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Abstract: A solvent in suspension often has non-Newtonian properties. To date, in order to determine
these properties, many constitutive equations have been suggested. In particular, power-law fluid,
which describes both dilatant and pseudoplastic fluids, has been used in many previous studies
because of its simplicity. Then, the Herschel-Bulkley model is used, which describes fluid with
yield stress. In this study, we considered how a non-Newtonian solvent affected the equilibrium
position of a particle and relative viscosity using the regularized lattice Boltzmann method for fluid
and a two-way coupling scheme for the particle. We focused on these methods so as to evaluate the
non-Newtonian effects of a solvent. The equilibrium position in Bingham fluid was closer to the wall
than that in Newtonian or power-law fluid. In contrast, the tendency of relative viscosity in Bingham
fluid for each position was similar to that in power-law fluid.

Keywords: rheology; Bingham fluid; Herschel-Bulkley model; regularized lattice Boltzmann method;
virtual flux method; Segré and Silberberg effect

1. Introduction

Suspensions which contain solid particles are used in various products, including
foods, pharmaceuticals, cosmetics, plastics, fertilizers, construction, and more. These
suspensions are complex and affected by solvent properties and suspended particle size,
shape, and volume fraction. It is important to understand suspension rheology so as to
understand and manipulate flow behavior [1].

In addition, microstructures in suspension, including the relative positions of parti-
cles, are important in order to understand rheology [2]. In dispersal systems, including
neutrally buoyant rigid particles, it has been suggested that suspension flow demonstrated
rheological properties such as effective viscosity, shear thinning, or shear thickening [3].
One of the previous results on viscosity is Einstein’s viscosity formula [4], as expressed in
Equation (1):

_ et

1o
where 7 is relative viscosity, 7. is effective viscosity, 7 is the viscosity of particle-free fluid,
[7] is intrinsic viscosity, and ¢ is a particle area fraction. The intrinsic viscosity [¢] is [y] = 2
in two-dimensional flow and [¢] = 2.5 in three-dimensional flow [5]. This formula is used
to estimate the relative viscosity of a suspension from the particle concentration of the
suspension. However, Einstein’s viscosity formula has application conditions, including
the following: the solvent in suspension must be a Newtonian fluid, the particles must
be dispersed homogeneously, the particle concentration must be low, and the particles
must be microscale. Thus, if the solvent is non-Newtonian or particles are dispersed
inhomogeneously, this formula cannot be applied. As a result, many studies have been
conducted in which Einstein’s viscosity formula cannot be applied.

U] =1+ [n]¢, 1)
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Concerning studies focused on microstructure in suspension, Segré and Silberberg [6]
reported the phenomenon that particles reached a certain radial position in a channel flow
using Newtonian fluid. Okamura et al. [7] suggested that viscosity could be estimated
from particles” positions in a channel flow where particles are not regularly distributed
using Newtonian fluid. In short, particle positions are one of the most important factors
that are able to determine macroscopic properties, so we need to know particle motion to
understand the rheological properties of suspensions.

Non-Newtonian fluid is frequently applied in engineering or daily life. On the other
hand, in previous studies, Newtonian fluid was used for a solvent in suspension. However,
non-Newtonian fluid is also seen as a solvent of suspension. For example, blood is a kind
of shear thinning fluid, and studies about flow, including blood cells and the migration of
viruses or drugs in blood, are very important [8]. Muller et al. [9] reported that Newtonian
fluid which contains particles can have non-Newtonian properties. Hu et al. [10] suggested
that the equilibrium position of a particle differs, depending on the power-law index using
power-law fluid as a solvent. Concerning studies about rheology using non-Newtonian
fluid, Tanaka et al. [11] suggested that non-Newtonian properties of a solvent affected
the relative viscosity and intrinsic viscosity of suspensions. Masuyama and Fukui [12]
reported that a power-law fluid affects particle migration and rheological property in
an inertial flow. As mentioned above, many studies have used a Newtonian fluid as a
solvent, and power-law fluid has often been used in the studies about non-Newtonian
fluid. On the other hand, in a study using a solvent that had yield stress in a channel flow,
Sobhani et al. [13] suggested that the equilibrium position of the rigid elliptical particle
in Bingham fluid was different from that in Newtonian fluid when the particle with
gravity settled. Furthermore, Chaparian et al. [14] reported that Bingham fluid affected
the equilibrium position when elastoviscoplastic fluid was used. Siqueira and de Souza
Mendes [15] suggested that the diffusion speed of particles in plug flow is extremely slow
to migrate. These previous studies focused on particle migration in fluid that has yield
stress, but did not reveal all of the relationship between particle migration and viscosity.
Thus, we used the Herschel-Bulkley model [16] as a model that describes non-Newtonian
fluid. In this study, the purpose is to investigate how non-Newtonian property, especially
Bingham fluid, affects the equilibrium position of a single suspended particle and relative
viscosity in two-dimensional channel flow.

