The Chimera Revisited: Wall- and Magnetically-Bounded Turbulent Flows
Abstract
:1. Introduction
1.1. Turbulent Flows in Fluids and Plasmas
1.2. Motivation behind the Review
- Increasing core fluctuations for pipe flow high Reynolds number () transitions (we use without subscript as a general term; later in the review, two specific definitions, the bulk and friction Reynolds number, are defined using subscripts) [25] is similar to controlled confinement transitions in fusion plasmas [26,27]
- Travelling wave solutions in pipe flow [28] are reminiscent of the magnetic field structure (islands) in fusion plasmas
2. Wall-Bounded Turbulent Flows
2.1. Transition from Laminar to Turbulent Flow
2.2. The Boundary Layer Concept
2.3. The Turbulent/Non-Turbulent Interface
- A turbulent sublayer, with a thickness (between the interface and vorticity peak) of the order of the Taylor microscale:
- An outer boundary (superlayer), thickness (width of vorticity peak) of the order of the Kolmogorov length scale .
2.4. Mean Turbulent Flow
2.5. Fluctuating Turbulent Flow
2.6. Turbulence Models
2.7. Turbulent Structures
- Sublayer (near-wall) streaks generated by streamwise vortices; [31]
- Hairpin or vortices;
- Vortex packets or LSM;
- Even larger structures, called (i) very large scale motions (VLSMs) in pipe flow and (ii) superstructures in boundary layers.
2.8. Minimal Flow Unit
- 200–300: quasi-streamwise vortices;
- 600–700: near-wall streaks.
2.9. Turbulent Length Scales
2.10. Uniform Momentum Zones
- The outward flux of vorticity is connected with the inward flux of momentum;
- The VF characteristic velocity is recalculated as follows:
- -
- If the VF moves farther from (toward) the wall, there is momentum loss (gain) compared to the master profile
- The outermost VF is not allowed to move and exchange momentum.
2.11. Quiescent Core
2.12. Uniform Thermal Zones
2.13. Uniform Concentration Zones
2.14. Uniform Momentum and Temperature Zones
2.15. Turbulence Control
- Passive: riblets, surface treatment, tripping, and shaping;
- Active: suction, blowing, and wall cooling/heating.
2.16. Dynamical Systems Viewpoint
- TW: A fixed velocity profile moving in the streamwise direction with a constant phase speed.
- RPO: Time-dependent velocity profiles that repeat exactly after a certain time period and streamwise length; in addition, these orbits may also have azimuthal rotations.
3. Magnetically Bounded Turbulent Flow
3.1. Magnetic Field Structure
3.2. Turbulence and Improved Confinement Regimes
3.3. Length Scales
3.4. Rational Safety Factors and Transport
3.5. Magnetic Islands Caused by Instabilities or Topology
3.6. Flow Shear Decorrelation
- The shear flow must be stable.
- Turbulence must remain in the flow shear region for longer than an eddy turnover time [10].
- Dynamics should be 2D.
3.7. Transport Barriers
3.7.1. ETB
3.7.2. ITB
- Normalised temperature gradient (large value: weak, small value: strong).
- Location (large value: large, small value: small).
- Width (large value: wide, small value: narrow).
- Radial electric field shear ( flow shear).
- Magnetic shear.
- Rational surface and/or magnetic islands.
- Ion barriers are the most significant for tokamaks, whereas electron barriers are more significant for helical devices.
- Simultaneous ion/electron barriers have been seen in tokamaks but not in helical devices.
- In general, magnetic shear is negative for helical devices, but both positive and negative for tokamaks.
- Differences in particle transport: There is a clear density barrier for tokamaks; the barrier disappears at higher densities in helical devices. But it exists for both when pellet injection is used.
- The toroidal angular velocity is higher for tokamaks.
- The sign of the impurity pinch is the opposite: It is inward for tokamaks (impurity accumulation) and outward for helical systems.
- ITBs are more variable for tokamaks due to the freedom of the current profile (magnetic shear), which is restricted in helical devices
- Radial electric field:
- Helical: Mainly generated by poloidal velocity.
- Tokamak: Significant contribution from toroidal rotation.
3.7.3. Both ETB and ITB
- Increase the plasma volume with reduced transport.
- Lead to improved stability against MHD modes.
- For tokamaks: Improve the bootstrap current fraction for steady-state operation.
- ITB degradation due to the ETB, e.g., reduction of rotation shear and pressure gradient at the ITB location.
- High density at the ETB can reduce NBI penetration efficiency.
- ELMs can lead to the flattening of ITB temperature gradients.
3.8. Zonal Flows
- The radial electric field from ZFs is oscillatory, complex, consists of small structures, and is driven exclusively by nonlinear wave interaction processes.
- The mean radial electric field evolves on transport timescales and is driven by, e.g., heating, fuelling, and momentum input, which determine equilibrium profiles, and in turn, regulate the radial force balance.
