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Abstract: Understanding flow behaviors of multiple droplets in complex non-Newtonian fluids is
crucial in many science and engineering applications. In this study, a new and improved analytical
solution is developed based on the free surface cell model for the flow drag of swamp of Newtonian
fluid drops through a power-law fluid. The developed solution is accurate and compares well to
the numerical solutions. The improvement involves a new quantification of shear stress boundary
condition at the interface and a more consistent approximation in linearizing the power-law fluid
flow governing equation. The Newtonian fluid solutions can be reasonably used to linearize the flow
governing equation. The approximation of the boundary conditions at the interface, however, has a
major impact on the model prediction. The main improvement in the new solution is observed under
the condition of comparable viscosities of the Newtonian drops and the outside power-law fluid
when the results are sensitive to the interface boundary condition. Under the two extreme conditions
of high viscosity ratio (approaching particles) and low ratio (approaching bubbles), the present and
existing solutions converge.

Keywords: power-law fluid; free surface cell model; boundary conditions; correction factor of
drag coefficient

1. Introduction

The interaction and motion of dispersed liquid droplets and gas bubbles in another
continuous phase liquid are basic processes encountered in many applications related to the
manufacture of foodstuffs, foams, polymers, cosmetics, toiletries, and many other products.
In other applications, the falling or rising of liquid droplets and gas bubbles in another
fluid is of critical importance. An adequate understanding of the hydrodynamic aspects of
the motion and interaction of multiple droplets and bubbles is needed for the modeling
of transport processes in such multiphase systems [1]. Since the motion of droplets and
bubbles is characterized by the drag force and drag coefficient, efforts have been made to
determine the effects of physical and geometrical parameters on the drag.

In recent decades, it has been realized that most fluids do not follow the simple
Newtonian fluid behavior in terms of the relation between stress and deformation rate.
These fluids are known as non-Newtonian fluids. One common type of non-Newtonian
fluids is the pseudoplastic fluid whose apparent viscosity decreases with the increasing
shearing rate, which is also called shear-thinning behavior [2]. Some non-Newtonian
fluids, known as viscoelastic fluids, exhibit both viscous and elastic characteristics during
deformation since they have the ability to store energy and thus show partial recovery
upon the removal of stress, while other non-Newtonian fluids may have time-dependent
characteristics, in which stress varies with the duration of flow [2]. Therefore, it is highly
important to obtain knowledge of droplet behaviors in not only a Newtonian fluid but also
in a non-Newtonian one, because the investigation of the droplets in non-Newtonian fluids
provides useful and essential information for optimal process designs and operations. In
recent decades, there have been many studies to examine the behaviors of multiple flow
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problems involving non-Newtonian fluids. The approaches to the analytical modeling of
the motion of droplets, particles, and bubbles in non-Newtonian liquids were summarized
with emphasis on the non-Newtonian models and their effects [3]. More recently, the studies
on the behaviors of drop motions through non-Newtonian fluids have been reviewed [4].

Slow flows of pseudoplastic Carreau fluid over Newtonian spherical drops and bub-
bles were solved numerically to assess the effects of pseudoplastic behavior, holdup, and
viscosity ratio on the drag and to evaluate the effects of the Newtonian plateau seen in the
viscosity functions of some pseudoplastic fluids [5,6]. Kishore et al. [7] elucidated the role
of power law rheology on the velocity of an ensemble of Newtonian droplets translating in
a power-law fluid by numerically solving the governing equations at moderate Reynolds
numbers. Flow and drag characteristics of a single bubble and a swarm of spherical bub-
bles in contaminated power-law fluids were numerically investigated using the spherical
stagnant cap model [8,9]. The gas holdup of bubble swarms in shear-thinning fluids was
experimentally studied at various superficial gas velocities [10].

There have been many theoretical studies to solve flow problems of a pseudoplastic
fluid over bubbles, drops, and particles, in recent decades. Among them, many studies have
adopted the free surface model originally proposed by Happel [11] as a conceptualized
representation of flow problems over multiple particles, droplets, or bubbles to simplify
the interacting effects among them. The free surface cell model was used in combination
with variational principles to obtain the upper and lower bounds on the drag coefficient of
a swarm of Newtonian fluid drops in a power-law fluid [12] and in a Carreau fluid [13].
Similarly, the combination of free surface cell model and variational principles was adopted
to predict the rising velocity of spherical bubbles in a Carreau fluid [14] and in a power-
law fluid [15]. The free surface cell model and variational principles were also used to
determine the drag bounds of flows of a power-law fluid [16] and a Carreau fluid [17]
through an assemblage of solid particles. However, the variational principle results have
the main drawback that the predictions are sensitive to the choice of trial functions used
in the analysis and it is impossible to estimate a priori the potential errors inherent in the
predicted bounds.

