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Abstract: Polypropylene is one of the most widely used polymers in various applications, ranging
from packaging materials to automotive components. This paper proposes the Computational Fluid
Dynamics (CFD) and AI/ML simulation of a polypropylene fluidized bed reactor to reduce reactor
loss and facilitate process understanding. COMSOL Multiphysics 6.2® solves a 2D multiphase CFD
model for the reactor’s complex gas–solid interactions and fluid flows. The model is compared
to experimental results and shows excellent predictions of gas distribution, fluid velocity, and
temperature gradients. Critical operating parameters like feed temperature, catalyst feed rate, and
propylene inlet concentration are all tested to determine their impact on the single-pass conversion
of the reactor. The simulation simulates their effects on polypropylene yield and reactor efficiency.
It also combines CFD with artificial intelligence and machine learning (AI/ML) algorithms, like
artificial neural networks (ANN), resulting in a powerful predictive tool for accurately predicting
reactor metrics based on operating conditions. The multifaceted CFD-AI/ML tool provides deep
insight into improving reactor design, and it also helps save computing time and resources, giving
industrial polypropylene plant growth a considerable lift.

Keywords: computational fluid dynamics (CFD); artificial intelligence (AI); machine learning (ML);
polypropylene; fluidized bed reactors

1. Introduction

Polypropylene is one of the world’s most popular plastics, used for various products,
from packaging to auto parts [1,2]. The increasing pressure to increase production efficiency
and product quality drove the development of optimized reactor designs, particularly flu-
idized bed reactors. These reactors are preferred due to their mixing, heat transfer, and
scalability, making them ideal for polypropylene plants on a large scale. However, the in-
tricate interactions of gases and solids, heat and mass transfers, and turbulence can be very
challenging in optimizing the reaction and ensuring operational efficiency [3]. Computational
Fluid Dynamics (CFD) is now a valuable tool to investigate and model complex systems in
fluidized bed reactors. CFD simulations enable engineers to study how different operating
parameters (feed temperature, gas composition, catalyst feed rate) affect reactor performance
to maximize [4]. However, CFD calculations can be computationally prohibitive, particularly
for larger-scale multiphase polypropylene reactor systems. The computational power and
time required to run extensive simulations at many different operating modes are often im-
practical [5]. To solve these problems, artificial intelligence (AI) and machine learning (ML)
combined with CFD modeling are promising approaches [1,2,6,7]. Machine learning and
artificial neural networks (ANN) can be used to learn from simulations and experiments and
thus make faster and more accurate predictions about reactor behavior [8,9]. By combining
CFD’s detailed physical modeling with AI/ML’s predictive capabilities, this hybrid approach
enhances the efficiency of reactor design and optimization [1,2,10–13].

In this paper, we present an integrated approach that combines CFD and AI/ML
modeling. This approach has the potential to significantly improve the performance of
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polypropylene fluidized bed reactors, offering a promising solution for the challenges in
our field [13]. We develop a 2D multiphase CFD model using COMSOL Multiphysics
6.2®, simulating the reactor’s gas-solid interactions and fluid flow. The model is rigorously
validated against experimental data, demonstrating its high accuracy in predicting gas
distribution, particle velocity profiles, and temperature gradients [14–17]. We comprehen-
sively analyze critical operating parameters, including feed temperature, catalyst feed rate,
and propylene inlet concentration. This thorough evaluation provides valuable insights
into their impact on single-pass conversion efficiency [18]. Additionally, we enhance the
CFD model’s predictive efficiency by incorporating AI/ML algorithms. By training ANN
models on the CFD simulation and experimental data, we create a predictive framework
capable of efficiently forecasting reactor performance metrics based on varying operational
inputs. This integrated CFD-AI/ML approach reduces computational time. It provides a
deeper understanding of the interdependencies between key reactor parameters, offering
valuable insights for optimizing reactor design and process efficiency [19,20].