- The mean and ZF shear flows can interact, e.g., mean flows can suppress ZFs through turbulence decorrelation. Both flow types can tilt and break turbulent eddies.
3.9. Geodesic Acoustic Modes
- No direct radial energy or particle transport is observed.
- Oscillatory flow shearing occurs.
- GAMs act as an energy sink through Landau damping or dissipation.
- They modulate cross-field transport through pressure fluctuations (GAMs are rarely contiguous and stable).
- “The interaction of GAMs with MHD modes (static and rotating) is multi-fold. An island chain may create a GAM-like oscillation, or it may enhance and/or entrain a natural edge GAM, or it may suppress and destroy the natural GAM.”
- “At the extreme, the velocity shearing associated with the GAM can also restrict the island radial structure and thus limit the growth of the MHD mode.”
- “The flow and turbulence behaviour can be divided into three distinct spatial regions: inside the island separatrix, around the island boundary, and spatially (radially) well away from the island chain.”
3.10. Blobs
4. Transport Barriers
4.1. General
4.2. Edge
4.3. Internal
5. Core Turbulence
A Possible Reinterpretation of the High Reynolds Number Transition Region
6. An Overview of Concepts
6.1. Similarities
6.2. Differences
6.3. Question Marks
7. Discussion
- FM: Drag (pressure drop) and heat transfer.
- PP: Confinement: Cross-field anomalous transport of particles and heat.
7.1. Possible Universal Turbulent Flow Mechanisms
- Geometry;
- BCs.
- ECS/magnetic islands;
- RS-driven (zonal) flows;
- IILs/ITBs.
7.2. Nomenclature Pertaining to Radial Fluxes
7.3. Proposal for New Research Program
- Ref. [14]: “A simple, direct demonstration of shear suppression, ideally in a controlled neutral-fluid experiment, is a desirable direction for future work.”
- Ref. [15]: “Finally, it must be said that the greatest opportunities for future research on zonal flows lie in the realm of experiment. Particular challenges include the simultaneous study, correlation, and synthesis of generation dynamics in real space (i.e., via vorticity transport) and k-space (i.e., via nonlinear mode coupling), and the development of methods to control zonal flows. More generally, future experiments must emphasize challenging the theory and confronting it with stressful quantitative tests.”
- Ref. [117]: “A range of high quality diagnostics have been used in the study of ZFs, but, often lacking are comprehensive sets of simultaneous measurements of the flow oscillations, their structure (as well as their sidebands to confirm the ZFO or GAM identity), together with high-k measurements of the ambient flow and density turbulence, its properties and structure.”
- (Here, ZFO are ZF oscillations.)
8. Conclusions
- Exact coherent states/magnetic islands.
- Shear Reynolds stress-driven (zonal) flows.
- Internal interface layers (momentum, heat, concentration)/internal transport barriers.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marusic, I.; Broomhall, S. Leonardo da Vinci and fluid mechanics. Annu. Rev. Fluid Mech. 2021, 53, 1–25. [Google Scholar] [CrossRef]
- Colagrossi, A.; Marrone, S.; Colagrossi, P.; Le Touzé, D. Da Vinci’s observation of turbulence: A French-Italian study aiming at numerically reproducing the physics behind one of his drawings, 500 years later. Phys. Fluids 2021, 33, 115122. [Google Scholar] [CrossRef]
- Schmitt, F.G. Turbulence from 1870 to 1920: The birth of a noun and of a concept. C. R. Mec. 2017, 345, 620–626. [Google Scholar] [CrossRef]
- Langmuir, I. Oscillations in ionized gases. Proc. Natl. Acad. Sci. USA 1928, 14, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Kadomtsev, B.B. Plasma Turbulence; Academic Press: London, UK, 1965. [Google Scholar]
- Goedbloed, J.P.H.; Poedts, S. Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- National Research Council. Plasmas and Fluids; National Academies Press: Washington, DC, USA, 1986. [Google Scholar]
- Choudhuri, A.R. The Physics of Fluids and Plasmas: An Introduction for Astrophysicists; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Special Topic: Turbulence in Plasmas and Fluids. Available online: https://publishing.aip.org/publications/journals/special-topics/phf/turbulence-in-plasmas-and-fluids/ (accessed on 29 January 2024).