The free surface cell model has been utilized to derive approximate analytical solutions
of non-Newtonian pseudoplastic fluid through the assemblage of bubbles, drops, and
particles in recent decades. For complex non-Newtonian fluids, exact solutions are generally
not possible. An approximate approach was proposed to linearize the governing equation
of a non-Newtonian fluid; this approach uses Newtonian fluid solutions in part of the
non-Newtonian fluid equation so that analytical solutions become possible [18]. Based on
the linearization, approximate solutions of power-law fluid flow through an assemblage of
particles and bubbles were derived [19]. An analytical solution of power-law fluid flows
over a swarm of bubbles was developed by applying a similar but simpler and consistent
approximation in linearizing the flow governing equation [20]. The linearization approach
was also applied to obtain an analytical solution for a power-law fluid flow over a swarm
of drops [21]. The flow problem of a power-law fluid through a swarm of Newtonian fluid
drops was solved by using the finite-difference method [22].

Previous analytical solutions deviated significantly from numerical solutions for fluids
with strong pseudoplastic effects. In this study, a new and more accurate analytical solution
is developed for creeping power-law fluid flow over a swarm of Newtonian fluid drops. In
particular, the solution involves a new treatment of the shear stress boundary condition
at the interface and a more consistent approximation in linearizing the power-law fluid
governing equation. The developed solution is compared with the finite-difference numeri-
cal solutions from the literature and the existing solutions, and the differences among the
models are then discussed.

2. Methods

The drag of swamp of Newtonian fluid drops in a power-law fluid is solved using
the free surface model [11] of two concentric spherical cells. The inside cell is a spherical
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Newtonian fluid droplet and the outside cell is a power-law fluid (Figure 1). The radius
of the outside cell is then determined by the requirement that the volume fraction of drop
in the cell of two concentric spheres should be equal to the holdup of the system being
considered. For the free surface model, the shear stress on the outside fluid cell surface is
zero (i.e., the fluid surface is frictionless). The free surface cell model has been widely used
for estimating the rise velocity of swarms of spherical bubbles and drops [5–7,23–25]. For
the rise velocity of a swarm of spherical bubbles in power law liquids, the upper and lower
bound results using the cell model generally agreed with the scant experimental results in
the literature [2].
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Figure 1. Schematic diagram of a free surface cell model.

In the free surface cell model adopted in this study, the size of the cell is determined
by the overall droplet holdup requirement

q =
R1

R2
= e−1/3 (1)

where R2 is the radius of the inside droplet, R1 is the radius of the outside fluid cell, and e
is the holdup, which is the volume fraction of droplets, in the system.

For a power-law fluid in the outer cell, the dimensionless governing equation is [22]

E4ψ1 +
(n−1)
2Π1

[
∂Π1
∂ξ

∂(E2ψ1)
∂ξ + ∂Π1

∂θ

∂(E2ψ1)
ξ2∂θ

]
= 2(1 − n)

{
1

2Π1

[
∂

∂ξ

(
ξD1ξθ∂Π1

∂ξ + D1θθ ∂Π1
∂θ

)
− ∂

∂θ

(
D1ξξ ∂Π1

∂ξ +
D1ξθ

ξ
∂Π1
∂θ

)]
+ (n−3)

(2Π1)
2

[(
∂Π1
∂ξ

)(
ξD1ξθ ∂Π1

∂ξ + D1θθ∂Π1
∂θ

)
−

(
∂Π1
∂θ

)(
D1ξξ ∂Π1

∂ξ +
D1ξθ

ξ
∂Π1
∂θ

)]}
sinθ

(2)

For the inside Newtonian fluid droplet, the corresponding governing equation is

E4ψ2 = 0 (3)

where (and throughout the text) the subscripts 1 and 2 correspond to the outer cell of a
power-law fluid and the inside cell of Newtonian fluid, ψ is the stream function, ξ is the
dimensionless radial distance, θ is the polar angle, and n is the power-law fluid index. In
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the above equations, the operator is E2 = ∂2