2. Methods
2.1. Computational Model

In this study, we analyzed two-dimensional flow using a two-way coupling scheme [17].
Figure 1 shows the numerical model of this study. Channel width is 2/, and channel length
is D. We made channel width equal to channel length, and the grid resolution was set
to D x 2] = 200Ax x 200Ay. Then, the periodic boundary condition [17] was applied
in the flow direction. We used Newtonian fluid, dilatant fluid, pseudoplastic fluid, and
Bingham fluid. Regarding Reynolds number, Stickel and Powell indicated that inertial
effects are important in the case of the particle Reynolds number Re, > 1073 [2]. The
particle Reynolds number Rey, is defined as follows [18]:

Uy X 2r

Rep = x C = Re x C?, 2)
where 2r is the particle diameter and C is the particle confinement. In this study, in order
to consider particle inertial effects, Reynolds number Re was set to 32, i.e., the particle
Reynolds number Re, = 0.32. These are the same conditions as that of the previous
study [12]. We used a circular rigid particle with a diameter of 2 as a suspended particle in
this study. The confinement C that represents particle size to the channel size C = 2r /2],
0.10, 0.20, and 0.25. We used the virtual flux method [18-21] to express a rigid particle on
a Cartesian grid. In this study, simulations were performed until non-dimensional time
T = 400, and the simulations of lift force and relative viscosity were performed at every
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y-axis position of the particle until non-dimensional time T = 10 fixed the particle y-axis
position considering only the x-axis translational motion and rotational motion. We did not
treat a rigid suspended particle as colloids, and we do not consider the Brownian motion
because the particle was sufficiently large and we considered that a particle only receives
fluid force.

y=1

b 4
periodic L, =21
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Figure 1. Schematic view of a rigid suspended particle in a pressure-driven flow through a 2D
channel. The initial position of a particle is changeable.

2.2. Governing Equation for Fluids

In this study, we used the regularized lattice Boltzmann equation [22,23] as a governing
equation. One of the advantages of this method is reducing the amount of memory usage
in the analysis. In this method, pressure distribution function p, is expressed using
equilibrium pressure distribution function p;! and non-equilibrium part of the pressure
distribution function p;°4, as in Equation (3).

1
pa(t + 0t x + exdt) = pa(t,x) + (1 — A)pﬂeq(t,x), 3)

where e, is the discrete velocity vector, and A is the relaxation time. The non-equilibrium
part of the pressure distribution function p, ' and A are obtained as follows:

w,
pa N(t,x) ~ sz (eaierxj - Cs25ij)ngq, 4)
1 3v(y)
A==
5t ar (5)

where w, is the weight coefficient, ¢, is the speed of sound, (5,']' is Kronecker’s delta, H;}eq

is the non-equilibrium part of the stress tensor, v is the kinematic viscosity and apparent
viscosity, 7 is the shear rate, and c is the lattice speed. In addition, the relationship between
¢; and ¢ is defined as ¢; = ¢/+/3. In this study, we chose relaxation time A as A = 0.8.

2.3. Herschel-Bulkley Model

In this study, we used the Herschel-Bulkley model as a model that can express a
non-Newtonian solvent [13,24]. This model can change solvent properties by changing the
power-law index n and Bingham number Bxn. In this model, the relationship between n

and Bn is expressed as follows:
D n
Bn=2 () ) (6)
m \ Ugp
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where 19 is the yield stress, m is the power-law consistency, D is the characteristic length,
and ug is the characteristic velocity. The power-law consistency m in Equation (6) is derived
from the following equation using Reynolds number Re:

2—nmyn
u D
Re= -2 _——, )
m
Shear rate 1 is derived from Equation (8) using second invariant of the strain stress
tensor Dyy, and is derived from Equation (9) using the stress rate tensor S;;:

v = /2Dy, 8)