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Horton, W. Turbulent Transport in Magnetized Plasmas, 2nd ed.; World Scientific: Singapore, 2017. [Google Scholar]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers (Russian). Dokl. Akad. Nauk SSSR 1941, 30, 301–305. [Google Scholar]
- Frisch, U. Turbulence: The Legacy of A. N. Kolmogorov; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Terry, P.W. Suppression of turbulence and transport by sheared flow. Rev. Mod. Phys. 2000, 72, 109–165. [Google Scholar] [CrossRef]
- Diamond, P.H.; Itoh, S.-I.; Itoh, K.; Hahm, T.S. Zonal flows in plasma—A review. Plasma Phys. Control. Fusion 2005, 47, R35–R161. [Google Scholar] [CrossRef]
- Davidson, P.A.; Kaneda, Y.; Moffatt, K.; Sreenivasan, K.R. (Eds.) A Voyage through Turbulence; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Basse, N.P. Density fluctuations on mm and Mpc scales. Phys. Lett. A 2005, 340, 456–460. [Google Scholar] [CrossRef]
- Basse, N.P. A study of multiscale density fluctuation measurements. IEEE Trans. Plasma Sci. 2008, 36, 458–461. [Google Scholar] [CrossRef]
- Prandtl, L. Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In Verhandlungen des III; Internationalen Mathematiker-Kongresses: Heidelberg, Germany, 1905; pp. 484–491. [Google Scholar]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory, 8th ed.; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Wagner, F.; Becker, G.; Behringer, K.; Campbell, D.; Eberhagen, A.; Engelhardt, W.; Fussmann, G.; Gehre, O.; Gernhardt, J.; Gierke, G.V.; et al. Regime of improved confinement and high beta in neutral beam heated divertor discharges of the ASDEX tokamak. Phys. Rev. Lett. 1982, 49, 1408–1412. [Google Scholar] [CrossRef]
- Meinhart, C.D.; Adrian, R.J. On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids 1995, 7, 694–696. [Google Scholar] [CrossRef]
- Levinton, F.M.; Zarnstorff, M.C.; Batha, S.H.; Bell, M.; Bell, R.E.; Budny, R.V.; Bush, C.; Chang, Z.; Fredrickson, E.; Janos, A.; et al. Improved confinement with reversed magnetic shear in TFTR. Phys. Rev. Lett. 1995, 75, 4417–4420. [Google Scholar] [CrossRef]
- Strait, E.J.; Lao, L.L.; Mauel, M.E.; Rice, B.W.; Taylor, T.S.; Burrell, K.H.; Chu, M.S.; Lazarus, E.A.; Osborne, T.H.; Thompson, S.J.; et al. Enhanced confinement and stability in DIII-D discharges with reversed magnetic shear. Phys. Rev. Lett. 1995, 75, 4421–4424. [Google Scholar] [CrossRef] [PubMed]
- Basse, N.T. An algebraic non-equilibrium turbulence model of the high Reynolds number transition region. Water 2023, 15, 3234. [Google Scholar] [CrossRef]
- Zoletnik, S.; Basse, N.P.; Saffman, M.; Svendsen, W.; Endler, M.; Hirsch, M.; Werner, A.; Fuchs, C.; W7-AS Team. Changes in density fluctuations associated with confinement transitions close to a rational edge rotational transform in the W7-AS stellarator. Plasma Phys. Control. Fusion 2002, 44, 1581–1607. [Google Scholar] [CrossRef]
- Basse, N.P.; Michelsen, P.K.; Zoletnik, S.; Saffman, M.; Endler, M.; Hirsch, M. Spatial distribution of turbulence in the Wendelstein 7-AS stellarator. Plasma Sources Sci. Technol. 2002, 11, A138–A142. [Google Scholar] [CrossRef]
- Wedin, H.; Kerswell, R.R. Exact coherent structures in pipe flow: Travelling wave solutions. J. Fluid Mech. 2004, 508, 333–371. [Google Scholar] [CrossRef]
- Serber, R. The Los Alamos Primer: The First Lectures on How to Build an Atomic Bomb; University of California Press: Berkeley, California, USA, 2020. [Google Scholar]
- Dennis, D.J.C.; Sogaro, F.M. Distinct organizational states of fully developed turbulent pipe flow. Phys. Rev. Lett. 2014, 113, 234501. [Google Scholar] [CrossRef]
- Avila, M.; Barkley, D.; Hof, B. Transition to turbulence in pipe flow. Annu. Rev. Fluid Mech. 2023, 55, 575–602. [Google Scholar] [CrossRef]
- Smits, A.J.; McKeon, B.J.; Marusic, I. High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 2011, 43, 353–375. [Google Scholar] [CrossRef]
- McKeon, B.J. The engine behind (wall) turbulence: Perspectives on scale interactions. J. Fluid Mech. 2017, 817, P1. [Google Scholar] [CrossRef]
- Reynolds, O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and the law of resistance in parallel channels. Phil. Trans. R. Soc. 1883, 174, 935–982. [Google Scholar]