2. Architecture of ANN for Olefin Polymerization

ANNs are powerful computation models; they can learn independently and improve
over time as more data are processed [21]. In this work, the ANN model was trained with
datasets produced by a computational fluid dynamics (CFD) simulation of olefin polymer-
ization in a fluidized bed reactor. Olefin polymerization is a complicated reaction process
used to produce polyethylene and polypropylene at a pilot or an industrial scale [22]. This
process is challenging to model because of its complex fluid dynamics, particle interactions,
and heat and mass flow; hence, it is a perfect candidate for an ANN [23]. ANNs are
ideal for the nonlinear dynamics of the fluidized bed reactor for olefin polymerization.
Polymerization reactions involve not only chemical reactions but also complex physical
processes like particle–fluid interactions, catalyst behavior, and the heating up of the reactor.
Traditional mechanistic models do not usually get all the details right about such systems,
especially in the case of large data sets or dynamic process states. However, ANNs can
also pick up patterns in the data and learn from the interaction of many variables, thus
giving us correct predictions that conventional models cannot; however, this may change
depending on the polymerization rate, heat output, or catalyst distribution in fluidized bed
reactors. ANNs are particularly good at such unpredictable scenarios because they handle
uncertainties and react quickly to new data. When using ANNs in conjunction with CFD,
the entire predictive power of the simulation is boosted. The ANN learns from the CFD
data and improves with each successive run, providing helpful information about reactor
performance under various conditions.

3. CFD Mathematical Modeling

The model comprehensively describes the homo-polymerization of propylene over
a Ziegler–Natta catalyst within a fluidized bed reactor. It incorporates key aspects of
the Union Carbide polypropylene production process, a well-established industrial-scale
methodology using fluidized bed technology for efficient polymerization. Additionally,
it simulates the pilot-scale UNIPOL process, a widely studied and commercially relevant
method for polypropylene production. It is recognized for its operational simplicity and
ability to produce various polymer grades. The model also references the pilot-scale
experiments, emphasizing its basis in both industrial and academic studies to ensure
robustness and relevance to real-world applications (Figure 1) [24]. In developing the
UNIPOL model, fundamental principles of material balance, momentum balance, and heat
transfer were employed. The fluid flow patterns of the gas and solids in the reactor are
assumed to be plug flows considering radial gradients and axial dispersion [22,25].
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Figure 1. Pilot plant for polypropylene production in a fluidized bed reactor (UNIPOL process) [24].

3.1. Material Balance

The material balance equation describes the conservation of mass within the reactor,
accounting for the inflow and outflow of monomers, catalysts, inert, and other components.
The overall molar monomer balance is in cartesian coordinates, neglecting concentration
change in the angular direction.

∂Ci
∂t

= ∇.Di∇Ci − u.∇Ci + Ri (1)

In these equations, Ci represents the concentration of the dilute species (monomer), ∇
is the del operator representing the gradient in space (∇ = (∂/∂x, ∂/∂y, ∂/∂z)), Di is the
diffusion coefficient of the species, and u is the flow velocity vector. Ri represents the rate of
generation or consumption of species “i” due to chemical reactions or other processes. The
general material balance equation can be represented in a more concise and comprehensive
form. The monomer concentration (Cm):

∂Cm

∂t
=

∂

∂x

(
Dm

∂Cm

∂x

)
+

∂

∂y

(
Dm

∂Cm

∂y

)
+

∂

∂z

(
Dm

∂Cm

∂z

)
− ux

∂Cm

∂x
− uy

∂Cm

∂y
− uz

∂Cm

∂z
+ Rp (2)

Initial conditions: at t = 0 Cm = Cm,o.
Boundary conditions: at the reactor walls of the reactor

∂Cm

∂x
= 0
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The propylene consumption (Rp) considering a single type of catalyst and well-mixed
reactor:

Rp = −kpCmy(1 − ε)

kp = kpoexp
(
− Ea

RT

)
where kp is the propagation reaction rate constant, Cm is the monomer concentration, y is
the catalyst concentration, kpo is the pre-exponential factor, Ea is the activation energy, and
ε is the porosity.

3.2. Fluid Flow

The Navier–Stokes equations govern the movement of fluids and can be seen as an
extension of Newton’s second law of motion designed explicitly for liquids. In the case of a
compressible Newtonian fluid, the equations yield the following outcomes:

ρ

(
∂u
∂t

+ u.∇u
)
= −∇p +∇.