2
D =) SijSij, 9)
ij
Kinematic viscosity v in Equation (5) is obtained from the following equation using
Equation (8):

(10)

{v("y) = 24wy (|7l > w)
§=0 (Il <)’

In Equation (10), when shear stress is less than yield stress, the shear rate ¢ is y = 0,
and kinematic viscosity v () becomes discontinuous at the center of the channel. In order
to eliminate this problem, Papanastasiou [25] proposed the following equation:

T

ry(1-e*MW)-+np7”‘1 (11)

v(7) =
where M is a constant to eliminate discontinuousness and is expressed as M = 200D /u [26].
In this study, relaxation time A in each lattice point is derived from Equation (5) using
Equation (11).

2.4. Governing Equation for a Suspended Particle

In this study, we used a two-way coupling scheme [17] considering translational
motion and rotational motion of suspended particle. Suspended particle motion is ex-
pressed by Newton’s second law for translational motion and angular equation for rotation

as follows:
d2x

p
Fp =mp a2 (12)
T, — Idzﬁ (13)
p— a2’

where Fp, mp, xp, Tp, I, and 6, are the external force vectors for particle, particle mass,
position vector, torque, moment of inertia, and particle angle, respectively. Equations (12)
and (13) are solved using the explicit third-order Adams-Bashforth method [27]. Then, we
defined the force acting on a particle in the x and y directions as Fy and F, respectively,
as follows:

F, =) pAl+) 1Al (14)
F, =Y pAl+) 1Al (15)

where p, 7, and Al are the pressure, viscous stress, and small area, respectively, of the
particle. Drag coefficient Cp and lift coefficient Cy, are obtained using F as follows:

F
Cp=—=

= m, (16)
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L= il
pug?r’

(17)

where p is the density, and r is the particle radius. In this study, particle density is equal to
fluid density because we studied a neutrally buoyant particle.

2.5. Relative Viscosity

The mass flow rate Qg of a particle-free fluid in a Poiseuille flow with a well-developed
boundary layer is obtained as follows:

_ 21 Apo

QO - 3170 Lx 7

(18)

where 7 is the viscosity of particle-free fluid, and Apy is the pressure difference over a
channel length L, for particle-free fluid. The mass flow rate Q of a particle suspension is
assumed to be obtained in the following equation in a similar way as Equation (18) [17]:

_ 2 Ap
377eff APOI

(19)

where 7. is the effective viscosity, and Ap is the pressure difference over a channel length
L, for particle suspension. Therefore, when the relationship between mass flow rate of
particle suspension Q and that of particle-free fluid Qg is Q = Qo, the relative viscosity %
can be obtained from the following equation:

— % ~ %. (20)
X

3. Results and Discussion
3.1. Validation for Velocity Profile and Apparent Viscosity without Particles
Figure 2 shows the results of the velocity profile of a particle-free fluid for each solvent.

The green, black, and blue lines show power-law fluid (Bn = 0,n = 0.8,1.0,1.2), and the
red line shows Bingham fluid (Bn = 1,n = 1.0), respectively. The velocity profile for
power-law fluid in two-dimensional flow is expressed as follows [28]:

2n+1 y 5
= 1—|= 21

n+1 ‘ I ! 1)

u(y)

Up

where u(y) is the velocity in the x direction, and I is half of the channel width. The error
between the theoretical value and the analysis result was less than 1% for each solvent.
In Bingham fluid, plug flow was confirmed near the center of the channel, as found
in the previous study [26]. Figure 3 shows the apparent viscosity v(7) obtained from
Equation (11). The result demonstrated that the apparent viscosity v () was higher near
the channel center because the shear rate y at the channel center in the y direction was lower.
Therefore, the red zone in Figure 3 shows the plug flow area, which was also observed by
Mahmood et al. [29].