- Corrsin, S.; Kistler, A.L. Free-Stream Boundaries of Turbulent Flows; NACA Report 1244; National Advisory Committee for Aeronautics: Washington, DC, USA, 1955. [Google Scholar]
- Ishihara, T.; Ogasawara, H.; Hunt, J.C.R. Analysis of conditional statistics obtained near the turbulent/non-turbulent interface of turbulent boundary layers. J. Fluids Struct. 2015, 53, 50–57. [Google Scholar] [CrossRef]
- Eisma, J.; Westerweel, J.; Ooms, G.; Elsinga, G.E. Interfaces and internal layers in a turbulent boundary layer. Phys. Fluids 2015, 27, 055103. [Google Scholar] [CrossRef]
- Coles, D. The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1956, 1, 191–226. [Google Scholar] [CrossRef]
- Townsend, A.A. The Structure of Turbulent Shear Flow, 2nd ed.; Cambridge University Press: Cambridge, UK, 1976. [Google Scholar]
- Marusic, I.; Monty, J.P. Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 2019, 51, 49–74. [Google Scholar] [CrossRef]
- Marusic, I.; Monty, J.P.; Hultmark, M.; Smits, A.J. On the logarithmic region in wall turbulence. J. Fluid Mech. 2013, 716, R3. [Google Scholar] [CrossRef]
- Prandtl, L. Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech. 1925, 5, 136–139. [Google Scholar] [CrossRef]
- Prandtl, L. Bericht über neuere Turbulenzforschung. In Hydraulische Probleme; VDI-Verlag: Berlin, Germany, 1926. [Google Scholar]
- Smits, A.J. Some observations on Reynolds number scaling in wall-bounded flows. Phys. Rev. Fluids 2020, 5, 110514. [Google Scholar] [CrossRef]
- Marusic, I.; Baars, W.J.; Hutchins, N. Scaling of the streamwise turbulence intensity in the context of inner-outer interactions in wall turbulence. Phys. Rev. Fluids 2017, 2, 100502. [Google Scholar] [CrossRef]
- Andreolli, A.; Gatti, D.; Vinuesa, R.; Örlü, R.; Schlatter, P. Separating large-scale superposition and modulation in turbulent channels. J. Fluid Mech. 2023, 958, A37. [Google Scholar] [CrossRef]
- Deshpande, R.; de Silva, C.M.; Marusic, I. Evidence that superstructures comprise self-similar coherent motions in high Reynolds number boundary layers. J. Fluid Mech. 2023, 969, A10. [Google Scholar] [CrossRef]
- Berkooz, G.; Holmes, P.; Lumley, J.L. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 1993, 25, 539–575. [Google Scholar] [CrossRef]
- Jiménez, J.; Moin, P. The minimal flow unit in near-wall turbulence. J. Fluid Mech. 1991, 225, 213–240. [Google Scholar] [CrossRef]
- Hwang, Y. Near-wall turbulent fluctuations in the absence of wide outer motions. J. Fluid Mech. 1991, 723, 264–288. [Google Scholar] [CrossRef]
- de Silva, C.M.; Hutchins, N.; Marusic, I. Uniform momentum zones in turbulent boundary layers. J. Fluid Mech. 2016, 786, 309–331. [Google Scholar] [CrossRef]
- Cuevas Bautista, J.C.; Ebadi, A.; White, C.M.; Chini, G.P.; Klewicki, J.C. A uniform momentum zone-vortical fissure model of the turbulent boundary layer. J. Fluid Mech. 2019, 858, 609–633. [Google Scholar] [CrossRef]
- Aksamit, N.O.; Haller, G. Objective momentum barriers in wall turbulence. J. Fluid Mech. 2022, 941, A3. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Philip, J.; de Silva, C.M.; Hutchins, N.; Monty, J.P. The quiescent core of turbulent channel flow. J. Fluid Mech. 2014, 751, 228–254. [Google Scholar] [CrossRef]
- Krug, D.; Philip, J.; Marusic, I. Revisiting the law of the wake in wall turbulence. J. Fluid Mech. 2017, 811, 421–435. [Google Scholar] [CrossRef]
- Pirozzoli, S. Searching for the log law in open channel flow. J. Fluid Mech. 2023, 971, A15. [Google Scholar] [CrossRef]
- Yao, M.X.; Sun, Z.; Scalo, C.; Hickey, J.-P. Vortical and thermal interfacial layers in wall-bounded turbulent flows under transcritical conditions. Phys. Rev. Fluids 2019, 4, 084604. [Google Scholar] [CrossRef]
- Ebadi, A.; Cuevas Bautista, J.C.; White, C.M.; Chini, G.; Klewicki, J. A heat transfer model of fully developed turbulent channel flow. J. Fluid Mech. 2020, 884, R7. [Google Scholar] [CrossRef]
- Warhaft, Z. Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 2000, 32, 203–240. [Google Scholar] [CrossRef]
- Eisma, J.; Westerweel, J.; van de Water, W. Do coherent structures organize scalar mixing in a turbulent boundary layer? J. Fluid Mech. 2021, 929, A14. [Google Scholar] [CrossRef]