(
µ
(
∇u + (∇u)T

)
− 2

3
µ(∇.u)I

)
+ F (3)

where u represents the velocity of the fluid, p represents the pressure of the fluid, ρ
represents the density of the fluid, and µ represents the fluid’s dynamic viscosity. In a
simplified form, laminar flow and constant physical properties are assumed. (∇u)T is the
transpose of the velocity gradient tensor. The terms on the right-hand side represent the
pressure gradient force, viscous forces, and the body force term (F). The velocity profile
z-direction (axial direction) can be represented as follows:

ρ

(
∂vz

∂t
+ vx

∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z

)
= −∂p

∂z
+ µ

(
∂2vz

∂x2 +
∂2vz

∂y2 +
∂2vz

∂z2

)
+ ρgz (4)

The initial conditions ( at z = 0): vz = vo.
The boundary condition at reactor walls (no-slip conditions): vx = vy = 0.

3.3. Heat Transfer

The following expression describes the heat diffusion governing the cartesian tempera-
ture distribution for three-dimensional unsteady heat transfer involving the heat generation
term (Qv).

ρiCpi

∂T
∂t

= ki

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
− ρiCpi

(
vx

∂T
∂x

+vy
∂T
∂y

+vz
∂T
∂z

)
+ Qv (5)

Initial conditions: at t = 0, T = T0.
Boundary conditions (the walls are at a fixed temperature controlled by the

cooling water).
at x = w, T = Tw

where k is the conductivity of the material (W.m−1.K−1), ρi is the density (kg.m−3) of
component i, Cpi is the specific heat capacity (J.kg−1.K−1), and Qv is the rate at which
energy is generated per unit volume of the medium (W.m−3). Solving the equation requires
six boundary conditions, two for each coordinate. The physical properties used in the
simulation are listed in Table 1.

Table 1. Physical properties and operating parameters used in the CFD simulation [22,24].

Parameter Value Operating Ranges

Inlet temperature (K) 333.15 320–350
Reference temperature (K) 342.15 330–360
Cooling temperature (K) 350.15 340–370
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Table 1. Cont.

Parameter Value Operating Ranges

Reaction zone height (m) 1.5
Reactor diameter (m) 0.1

Pressure (atm) 22 15–30
Feed monomer concentration

(mol/m3) 0.75 0.5–1.0

Pre-exponential factor, kpo

(m3/mol/s)
1.24 × 104

Activation energy, E (J/mol) 7.04 × 104

Catalyst active site (mol/m3) 1.88 × 10−4

4. Structure of the ANN

An ANN usually has three layers: an input layer, hidden layers, and an output layer.
In the present work, the ANN consists of an input layer, two hidden layers, and one output
layer (Figure 2).
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Figure 2. The architecture of an artificial neural network has three inputs, two hidden layers, and one
output layer.

The input layer encodes input from outside the application, for example, process
parameters (temperature, pressure, catalyst feed rates) during olefin polymerization [26].
These inputs are fed through one or more hiding layers, and neurons (units of computation)
make complex mathematical transformations to extract patterns from the data. In every
hidden layer, the neuron is given an activation function that introduces nonlinearity,
allowing the network to simulate highly nonlinear behavior like reaction dynamics or
flow in the fluidized bed. The activation function we applied in this work was Exponential
Linear Unit (ELU) because it can stabilize the training cycle by decreasing the probability
of gradient vanishing. The last layer, the output layer, returns predictions or classifications
on the computations of the hidden layers. The result could be output with the reactor’s
performance data, such as product yield, reaction speed, or temperature curves. The ANN
structure with neurons is connected between the input, hidden, and output layers. This
is due to the network depth and the number of neurons per layer. The structure of the
ANN is crucial in the context of olefin polymerization modeling as it allows for the efficient
processing of complex data and the extraction of meaningful patterns, leading to accurate
predictions of reactor performance [27,28].

5. Training and Optimization of the ANN Model

The ANN has four phases: model selection, training, testing, and validation. In train-
ing, the network extracts information from the data and adjusts its internal parameters
(weights and biases) to make the difference between predicted and accurate outputs as
small as possible. For this work, the ANN model was trained with the Adam optimization
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algorithm. Adam (Adaptive Moment Estimation) is a fast, popular, and high-performing
deep learning algorithm, mainly used on large and rich data like CFD simulations [29].
Adam takes the benefits of two other widely used optimization algorithms, AdaGrad and
RMSProp, and it can change the learning rate in real-time for each parameter depending
on the first and second moments of the gradient. This flexibility renders Adam robust and
tolerant of noise and variance that are part of process modeling (e.g., olefin polymeriza-
tion). It was a suitable candidate for this research because Adam can work with sparse
gradients and leverage momentum to converge the optimization process faster. Unlike
other optimization approaches that need a lot of fine-tuning, Adam does not need to adjust
the learning rate for the individual parameters. Still, it automatically takes on its learning
rate, making it easier to obtain good results across all datasets.