3.2. Validation for Particle Migration in Power-Law Fluid

We confirmed the validity of the inertial migration of a particle using power-law fluid
as a solvent. To compare the equilibrium position of a particle with that of previous studies,
the channel length Ly, which is different from that in Figure 1, was set to Ly = 4D, Reynolds
number Re was Re = 40, confinement C was C = 0.25, and power-law index n took four
values; n = 0.6, 0.8, 1.0, 1.2. Reynolds number, confinement, and power-law index were
the same as those used in previous studies [10] in order to compare with its results. Figure 4
shows the computed result of inertial migration of a particle, and the vertical and horizontal
lines are the y-axis position and non-dimensional time T, respectively. This result suggested
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that the equilibrium position of a particle did not depend on the particle’s initial position.
Then, we confirmed that the equilibrium position of the particle was closer to the center,
as power-law index n was higher. Table 1 shows a comparison between the numerical
results and those from the previous study [10] and the difference between the two results.
We obtained values close to those from previous studies and a similar tendency for each
power-law index.

3.3. Inertial Migration of a Suspended Particle Using Herschel-Bulkley Model
3.3.1. Dependence on Solvents

In this section, we investigated how a solvent affected the equilibrium position of a
particle when confinement was the same. Figure 5 shows the migration history of a particle
for each solvent when a particle started to flow at y// = —0.50. The vertical line is the
y-axis position of a particle, and the horizontal line is non-dimensional time T. Particle
confinement C is C = 0.10. The equilibrium position in Bingham fluid was closer to the
wall than that in power-law fluid. The difference in the equilibrium position between
pseudoplastic fluid (Bn = 0,n = 0.8) and Bingham fluid (Bn = 1,n = 1.0) was 0.06, which
is less than half of a particle. We consider that these results were caused by the similarity
of the velocity profile near the wall in pseudoplastic fluid (Bn = 0,n = 0.8) and that in
Bingham fluid (Bn = 1,n = 1.0) in Figure 2.
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T 05 Bn=0,n= 0.8
% Bn=0,n= 1.0
E Bn=0,n=1.2
2 Bn=1,n=1.0

OO 1 1 1
-1.0 -0.5 0.0 0.5 1.0
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Figure 2. Velocity profiles of power-law fluid and Bingham fluid in a channel without particles.
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Figure 3. Apparent viscosity v() distribution without particles in Bingham fluid (Bn = 1,n = 1.0).
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Table 1. Equilibrium positions for different power-law indices.

Power-Law Index n 0.6 0.8 1.0 1.2
Present —0.515 —0.464 —0.429 —0.402
Hu et al. [10] —0.50 —0.45 —0.42 —0.40
Difference [%] 3.0 3.1 2.1 0.50
-0.2
y/l=-0.6
" —n = 0.6 —n =08 N=10 =——n=12
-03 [} y/l=-03
\----n =06 ====n=08 N=10 ====n=12
_—04F \C=
f \\
= \
—05 1 >
-0.6 [
—-0.7 i 4 k k
0 20 40 60 80 100

Non-dimensional time 7" [-]

Figure 4. Suspended particle migration trajectories for different power-law indices.

0.00

—0.10f ~—————————— Bn=0,n=0.8

—0.20 S—
. —0.30F — Bn=1,n=1.0
= —0.40}
050

—0.60 &

—0.70F

—0.80 . L L .

0 10 20 30 40 50

Non-dimentional time 7 [-]

Figure 5. Suspended particle migration trajectories for different solvents (C = 0.10).

Next, Figure 6 shows the difference in migration history for each initial position. The
vertical line is the y-axis position of a particle, and the horizontal line is non-dimensional
time T. The dashed lines and the solid lines show the results of the particle’s initial positions
of y/l = —0.10 and —0.50, and the black lines and red lines show Newtonian fluid and
Bingham fluid, respectively. In Bingham fluid, the equilibrium position did not depend on
the initial position of a particle as in the case of Newtonian fluid. However, when a particle
started to flow near the center of the channel, the time to reach the equilibrium position in
Bingham fluid was three times as long as that in Newtonian fluid. We considered lift force
acting on the particle, and the particle was difficult to move in the y direction in plug flow
that was seen in Figure 2. On the other hand, when a particle started to flow away from
the center, the tendency of particle migration in Bingham fluid was similar to that in other
solvents because shear rate y was not 0 except at the center of the channel. Then, particle
confinement was changed, and the particle began to flow near the center, as in C = 0.10.
Figure 7 shows the result of C = 0.20, and Figure 8 shows that of C = 0.25. The vertical
line is the y-axis position of a particle, and the horizontal line is non-dimensional time T.
These results suggested that it was difficult for the particle to migrate near the center of the
channel in Bingham fluid, similar to that of C = 0.10. However, the difference in the time
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for a particle to reach the equilibrium position was smaller than that of C = 0.10, because it
was easier for a high-confinement particle to protrude from plug flow at the center, and it
became more difficult for plug flow to affect particle migration. As a result, the equilibrium
positions were Bingham, pseudoplastic, Newtonian, and dilatant fluids, in order, starting
from the channel wall at each confinement. In other words, solvents had a greater influence
on the equilibrium position than particle confinements. Thus, it was suggested that the
choice of solvent affected particle migration.