- Sreenivasan, K.R.; Antonia, R.A.; Britz, D. Local isotropy and large structures in a heated turbulent jet. J. Fluid Mech. 1979, 94, 745–775. [Google Scholar] [CrossRef]
- Shraiman, B.I.; Siggia, E.D. Scalar turbulence. Nature 2000, 405, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Antonia, R.A.; Chambers, A.J.; Britz, D.; Browne, L.W.B. Organized structures in a turbulent plane jet: Topology and contribution to momentum and heat transport. J. Fluid Mech. 1986, 172, 211–229. [Google Scholar] [CrossRef]
- Wroblewski, D.E.; Coté, O.R.; Hacker, J.M.; Dobosy, R.J. Cliff–ramp patterns and Kelvin–Helmholtz billows in stably stratified shear flow in the upper troposphere: Analysis of aircraft measurements. J. Atmos. Sci. 2007, 64, 2521–2539. [Google Scholar] [CrossRef]
- Heisel, M.; Sullivan, P.P.; Katul, G.G.; Chamecki, M. Turbulence organization and mean profile shapes in the stably stratified boundary layer: Zones of uniform momentum and air temperature. Bound.-Layer Meteorol. 2023, 186, 533–565. [Google Scholar] [CrossRef]
- Salesky, S.T. Uniform momentum and temperature zones in unstably stratified turbulent flows. J. Fluid Mech. 2023, 958, A7. [Google Scholar] [CrossRef]
- Gad-el-Hak, M. Flow Control; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Gad-el-Hak, M. Coherent structures and flow control: Genesis and prospect. Bull. Pol. Acad. Tech. 2019, 67, 411–444. [Google Scholar] [CrossRef]
- Scarselli, D.; Lopez, J.M.; Varshney, A.; Hof, B. Turbulence suppression by cardiac-cycle-inspired driving of pipe flow. Nature 2023, 621, 71–74. [Google Scholar] [CrossRef]
- Vinuesa, R. Perspectives on predicting and controlling turbulent flows through deep learning. arXiv 2023, arXiv:2310.04054. [Google Scholar]
- Budanur, N.B.; Short, K.Y.; Farazmand, M.; Willis, A.P.; Cvitanović, P. Relative periodic orbits form the backbone of turbulent pipe flow. J. Fluid Mech. 2017, 833, 274–301. [Google Scholar] [CrossRef]
- Nagata, M. Three-dimensional finite-amplitude solutions in plane Couette flow: Bifurcation from infinity. J. Fluid Mech. 1990, 217, 519–527. [Google Scholar] [CrossRef]
- Waleffe, F. Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 2003, 15, 1517–1534. [Google Scholar] [CrossRef]
- Faisst, H.; Eckhardt, B. Travelling waves in pipe flow. Phys. Rev. Lett. 2003, 91, 224502. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.M.; Eckhardt, B.; Vollmer, J. Statistical analysis of coherent structures in transitional pipe flow. Phys. Rev. E 2007, 75, 066313. [Google Scholar] [CrossRef] [PubMed]
- Pringle, C.; Kerswell, R.R. Asymmetric, helical and mirror-symmetric travelling waves in pipe flow. Phys. Rev. Lett. 2007, 99, 074502. [Google Scholar] [CrossRef] [PubMed]
- Hof, B.; van Doorne, C.W.H.; Westerweel, J.; Nieuwstadt, F.T.M.; Faisst, H.; Eckhardt, B.; Wedin, H.; Kerswell, R.R.; Waleffe, F. Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 2004, 305, 1594–1598. [Google Scholar] [CrossRef]
- Jäckel, R.; Magacho, B.; Owolabi, B.E.; Moriconi, L.; Dennis, J.C.; Loureiro, J.B.R. Coherent organizational states in turbulent pipe flow at moderate Reynolds numbers. Phys. Fluids 2023, 35, 045127. [Google Scholar] [CrossRef]
- Paranjape, C.S.; Yalnuz, G.; Duguet, Y.; Budanur, N.B.; Hof, B. Direct path from turbulence to time-periodic solutions. Phys. Rev. Lett. 2023, 131, 034002. [Google Scholar] [CrossRef] [PubMed]
- Waleffe, F. On a self-sustaining process in shear flows. Phys. Fluids 1997, 9, 883–900. [Google Scholar] [CrossRef]
- Montemuro, B.; White, C.M.; Klewicki, J.C.; Chini, G.P. A self-sustaining process theory for uniform momentum zones and internal shear layers in high Reynolds number shear flows. J. Fluid Mech. 2020, 901, A28. [Google Scholar] [CrossRef]
- Cvitanović, P.; Gibson, J.F. Geometry of turbulence in wall-bounded shear flows: Periodic orbits. Phys. Scr. 2010, 2010, 014007. [Google Scholar] [CrossRef]
- Cvitanović, P. Recurrent flows: The clockwork behind turbulence. J. Fluid Mech. 2013, 726, 1–4. [Google Scholar] [CrossRef]
- Cvitanović, P.; Artuso, R.; Mainieri, R.; Tanner, G.; Vattay, G. Chaos: Classical and Quantum; Niels Bohr Institute: Copenhagen, Denmark, 2020; Available online: https://ChaosBook.org (accessed on 29 January 2024).