The Adam algorithm offers several advantages, including its adaptive learning rate,
which efficiently handles sparse gradients and varying parameter scales, and its faster
convergence due to momentum. It works well with default hyperparameters, making it
easy to use and widely applicable across different tasks, including non-stationary objectives.
However, Adam has some limitations, such as potential generalization issues compared
to simpler optimizers like SGD with momentum, sensitivity to hyperparameters, and a
higher risk of overfitting in models with many parameters. Additionally, it may struggle
with convex problems and complex non-convex optimization landscapes, occasionally
converging to suboptimal solutions. The Adam algorithm is implemented in several
Python libraries, including TensorFlow, PyTorch, and Keras, where it is readily available as
a built-in optimizer for training machine learning models.

6. Adam Optimization Algorithm

Adam, short for Adaptive Moment Estimation, is an efficient algorithm in machine
learning for training neural networks. It is the best of two other optimization algorithms,
RMSprop and Momentum. The model works as follows:

Initialize the model’s parameters (weights and biases) to small random values.
Initialize the first and second moment estimates, mt and vt, to zeros for each parameter.
Set the learning rate, α, and the hyperparameters β1 and β2 (typically 0.9 and 0.999,

respectively).
Calculate the gradient (gt) of the loss function J(θ) with respect to each parameter (θ).

gt = ∇θJ(θt) (6)

In practical implementations, frameworks like TensorFlow, PyTorch, or JAX handle
gradient computation using automatic differentiation.

The loss function quantifies the difference between the model’s predictions and the
true values. For example, for a mean squared error (MSE) loss:

J(θ) =
1
n

n

∑
i=1

(yi − ŷi)
2 (7)

where yi is the true value, ŷi is the predicted value, and n is the number of data points.
Update the first moment estimate (momentum):

mt = β1mt−1 + (1 − β1)gt (8)

Update the second moment estimate (RMSprop):

vt = β2vt−1 + (1 − β2)g
2
t (9)

Bias-correct the first (m̂t) and second moment (v̂t) estimates:

m̂t =
mt

1 − β1
t (10)
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v̂t =
vt

1 − β2
t (11)

Update the parameters (θt):

θt = θt−1 −
α√

vt + ε
m̂t (12)

where:
θt: the parameter vector at time step t.
α: the learning rate (10−3, adjustable depending on the task).
ε: a small number (e.g., 10−8) to prevent division by zero.
Adam is a widely used optimizer known for its ability to adjust learning rates for each

parameter individually, enabling faster and more reliable convergence. By incorporating
momentum, it accelerates optimization and helps overcome local minima. It is robust to
noisy and sparse gradients, requires minimal hyperparameter tuning, and is effective in
diverse applications. Adam is commonly applied in Natural Language Processing (NLP)
tasks, such as language modeling and machine translation, and in computer vision tasks
like training convolutional neural networks for image classification and object detection,
where its adaptability and speed are advantageous. While Adam generally performs well,
testing with different hyperparameters or alternative algorithms may be required to achieve
optimal performance in some scenarios. In this analysis, Adam was chosen for its flexibility
and efficiency, particularly for optimizing models with sparse gradients and complex loss
landscapes. Although generalization can be a limitation, the selected hyperparameters and
datasets mitigate this concern.

7. Performance Evaluation Measures

The datasets were divided into three categories, i.e., 75% of the datasets were for train-
ing, 15% for testing, and 10% for validation. The model validation is performed by utilizing
the mean squared (MS) error, root mean square (RMS) error, and correlation coefficient (R).
MS, RMS, and R2 were calculated using the following equations, respectively [1,2,23].

MS =
1
n∑n

i

(
Xi,p − Xi,s

)2 (13)

RMS =

√
1
n∑n

i

(
Xi,p − Xi,s

)2 (14)

R2 = 1 −
∑n

i
(
Xi,p − Xi,s

)
∑n

i
(
Xi,p − Xavg

) (15)

where n is the total number of samples, Xi,p is the predicted ANN value, Xi,s is the CFD
simulation values, and Xavg is average values.