————— Bn=0,n=1.0,y/l=-0.10
————— Bn=1n=1.0,y/l=-0.10
Bn=0,n=1.0,y/l=-050
Bn=1n=1.0,y/l=-050

0.00

—0.10F = - - = _ _

—0.20F ™

—-0.30F \

—0.40F \

= _0.50 AN ~
—0.60} S .
—0.70}

—-0.80 L .

0 100 . 200 300
Non-dimentional time 7 [-]

b

v

Figure 6. Suspended particle migration trajectories from different initial positions (C = 0.10).

0.00
~0.10 Bn— 0 n10
—0.20 Bn=0,n=1.2
_ 030 Bn=1,n=1.0
= —040
= 050
—0.60 |
—0.70 |
—0.80 . L : '
0 20 40 60 80 100

Non-dimensional time 7 [-]
Figure 7. Suspended particle migration trajectories for different solvents (C = 0.20).

3.3.2. Dependence on Confinements

In this section, we investigate how confinement affected the equilibrium position
when the solvent was the same. Figure 9 shows the migration history of a particle of three
patterns of confinement (C = 0.10, 0.20, and 0.25) for each solvent; the vertical line is the
y-axis position, and the horizontal line shows non-dimensional time T. For each solvent,
how to migrate and the time until a particle reached the equilibrium position were not
different in Figure 9a—d when confinement C was C = 0.20 and 0.25. However, this time
was longer in the case of C = 0.10 than in C = 0.20 and 0.25. We consider that a particle had
difficulty migrating to the equilibrium position because particle confinement was lower
and lift force acting on a particle was lower, which means that fluid force acting on a particle
was lower as particle confinement became lower. Moreover, as mentioned in Section 3.3.1,
the time to reach the equilibrium position for C = 0.20 and 0.25 was about three and a half
times and seven times, respectively, as long as that for C = 0.10 in Figure 9d. Therefore, it
was suggested that a lower confinement particle was more affected by plug flow.
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; —040 -
~ 050 =
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Figure 8. Suspended particle migration trajectories for different solvents (C = 0.25).
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................... C =025 v () 25
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(a) (b)
— ¢ =0.10 — (€ =0.10
—————— C =0.20 -=--=- =020
................... C — 0.25 C — 0.25
0.00 0.00
—0.10f —0.10f
—0.20p —0.20F%
— —0.30F; — —0.30
= —0.40 R N ~ —0.40
~ —0.50f ™ —0.50
—0.60 —0.60
—0.70F —0.70F
—-0.80 L L —-0.80 L L
0 100 200 300 0 100 200 300
Non-dimensional time 7' [-] Non-dimensional time 7 [-]
(o) (d)

Figure 9. Suspended particle migration trajectories for different confinements. (a) Bn =0, n = 0.8;
(b)Bn=0,n=10;(c)Bn=0,n=12;(d)Bn =1, n =1.0.

3.4. Lift Force Acting on a Particle
3.4.1. Dependence on Solvents

In this section, we consider the relationship between lift force and the equilibrium
position of a particle by investigating how a solvent affected lift force acting on a particle
in an inertial flow. The simulation was performed fixing the particle’s y-axis position
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and only translational motion and rotational motion were considered. Figures 10-12
show the lift coefficient for each y-axis position of a particle when confinement C was
C = 0.10, 0.20, and 0.25; the vertical line is lift coefficient C;, and the horizontal line shows
the y axis position. There were two points that had a lift coefficient C; = 0: at the center of
the channel and near the wall for each solvent and confinement. We found that the point
that lift coefficient C;, = 0 near the wall corresponded with the equilibrium position in
Figure 9. The lift coefficient profile in power-law fluid was a convex upward parabola
in any confinement. On the other hand, the lift coefficient profile in Bingham fluid was
convex downward at 0 < y/I < 0.3 and convex upward at 0.3 < y/I < 0.7. Moreover,
the lift coefficient in Bingham fluid was lower at y/! < 0.3 and higher at y// > 0.3 than
that in power-law fluid. We found that in Bingham fluid, it was difficult for a particle was
to migrate to the wall when a particle was near the center of the channel and vice versa.
We considered that this effect may cause the difference in trajectories from different initial
positions of a particle in Figure 6 when confinement C = 0.10. Therefore, it was suggested
that plug flow in Bingham fluid also affected lift force acting on a particle and that this
effect contributed to particle migration.