- Wesson, J. Tokamaks, 2nd ed.; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Wakatani, M. Stellarator and Heliotron Devices; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Hinton, F.L.; Hazeltine, R.D. Theory of plasma transport. Rev. Mod. Phys. 1976, 48, 239–308. [Google Scholar] [CrossRef]
- Carreras, B.A. Progress in anomalous transport research in toroidal magnetic confinement devices. IEEE Trans. Plasma Sci. 1997, 25, 1281–1321. [Google Scholar] [CrossRef]
- Jenko, F.; Dorland, W.; Kotschenreuther, M.; Rogers, B.N. Electron temperature gradient driven turbulence. Phys. Plasmas 2000, 7, 1904–1910. [Google Scholar] [CrossRef]
- Dorland, W.; Jenko, F.; Kotschenreuther, M.; Rogers, B.N. Electron temperature gradient turbulence. Phys. Rev. Lett. 2000, 85, 5579–5582. [Google Scholar] [CrossRef] [PubMed]
- Diamond, P.H.; Champeaux, S.; Malkov, M.; Das, A.; Gruzinov, I.; Rosenbluth, M.N.; Holland, C.; Wecht, B.; Smolyakov, A.I.; Hinton, F.L.; et al. Secondary instability in drift wave turbulence as a mechanism for zonal flow and avalanche formation. Nucl. Fusion 2001, 41, 1067–1080. [Google Scholar] [CrossRef]
- Garbet, X.; Laurent, L.; Samain, A.; Chinardet, J. Radial propagation of turbulence in tokamaks. Nucl. Fusion 1994, 34, 963–974. [Google Scholar] [CrossRef]
- Singh, R.; Diamond, P.H. When does turbulence spreading matter? Phys. Plasmas 2020, 27, 042308. [Google Scholar] [CrossRef]
- Ott, E. Chaos in Dynamical Systems; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Zweibel, E.G.; Yamada, M. Magnetic reconnection in astrophysical and laboratory plasmas. Annu. Rev. Astron. Astrophys. 2009, 47, 291–332. [Google Scholar] [CrossRef]
- Lopes Cardozo, N.J.; Hogeweij, G.M.D.; de Baar, M.; Barth, C.J.; Beurskens, M.N.A.; De Luca, F.; Donné, A.J.H.; Galli, P.; van Gelder, J.F.M.; Gorini, G.; et al. Electron thermal transport in RTP: Filaments, barriers and bifurcations. Plasma Phys. Control. Fusion 1997, 39, B303–B316. [Google Scholar] [CrossRef]
- Hogeweij, G.M.D.; Lopes Cardozo, N.J.; de Baar, M.R.; Schilham, A.M.R. A model for electron transport barriers in tokamaks, tested against experimental data from RTP. Nucl. Fusion 1998, 38, 1881–1891. [Google Scholar] [CrossRef]
- Brakel, R.; Anton, M.; Baldzuhn, J.; Burhenn, R.; Erckmann, V.; Fiedler, S.; Geiger, J.; Hartfuß, H.J.; Heinrich, O.; Hirsch, M.; et al. Confinement in W7-AS and the role of radial electric field and magnetic shear. Plasma Phys. Control. Fusion 1997, 39, B273–B286. [Google Scholar] [CrossRef]
- Brakel, R.; W7-AS Team. Electron energy transport in the presence of rational surfaces in the Wendelstein 7-AS stellarator. Nucl. Fusion 2002, 42, 903–912. [Google Scholar] [CrossRef]
- Weller, A.; Geiger, J.; Werner, A.; Zarnstorff, M.C.; Nührenberg, C.; Sallander, E.; Baldzuhn, J.; Brakel, R.; Burhenn, R.; Dinklage, A.; et al. Experiments close to the beta-limit in W7-AS. Plasma Phys. Control. Fusion 2003, 45, A285–A308. [Google Scholar] [CrossRef]
- Fitzpatrick, R. Tearing Mode Dynamics in Tokamak Plasmas; IOP Publishing: Bristol, UK, 2023. [Google Scholar]
- McCormick, K.; Grigull, P.; Baldzuhn, J.; Feng, Y.; Fiedler, S.; Giannone, L.; Hartfuß, H.; Herrmann, A.; Hildebrandt, D.; Hirsch, M.; et al. Core-edge studies with boundary island configurations on the W7-AS stellarator. Plasma Phys. Control. Fusion 1999, 41, B285–B304. [Google Scholar] [CrossRef]
- Feng, Y.; Jakubowski, M.; König, R.; Krychowiak, M.; Otte, M.; Reimold, F.; Reiter, D.; Schmitz, O.; Zhang, D.; Beidler, C.D.; et al. Understanding detachment of the W7-X island divertor. Nucl. Fusion 2021, 61, 086012. [Google Scholar] [CrossRef]