8. Results and Discussion

To initiate the study, the CFD model was rigorously validated against experimental
data obtained from a pilot-scale plant, specifically designed to replicate the propylene poly-
merization process as detailed in reference [24]. This validation was essential to confirm
the model’s accuracy and predictive capability for critical process parameters, thereby
ensuring its applicability for the further analysis of reactor performance. Figure 3a is the
physics-controlled mesh. A normal mesh density is applied in the bulk flow region where
properties are relatively uniform, optimizing computational efficiency. A denser mesh is
used near the boundaries to capture steep gradients in velocity, temperature, and concen-
tration critical for resolving boundary-layer effects. Irregularly shaped elements conform
to the complex geometry of the reactor, aligning with flow directions and adapting to
regions of interest like reaction zones. This mesh strategy balances accuracy and efficiency,
making it well-suited for modeling the intricate dynamics of polypropylene production. In
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Figure 3a, the temperature profile within the fluidized bed reactor is illustrated. The figure
reveals that the reactor’s wall cooling system effectively maintains a uniform temperature
throughout the reaction zone, which is critical for controlling reaction kinetics and opti-
mizing polymer yield. However, in the disengagement zone, where neither reaction nor
cooling occurs, a noticeable temperature gradient emerges, highlighting the natural heat
dissipation that occurs in the absence of active thermal control. Figure 3c provides insight
into the velocity profile along the reactor length. The velocity reaches a fully developed
profile shortly after the reactor entrance, indicating stabilized flow behavior as the gas
progresses through the reactor. This characteristic is essential for achieving consistent
mixing and optimal particle–fluid contact throughout the reactor bed, which are crucial
factors for effective polymerization. Finally, Figure 3d depicts the monomer (propylene)
concentration profile along the reactor length. As expected, the concentration of propylene
decreases progressively from the reactor inlet to the outlet due to its consumption in the
polymerization reaction. This decline in concentration aligns with the model’s representa-
tion of the chemical kinetics involved, validating its capacity to simulate the conversion of
monomers within the reactor environment accurately. Together, these profiles, temperature,
velocity, and monomer concentration demonstrate the model’s robustness in capturing key
aspects of the fluidized bed polymerization process.
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Figure 4 compares CFD-predicted temperature profiles against the experimental data,
while Figure 5 illustrates the catalyst feed rate comparisons. The close alignment be-
tween the CFD predictions and experimental measurements demonstrates the model’s
robustness in simulating real-world conditions within the reactor. The results indicate
that increasing monomer concentration and reactor temperature substantially influences
the reactor’s single-pass conversion rate. Higher monomer concentrations provide more
reactant molecules, promoting a greater degree of polymerization. Similarly, elevated
reactor temperatures enhance the reaction kinetics, accelerating the polymerization rate.
Consequently, monomer concentration and temperature contribute to an increased poly-
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merization rate, leading to higher conversion efficiencies within the reactor. This insight
underscores the importance of controlling these variables to optimize process efficiency
and product yield in industrial-scale polymerization processes.
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The ANN-generated figures illustrate the model’s effective learning and generalization
capabilities across training, testing, and validation datasets. The Training and Validation
Loss Over Epochs plot shows a rapid initial decrease in both training and validation
losses, indicating swift learning during the early epochs. As training progresses, the losses
converge to near-zero values, suggesting that the model has effectively minimized error
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without overfitting. The consistent alignment of the validation loss with the training loss
underscores the model’s capacity to generalize well to unseen data, reinforcing its robust-
ness (Figure 6). The ANN model is highly predictive and provides correlation coefficients
(R2 > 0.998) and low error ratios (MSE 0.0015) for training, testing, and validation datasets.
The model contains two hidden layers (with eight neurons in each layer, activated with
ReLU) and a linear output layer to make it repeatable. It was trained with the Adam
optimizer at learning speed 0.001 and loss function MSE. This dataset was divided into
70% training, 15% testing, and 15% validation; data were shuffled and normalized to
prevent bias. Training took 500 epochs, 32-batch size, and a 20-epoch delay to avoid over-
fitting. Weights were set using Xavier initialization, and random seeds were assigned to
ensure consistency. These conditions were applied 10 times to the model, and it generated
the same metrics over the course of each run, which showed the model’s robustness and
reproducibility. These details define the training and make model development transparent.
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The predicted vs. actual output plots for the training (Figure 7), testing (Figure 8), and
validation (Figure 8) datasets further validate the model’s accuracy. In the training data
plot, the predicted values align almost perfectly with the actual values along the ideal line,
indicating that the model has successfully captured the underlying relationships within the
training data.