0.16
0.08
% 0.00&
5 —008 |
2
&
5 -016 |
é ———Bn=0,n=08
5 —024 —tf—— Bn=0,n=1.0
—{}—Bn=0,n=1.2
—-032 —O— Bn=1,n=1.0

—040 . L . L .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Normalized y-axis position y// [-]

Figure 10. Lift coefficient for different solvents (C = 0.10). Note that the straight black line represents
CrL=0.

0.16
008 |
$ 0.00 £
g —-0.08 |
=
= —0.16 |
8_024 | [—O—sBn=0n=0s8
= —A—Bn=0,n=10
—032 }+ —{}—Bn=0,n=12
——Bn=1,n=10

—0.40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Normalized y-axis position y// [-]

Figure 11. Lift coefficient for different solvents (C = 0.20). Note that the straight black line represents
Cr=0.

3.4.2. Dependence on Confinements

In this section, we investigated how confinement affected lift force acting on a particle
when a solvent was the same. Figure 13 shows the lift coefficient of three patterns of
confinement, C = 0.10, 0.20, and 0.25, for each solvent. The vertical line is the lift coefficient
C1, and the horizontal line shows the y-axis position. We found that lift coefficient was
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Lift Coefficient C; [-]

Lift Coefficient C; [-]

higher for each solvent as confinement C was higher. This result caused the force from the
fluid to become stronger because the particle confinement was higher.
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Figure 12. Lift coefficient for different solvents (C = 0.25). Note that the straight black line represents
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Figure 13. Lift coefficient for different confinements. (a) Bn = 0, n = 0.8; (b) Bn = 0, n = 1.0;
(¢) Bn =0, n =1.2;(d) Bn = 1, n = 1.0. Note that the straight black line represents C;, = 0.

As a result, the position where lift coefficient C;, = 0 was closer to the center as
confinement was higher. It was suggested that lift force acting on a particle was closely
associated with the equilibrium position of a particle because the equilibrium position was
closer to the wall as particle confinement was higher in Figure 9.
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3.5. Relative Viscosity
3.5.1. Dependence on Solvents

In this section, we investigate how a solvent affected relative viscosity. Figures 14-16
show the relationship between the y-axis position of a particle and relative viscosity for the
same confinement. The vertical line is relative viscosity #, and the horizontal line is the y-axis
position of a particle. In Figures 14-16, the closed symbol is relative viscosity when a particle
is at the equilibrium position and the open symbols are that when we fixed the y-axis position
of a particle as the same as that in the analysis of Section 3.4. Relative viscosity, when a par-
ticle is at the same y-axis position and a solvent was different, was higher in the order of di-
latant (Bn = 0, n = 1.2) > Newtonian (Bn = 0, n = 1.0) > Bingham (Bn =1, n = 1.0) >
pseudoplastic (Bn = 0, n = 0.8). Tanaka et al. [11] reported that when particles were reg-
ularly distributed using power-law fluid, relative viscosity was higher in the order of
dilatant fluid (Bn =0, n = 1.2) > Newtonian fluid (Bn =0, n = 1.0) > Bingham fluid
(Bn =1, n = 1.0) > pseudoplastic fluid (Bn = 0, n = 0.8), and it was suggested that rela-
tive viscosity became higher as power-law index # was higher when a particle at the same
y axis position and a solvent was different.

1.040

1.030 |

1.020 |

1.010 |

Relative viscosity 7 [-]

1.000 |

00 01 02 03 04 05 06 07 08
DY

Figure 14. Relative viscosity for different solvents (C = 0.10). Note that the closed symbols are the
particle at the equilibrium position.