∂ξ2 +
sinθ
ξ2

∂
∂θ

(
1

sinθ
∂
∂θ

)
. Π1 is the dimensionless

second invariant of the rate of deformation tensor

Π1 = D2
1ξξ + D2

1θθ + D2
1ϕϕ + 2D2

1ξθ (4)

For the free surface cell model, the boundary conditions are specified as follows

v1ξ(1, θ) = v2ξ(1, θ) = 0 (5)

v1θ(1, θ) = v2θ(1, θ) (6)

(2Π1)
(n−1)/2D1ξθ(1, θ) = aD2ξθ(1, θ) (7)

v1ξ(q, θ) = cosθ (8)

D1ξθ(q, θ) = 0 (9)

where vξ , vθ are the velocity components, Dmij represents (i, j) the component of the rate
of deformation tensor for the outside cell (m = 1) and inside cell (m = 2), respectively, and
a = µ2/

[
K(V/R2)

n] with V being the superficial velocity, and K the consistency index.
With the governing equation given in Equation (2) and the boundary conditions given
in Equations (5)–(9), a new approximate solution for the flow and drag is developed in
this study.

Under the weakly non-Newtonian behavior condition, all the terms in Equation (2)
that are multiplied by (n − 1) or (1 − n) are approximated using the solutions when the
outside cell is also a Newtonian fluid, expressed in Equations (10)–(14) below, to linearize
and simplify the governing equation given in Equation (2). In the study of Jarzebski and
Malinowski [21], the two terms involving the third-order derivative of ψ1 in the second
term on the left-hand side were retained in the governing equation. All the terms on
the right-hand side were, however, evaluated using the Newtonian fluid solutions as an
approximation. Since these two terms involving the third-order derivative of ψ1 on the left-
hand side are also multiplied by |n − 1|, they are treated in the same way as the Π1 terms
by using the Newtonian fluid solutions in this study. Therefore, the governing equation in
the present study is simpler than that in the study of Jarzebski and Malinowski [21].

For Newtonian fluid drops in another Newtonian fluid with a viscosity ratio b = µ2/µ1,
the analytical solutions could be derived and expressed as [21]

ψ1n =
(

N1ξ4 + N2ξ2 + N3ξ + N4ξ−1
)

sin2θ (10)

where the coefficients N1, N2, N3, and N4 are

N1 =
q−5

2[2 − 3q−1 + 3q−5 − 2q−6 + 2b−1(1 − q−1 − q−5 + q−6)]
(11)

N2 = −
2 + 3q−5 + 2b−1(1 − q−5)

2[2 − 3q−1 + 3q−5 − 2q−6 + 2b−1(1 − q−1 − q−5 + q−6)]
(12)

N3 =
3 + 2q−5 + 2b−1(1 − q−5)

2[2 − 3q−1 + 3q−5 − 2q−6 + 2b−1(1 − q−1 − q−5 + q−6)]
(13)

N4 = − 1
2[2 − 3q−1 + 3q−5 − 2q−6 + 2b−1(1 − q−1 − q−5 + q−6)]

(14)

Applying the Newtonian fluid results for the terms involving (n − 1) or (1 − n) in
Equation (2) and only retaining the highest order term of ξ or q as they are always greater
than 1, one can obtain the following dimensionless flow governing equation of a power-law
fluid in the outside cell

E4ψ1 = 12n(n − 1)N3ξ−3sin2θ (15)
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The general solution to Equation (15) can then be obtained as

ψ1 =
[

a1ξ4 + a2ξ2 + a3ξ + a4ξ−1 + 2n(n − 1)N3ξlnξ
]
sin2θ (16)

The Π1 term in Equation (7) is evaluated using the Newtonian fluid results since it is
raised to the power (n − 1)/2, which can be expressed as

Π1 = 6
(

2N1ξ − N3ξ−2 − 3N4ξ−4
)2

cos2θ + 18
(

N1ξ + N4ξ−4
)2

sin2θ (17)