In the testing (Figure 8) and validation (Figure 9) datasets, the model’s predictions
demonstrate a close alignment with the ideal line, signaling its robust predictive perfor-
mance across diverse datasets. This tight adherence to the ideal line indicates the model’s
proficiency in accurately capturing underlying patterns and relationships, even when pre-
sented with new, untrained data. Such consistency suggests that the model is not only
effective in training data but also adept at applying learned insights to unfamiliar datasets,
a critical measure of real-world utility. The low deviation from the ideal line across both the
testing and validation datasets underscores the model’s strength in generalization, a key
attribute for machine learning models intended for practical applications. This minimal
deviation indicates that the model is resilient to overfitting, maintaining high accuracy
and predictive reliability on unseen data. The ability to generalize well is essential, as it
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demonstrates that the model’s performance is not confined to specific training conditions
but can extend effectively to new scenarios, increasing confidence in its application to
varied datasets.
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The model performance metrics indicate a high level of accuracy across training,
testing, and validation datasets, with low error values and high R2 scores close to 1, Table 2,
Table 3, and Table 4, respectively. Specifically, the Mean Squared (MS) error and Root Mean
Squared (RMS) error are consistently low across all three datasets, suggesting minimal
prediction error and high precision in the model’s output. The Mean Absolute (MA) error
values further corroborate this, indicating that the average deviation between predicted
and actual values is small. The R2 values above 0.998 for all datasets demonstrate that
the model explains nearly all the variance in the data, which is particularly promising
for generalization. The close alignment of metrics across training, testing, and validation
datasets also implies that the model generalizes well without significant overfitting or
underfitting. This stability suggests the chosen architecture, training regimen, and data
split effectively capture the underlying patterns in the data, making the model robust for
prediction tasks.

Table 2. Summary of model evaluation metrics for training data.

Parameter Value

Mean Squared (MS) error 0.0015
Root Mean Squared (RMS) error 0.03864
Mean Absolute (MA) error: 0.0314
R2 0.999

Table 3. Performance metrics of the model on testing data.

Parameter Value

Mean Squared (MS) error 0.001176
Root Mean Squared (RMS) error 0.0343
Mean Absolute (MA) error: 0.026
R2 0.999
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Table 4. Model performance evaluation on validation data.

Parameter Value

Mean Squared (MS) error 0.00121
Root Mean Squared (RMS) error 0.0348
Mean Absolute (MA) error: 0.0293
R2 0.9986

Table 5 displays the model weights. The weights provide insight into how each layer
contributes to the final prediction. The weights in the first hidden layer show moderate
variability across different nodes, with positive and negative values, suggesting the model
captures diverse relationships between input features. This layer’s biases are relatively
small in magnitude, centering the initial transformations around specific offsets. In the
second hidden layer, the weights exhibit larger absolute values in some neurons, indicating
that these neurons might play a stronger role in transforming the intermediate features
produced by the first layer. Interestingly, the second layer has both high positive and
negative values, which can help capture more complex non-linear relationships in the data.
The biases in this layer further add flexibility by shifting the activation outputs. The output
layer weights show that certain neurons in the final hidden layer (notably the first and
second neurons) contribute heavily to the output prediction, as reflected by their larger
negative weights. The bias term in the output layer is small, suggesting a minimal final
offset. Overall, this weight distribution reflects a model that has adjusted its layers to
handle specific patterns in the data, with nodes contributing variously to optimize the
prediction accuracy.

Table 5. Optimized neural network weights and bias across layers.

Layer Weights (Summary) Biases

Hidden Layer 1

Weights Matrix (8 × 3):
[0.1487, 0.3277, −0.4415]
[0.6385, −0.1013, 1.3685]
[0.0597, 0.4303, −0.2279]
[1.0443, −0.0782, 0.9459]
[0.1546, −0.1331, 0.5737]
[−0.0257, 0.2440, 0.5846]
[−0.3609, −0.0226, 0.8059]
[0.2651, −0.0299, 0.6386]

[−0.5514, 0.9357, −0.1503, 0.1367, 0.2333,
0.5919, 0.8652, 1.1181]