- Biglari, H.; Diamond, P.H.; Terry, P.W. Influence of sheared poloidal rotation on edge turbulence. Phys. Fluids B 1990, 2, 1–4. [Google Scholar] [CrossRef]
- Lehnert, B. Short-circuit of flute disturbances at a plasma boundary. Phys. Fluids 1966, 9, 1367–1372. [Google Scholar] [CrossRef]
- Gohil, P. Edge transport barriers in magnetic fusion plasmas. C. R. Phys. 2006, 7, 606–621. [Google Scholar] [CrossRef]
- Wolf, R.C. Internal transport barriers in tokamak plasmas. Plasma Phys. Control Fusion 2003, 45, R1–R91. [Google Scholar] [CrossRef]
- Ida, K.; Fujita, T. Internal transport barrier in tokamak and helical plasmas. Plasma Phys. Control. Fusion 2018, 60, 033001. [Google Scholar] [CrossRef]
- Gohil, P. Dynamics of the formation, sustainment and destruction of transport barriers in magnetically contained fusion plasmas. Plasma Phys. Control. Fusion 2002, 44, A37–A61. [Google Scholar] [CrossRef]
- Zhao, K.J.; Chen, Z.P.; Shi, Y.; Diamond, P.H.; Dong, J.Q.; Chen, Z.Y.; Ding, Y.H.; Zhuang, G.; Liu, Y.B.; Zhang, H.Q.; et al. Enhancements of residual Reynolds stresses by magnetic perturbations in the edge plasmas of the J-TEXT tokamak. Nucl. Fusion 2020, 60, 106030. [Google Scholar] [CrossRef]
- Rice, J. Driven Rotation, Self-Generated Flow, and Momentum Transport in Tokamak Plasmas; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Gonçalves, B.; Hidalgo, C.; Pedrosa, M.A.; Orozco, R.O.; Sánchez, E.; Silva, C. Role of turbulence on edge momentum redistribution in the TJ-II stellarator. Phys. Rev. Lett. 2006, 96, 145001. [Google Scholar] [CrossRef]
- Itoh, K.; Itoh, S.-I.; Diamond, P.H.; Hahm, T.S.; Fujisawa, A.; Tynan, G.R.; Yagi, M.; Nagashima, Y. Physics of zonal flows. Phys. Plasmas 2006, 13, 055502. [Google Scholar] [CrossRef]
- Fujisawa, A. A review of zonal flow experiments. Nucl. Fusion 2009, 49, 013001. [Google Scholar] [CrossRef]
- Zhao, K.J.; Dong, J.Q.; Li, J.Q.; Yan, L.W. A brief review: Experimental investigation of zonal flows and geodesic acoustic modes in fusion plasmas. Plasma Sci. Technol. 2018, 20, 094006. [Google Scholar] [CrossRef]
- Nishizawa, T.; Almagri, A.F.; Anderson, J.K.; Goodman, W.; Pueschel, M.J.; Nornberg, M.D.; Ohshima, S.; Sarff, J.S.; Terry, P.W.; Williams, Z.R. Direct measurement of a toroidally directed zonal flow in a toroidal plasma. Phys. Rev. Lett. 2019, 122, 105001. [Google Scholar] [CrossRef] [PubMed]
- Conway, G.D.; Smolyakov, A.I.; Ido, T. Geodesic acoustic modes in magnetic confinement devices. Nucl. Fusion 2022, 62, 013001. [Google Scholar] [CrossRef]
- Diamond, P.H.; Kim, Y.-B. Theory of mean poloidal flow generation by turbulence. Phys. Fluids B 1991, 3, 1626–1633. [Google Scholar] [CrossRef]
- Dimits, A.M.; Bateman, G.; Beer, M.A.; Cohen, B.I.; Dorland, W.; Hammett, G.W.; Kim, C.; Kinsey, J.E.; Kotschenreuther, M.; Kritz, A.H.; et al. Comparisons and physics basis of tokamak transport models and turbulence simulations. Phys. Plasmas 2000, 7, 969–983. [Google Scholar] [CrossRef]
- Gruzinov, I.; Das, A.; Diamond, P.H.; Smolyakov, A. Fast zonal field dynamo in collisionless kinetic Alfven wave turbulence. Phys. Lett. A 2002, 302, 119–124. [Google Scholar] [CrossRef]
- Fujisawa, A.; Itoh, K.; Shimizu, A.; Nakano, H.; Ohshima, S.; Iguchi, H.; Matsuoka, K.; Okamura, S.; Minami, T.; Yoshimura, Y.; et al. Experimental evidence of a zonal magnetic field in a toroidal plasma. Phys. Rev. Lett. 2007, 98, 165001. [Google Scholar] [CrossRef]
- Freidberg, J.P. Ideal MHD; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Garcia, O.E. Blob transport in the plasma edge: A review. Plasma Fusion Res. 2009, 4, 019. [Google Scholar] [CrossRef]
