes. More specifically, when the plumes are injected into a denser environment,
the spray penetration tends to decrease. The ANN model is expected to replicate these
observations, showing its potential to accurately predict complex fluid dynamics.

In this study, we used a MATLAB code enhanced for GPU processing to process and
reconstruct three-dimensional spray dynamics from ANN-predicted images at different
angles of 0◦, 11.25◦, and 22.5◦, as illustrated in Figure 9. It should be noted that the
predicted images from these three angles contained slight noise, which affected the clarity
and intensity consistency. The source of this issue is the light source in the imaging
experimental setup, which does not emit light uniformly but rather radiates over a range of
angles due to diffuse radiation. This impacts the accuracy of quantifying the liquid phase
in the spray during the experiment and consequently affects the predicted images, which
may not accurately reflect the edges of the liquid phase [38]. To mitigate this issue, we
applied a noise reduction technique using the ‘imfilter’ function. This algorithm efficiently
handled large 608 × 608-pixel image datasets. Through advanced filtering, weighted
sums, and symmetry operations, the code assembled cross-sectional planes from these
predicted images, which enabled the creation of detailed 3D visualizations from 2D views.
The resulting figure shows a 3D spray prediction at 100 bar, −7 ◦C, and 350 bar, −7 ◦C,
captured at aSOI 1.14 ms and 1.87 ms, respectively. This innovative approach, which
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combines ANN-based image prediction with advanced 3D spray reconstruction, represents
a valuable step in the field of fluid dynamics research. It is important to note that the 3D
spray distribution offers quantitative insights into the temporal evolution of both cold and
hot fuel spray behaviors, and such LVF data serves to validate and refine CFD models.
It was observed that at higher injection pressure and fuel temperature, plume collapsing
becomes more prominent. This phenomenon is characterized by a strong plume movement
towards the core area. The results, as shown in Figure 10, show a strong agreement
between the experimental data and the spray behavior predicted by the model. The model
successfully captures the complete plume dynamics, with distinct plumes at low pressure
and plumes collapsing at high pressure.
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To summarize, ANN spray analysis is a powerful algorithm used to predict spray
morphology and serves as an effective intermediate tool. However, it does not completely
substitute for CFD simulations because its performance depends on the training data used
to modify the neuron weights. For data that falls outside the target dataset, its accuracy
may not be reliable. A trained ANN can serve as a useful bridge between experiments and
CFD simulations. It can enhance the understanding of plume dynamics and offer validation
for CFD simulation results in cases where experimental data is unavailable. Additionally, it
can improve CFD simulations by providing valuable initial data.
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6. Conclusions

In this study, a machine learning technique was implemented to predict the gasoline
spray morphology under various injection pressures and fuel temperatures. A set of
experimental datasets obtained from various optical diagnostic techniques, such as high-
speed and Schlieren imaging, was utilized to train and validate the ANN model. The
developed machine-learning algorithm was adept at predicting line-of-sight measurements
and 3D liquid volume, providing quantitative information about 3D spray through the
computed tomography (CT) algorithm. This approach might provide additional insight into
future studies and can be adapted for models that predict both cold-start spray dynamics
and hot fuel spray.

The main conclusions of this study are as follows:

1. The developed ANN predicts the liquid/vapor penetration length and width with
high accuracy (R2 > 0.99), showing strong agreement with experimental results.

2. The ANN model accurately predicts plume behavior that captures distinct plumes at
low injection pressure (100 bar) and their collapse at high injection pressure (350 bar)
which is still challenging for CFD simulations.

3. The developed machine learning model enables real-time predictions of 3D LVF
distributions under various injection pressures and fuel temperatures. The proposed
ANN model reduces the need for extensive computational optimization time and
minimizes costs compared to CFD.

4. The machine learning model presented in this study can be adapted to various fuel
types and operating conditions and can serve as a versatile spray model. It can also
help overcome challenges related to cold start emissions.
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