Hidden Layer 2

Weights Matrix (8 × 8):
[−0.1769, −1.0006, −0.1837, −1.2279, −1.0278,
0.3616, 0.9383, 0.1725]
[−0.0056, −0.9868, 0.0468, −1.1911, −1.0450,
−0.1968, 1.8472, 0.3350]
[−0.2179, −0.3011, 0.1712, 0.0173, −0.1347,
−0.0254, −0.2644, −1.2065]
[0.0745, −1.0579, −0.2267, −1.0273, −0.6077,
0.1580, 0.7350, 0.1032]
[0.1703, 0.5037, −0.0202, 0.6894, 0.7529, 0.3236,
−0.0876, 1.2015]
[0.1975, 0.7067, 0.3574, 0.7841, 0.4695, −0.2394,
0.3858, 1.0386]
[−0.3320, −0.0073, 0.2647, −0.7450, −0.2386,
−0.0717, −0.7683, −1.8494]
[0.1988, 0.1581, 0.1848, 0.6047, 0.6061, 0.2058,
0.1252, 1.0464]

[0.9976, 0.8632, −0.0010, 0.5637, −0.2007,
−0.1606, 0.1503, −0.4417]

Output Layer
Weights Vector (1 × 8):
[−2.6298, −2.6707, −0.0223, −1.6126, 0.0857,
0.1449, −0.4213, 0.3016]

[−0.5402]
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9. Conclusions

This study highlights the application of Computational Fluid Dynamics (CFD) com-
bined with AI/ML to enhance the efficiency of polypropylene production in a fluidized
bed catalytic reactor. The 2D multiphase CFD model, developed in COMSOL Multiphysics
6.2®, accurately simulates gas–solid interactions and fluid flows, achieving excellent align-
ment with experimental data. Key parameters such as feed temperature, catalyst feed
rate, and propylene inlet concentration were analyzed for their effects on reactor conver-
sion and yield. Integrating CFD with AI/ML algorithms, particularly artificial neural
networks (ANN), resulted in a predictive tool that enhances process understanding, op-
timizes reactor design, and reduces computational demands, offering valuable potential
for improving industrial polypropylene production. In summary, the results collectively
demonstrate that the model is well-trained and robust for predictive tasks. The low loss
values and close alignment of predicted and actual values across all datasets indicate that
the model has effectively captured the patterns in the data, making it highly reliable for
practical applications.
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27. Bilgiç, G.; Bendeş, E.; Öztürk, B.; Atasever, S. Recent Advances in Artificial Neural Network Research for Modeling Hydrogen
Production Processes. Int. J. Hydrogen Energy 2023, 48, 18947–18977. [CrossRef]

28. Sareen, K.; Panigrahi, B.K.; Shikhola, T.; Nagdeve, R. Deep Learning Solar Forecasting for Green Hydrogen Production in India:
A Case Study. Int. J. Hydrogen Energy 2024, 50, 334–351. [CrossRef]

29. Shao, Y.; Wang, J.; Sun, H.; Yu, H.; Xing, L.; Zhao, Q.; Zhang, L. An Improved BGE-Adam Optimization Algorithm Based on
Entropy Weighting and Adaptive Gradient Strategy. Symmetry 2024, 16, 623. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2514/2.461
https://doi.org/10.1016/j.jphotochem.2019.111905
https://doi.org/10.1016/j.ijhydene.2024.08.184
https://doi.org/10.1021/ie501155h
https://doi.org/10.1016/j.cej.2021.133771
https://doi.org/10.3390/polym8020047
https://www.ncbi.nlm.nih.gov/pubmed/30979141
https://doi.org/10.3390/polym15183741
https://www.ncbi.nlm.nih.gov/pubmed/37765595
https://doi.org/10.1205/cherd.05116
https://doi.org/10.1016/j.ijhydene.2012.07.015
https://doi.org/10.1016/j.ijhydene.2023.02.002
https://doi.org/10.1016/j.ijhydene.2023.08.323
https://doi.org/10.3390/sym16050623

	Introduction 
	Architecture of ANN for Olefin Polymerization 
	CFD Mathematical Modeling 
	Material Balance 
	Fluid Flow 
	Heat Transfer 

	Structure of the ANN 
	Training and Optimization of the ANN Model 
	Adam Optimization Algorithm 
	Performance Evaluation Measures 
	Results and Discussion 
	Conclusions 
	References