- Bisai, N.; Banerjee, S.; Zweben, S.J.; Sen, A. Experimental validation of universal plasma blob formation mechanism. Nucl. Fusion 2022, 62, 026027. [Google Scholar] [CrossRef]
- Basse, N.P.; Zoletnik, S.; Saffman, M.; Baldzuhn, J.; Endler, M.; Hirsch, M.; Knauer, J.P.; Kühner, G.; McCormick, K.; Werner, A.; et al. Low- and high-mode separation of short wavelength turbulence in dithering Wendelstein 7-AS plasmas. Phys. Plasmas 2002, 9, 3035–3049. [Google Scholar] [CrossRef]
- Basse, N.P.; Zoletnik, S.; Antar, G.Y.; Baldzuhn, J.; Werner, A.; W7-AS Team. Characterization of turbulence in L- and ELM-free H-mode Wendelstein 7-AS plasmas. Plasma Phys. Control. Fusion 2003, 45, 439–453. [Google Scholar] [CrossRef]
- Maeyama, S.; Watanabe, T.-H.; Nakata, M.; Nunami, M.; Asahi, Y.; Ishizawa, A. Multi-scale turbulence simulation suggesting improvement of electron heated plasma confinement. Nat. Commun. 2022, 13, 3166. [Google Scholar] [CrossRef] [PubMed]
- Saffman, P.G. Vortex Dynamics; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Boatto, S.; Crowdy, D. Point-vortex dynamics. In Encyclopedia of Mathematical Physics; Françoise, J.-P., Naber, G.L., Tsun, T.S., Eds.; Academic Press: Cambridge, MA, USA, 2006; pp. 66–79. [Google Scholar]
- Saffman, P.G. Problems and progress in the theory of turbulence. In Structure and Mechanics of turbulence, II; Fiedler, H., Ed.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1978; Volume 76, pp. 274–306. [Google Scholar]
- Basse, N.T. On control of turbulent flows in fluids and plasmas: Self-sustaining and -regulating processes. Inventions 2024, In preparation. [Google Scholar]
Edge State | Edge Diffusion | Edge Gradient | Edge Radial Flux |
---|---|---|---|
Coefficient | |||
FM: TBL | Large () | Steep | High |
FM: LBL | Small () | Moderate | Low |
PP: L-mode | Large | Moderate | High |
PP: H-mode (ETB) | Small | Steep | Low |
Core State | Core Diffusion | Core Gradient | Core Radial Flux |
---|---|---|---|
Coefficient | |||
FM: No IIL | Large | Moderate | High |
FM: With IIL | Small | Steep | Low |
PP: No ITB | Large | Moderate | High |
PP: With ITB | Small | Steep | Low |
FM | PP |
---|---|
ECS, VLSM | Magnetic islands, MHD |
RS-driven flow | RS-driven ZF |
IIL | ITB |
Wake | ITB |
RC structures | Sawtooth crashes |
FM | PP | Edge Radial |
---|---|---|
Flux | ||
Laminar flow | H-mode | Low |
Laminar regions | No ELMs | Low |
Laminar–turbulent transition | H-L transition | |
Turbulent puffs | ELMs | High |
Laminar–turbulent transition | H-L transition | |
Turbulent flow | L-mode | High |
State | Radial Flux | Manifestations |
---|---|---|
FM: Laminar flow | Low | Small pressure drop |
Low heat transfer | ||
FM: Turbulent flow | High | Large pressure drop |
High heat transfer | ||
PP: Improved confinement | Low | Long energy and |
(L-mode with ITB) | particle confinement times | |
(H-mode with/without ITB) | ||
PP: Degraded confinement | High | Short energy and |
(L-mode without ITB) | particle confinement times |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basse, N.T. The Chimera Revisited: Wall- and Magnetically-Bounded Turbulent Flows. Fluids 2024, 9, 34. https://doi.org/10.3390/fluids9020034
Basse NT. The Chimera Revisited: Wall- and Magnetically-Bounded Turbulent Flows. Fluids. 2024; 9(2):34. https://doi.org/10.3390/fluids9020034
Chicago/Turabian StyleBasse, Nils Tångefjord. 2024. "The Chimera Revisited: Wall- and Magnetically-Bounded Turbulent Flows" Fluids 9, no. 2: 34. https://doi.org/10.3390/fluids9020034
APA StyleBasse, N. T. (2024). The Chimera Revisited: Wall- and Magnetically-Bounded Turbulent Flows. Fluids, 9(2), 34. https://doi.org/10.3390/fluids9020034