1.140
X —{()——Bn=0,n=10.8

1.120 — A Bn=0,n=1.0
1100 b+ —f }——Bn=0,n=1.2
: ——Bn=1,n=10
z 1.080 F
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21040 |
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e

Figure 15. Relative viscosity for different solvents (C = 0.20). Note that the closed symbols are the
particle at the equilibrium position.

Then, as a particle flowed farther away from the center of the channel, relative viscosity
became higher for each solvent. This result is similar to the previous study using Newtonian
fluid by Okamura et al. [7], and we consider that this tendency was seen when a solvent
is a non-Newtonian fluid. The value of relative viscosity in Bingham fluid is close to that
in pseudoplastic fluid. We consider that these results were caused by similarity of the
velocity profile near the channel wall in pseudoplastic fluid (Bn = 0, n = 0.8) and Bingham



Fluids 2024, 9, 37

13 of 15

£1.200

fluid (Bn =1, n = 1.0), which suggests that shear velocity near the channel wall in the y
direction affected relative viscosity similarly to the particle equilibrium position. On the
other hand, velocity profile near the channel center in Bingham fluid (Bn = 1, n = 1.0) was
completely different from that in pseudoplastic fluid (Bn = 0, n = 0.8), but the value of
relative viscosity in Bingham fluid is close to that in pseudoplastic fluid near the channel
center. We consider that the particle near the channel center did not contribute to the
increase in relative viscosity. Thus, these results suggest that plug flow did not affect
relative viscosity when the particle was near the channel center.

1.280
) —{——Bn=0,n=08
1.240 —N—Bn=0,n=1.0
1200 + —{}—Bn=0,n=12
—<>— Bn=1,

1.160 |
1.120
1.080 |

Relative viscosity 7 [-]

1.040 |
1.000 |

00 01 02 03 04 05 06 07 08
WL
Figure 16. Relative viscosity for different solvents (C = 0.25). Note that the closed symbols are the
particle at the equilibrium position.

3.5.2. Dependence on Confinements

In this section, we investigated how confinement affected relative viscosity when a
solvent was the same. Figure 17 shows the relationship between y-axis position of a particle
and relative viscosity. The vertical line is relative viscosity # and the horizontal line is y-axis
position of a particle, where the closed symbol is relative viscosity when a particle is at
the equilibrium position and the open symbols that when we fixed the y-axis position of a
particle in the same as the analysis in Section 3.4. When a particle was at the same y-axis
position, relative viscosity became higher for each solvent, as confinement was higher. This
result was similar to that of Okamura et al. [7]. Therefore, it was suggested that relative
viscosity in a non-Newtonian solvent was higher, as the area was greater with an increase
in particle confinement.

— 1.280
—o0— (€=0.10 = o0 |
-==4&-- (=020 21200 |
8 L
......... Cisse €= 0.25 3 1.160
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Figure 17. Cont.
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Figure 17. Relative viscosity for different confinements. (a) Bn = 0, n = 0.8; (b) Bn =0, n = 1.0;
() Bn = 0, n = 1.2; (d) Bn = 1, n = 1.0. Note that the closed symbols are the particle at the
equilibrium position.

4. Conclusions

In this study, we investigated how non-Newtonian properties of a solvent affected
the equilibrium position of a suspended particle and relative viscosity in two-dimensional
parallel plate flow.

1.  We confirmed that the equilibrium position in Bingham fluid was closer to the wall
than that in power-law fluid. Moreover, when a particle started to flow near the
channel center, it was difficult for a particle in Bingham fluid to migrate in the y
direction and it spend more time reaching the equilibrium position than that in power-
law fluid. These results were mainly caused by the velocity profile of a particle-free
fluid, which indicates that shear rate near the wall and plug flow at the center of the
channel strongly affected particle migration.

2. When a particle was near the center, trajectories of migration in Bingham fluid were
different from that in power-law fluid because of the different lift coefficient profile
for each solvent.

3. The tendency of relative viscosity, including that of a suspended particle in Bingham
fluid was similar to that in pseudoplastic fluid. However, when the particle was at
the equilibrium position, relative viscosity in Bingham fluid was different from that
in pseudoplastic fluid.

Thus, it was suggested that the difference in solvents affected particle motion and
relative viscosity for each particle position. In the future, based on these results for a
single suspended particle, we will consider particle—particle interactions in suspension
flow including multiple particles, and investigate complex effects on particle migration and
relative viscosity.
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