One of the main differences in this study from that of Jarzebski and Malinowski [21]
lies in the evaluation of Π1 in the boundary condition in Equation (7). Note that all the
terms lower than N3ξ−2 were neglected and it was also approximated that cos2θ = 1 in
the study of Jarzebski and Malinowski [21] while applying the boundary in Equation (7).
While it is true that N3ξ−2 has highest order in most regions in the outside cell, it can be
shown that 2N1 − N3 − 3N4 = 0 when the inside cell is a solid particle and N1 + N4 = 0
when the inside cell is a bubble at the interface where ξ = 1. Therefore, at ξ = 1, simply
retaining only one term involving N3 in the evaluation of Π1 for the boundary condition
at the interface could be a source for significant errors. Therefore, in this study, all the
terms in Equation (17) are included for the evaluation of Π1 at ξ = 1. On the other hand,
approximating cos2θ as 1 could also introduce large errors when the average of cos2θ is
only 0.5, with θ varying from 0 to π. In this study, the average value of 0.5 for both cos2θ
and sin2θ is adopted, and the following equation is used for the stress boundary condition
Equation (7):

cD1ξθ(1, θ) = aD2ξθ(1, θ) (18)

In Equation (18), the factor c has the following expression:

c =
(
2Π1

)(n−1)/2
=

[
6
(

7N2
1 + N2

3 + 12N2
4 − 4N1N3 − 6N1N4 + 6N3N4

)](n−1)/2
(19)

Jarzebski and Malinowski [21] only retained the highest order term of q and assumed
cos2θ and sin2θ were approximated to be equal to 1 and 0, respectively. As a result, the
factor c in Equation (18) had a simpler form, as follows:

c =
(

12N2
3

)(n−1)/2
(20)

In this study, both approaches of approximating the stress boundary condition at the
interface discussed above are examined and quantitatively compared. The solutions based
on Equations (19) and (20) are denoted as “model 1” and “model 2”, respectively, in the
subsequent analysis and comparison.

From the required boundary conditions, the coefficients in Equation (16) can then be
determined as

a1 =
−3a − 2N

[
2(c + a)q2 − (2c + 3a)q − 2c − 6a + (2c + 7a + 6alnq)q−1]

−12(c + a)q5 + 6(2c + 3a)q4 + 12c − 18a + 12(a − c)q−1 (21)

a4 = −a1q5 +
1
3

Nq2 (22)

a3 =
1 + 4Nq−1lnq + 2a1

(
q2 − 1

)
+ 2a4

(
q−3 − 1

)
2(1 − q−1)

(23)

a2 = −a1 − a3 − a4 (24)

where N = n (n − 1)N3.
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The drag, FD, for the power-law fluid flow through a swarm of Newtonian fluid
droplets can then be determined:

FD = 2πR2
2K(V/R2)

n
{∫ π

0

(
−p1 + τ1ξξ

)
ξ=1cosθsinθdθ +

∫ π

0

(
−τ1ξθ

)
ξ=1sin2θdθ

}
(25)

From the solutions, the pressure and stress distributions in the flow field can be
derived. The flow drag, FD, can then be determined analytically as

FD =
22+nπK

{
(2n + 1)a3 + (1 − n)

[
4a1 − 6a4 +

(
n + 4n2 − 1

)
N3

]}
n(n + 2)Rn−2

2 V−n
(√

3N3

)(1−n)
(26)

The correction factor for the drag coefficient, YD, is defined as

YD =
CD

24/Re
(27)

where CD = FD/
(

1
2 ρV2πR2

2

)
and Re = ρV2−n(2R2)

n/K. The YD can then be derived as

YD =
4n{(2n + 1)a3 + (1 − n)

[
4a1 − 6a4 +

(
n + 4n2 − 1

)
N3

]}
3n(n + 2)

(√
3N3

)(1−n)
(28)

In summary, one new aspect in the developed solutions lies in the way of dealing
with the stress boundary condition and the quantification of the factor c in Equation (18).
To analyze the differences, both expressions of the factor c in Equations (19) and (20) (i.e.,
model 1 and model 2, respectively) are evaluated and discussed. These two models and the
model of Jarzebski and Malinowski [21] are compared with the numerical solutions by Zhu
and Deng [22]. The finite-difference technique was adopted to obtain numerical solutions of
Equations (2) and (3) and the associated boundary conditions Equations (5)–(9) by Zhu and
Deng [22]. The central space differences were used and the resulting finite-difference equa-
tions were solved using the successive over-relaxation method. The governing equations of
both the inside cell Newtonian fluid flow and the outside cell power-law fluid flow were
iteratively solved, since two flow systems are coupled through the boundary conditions
in Equations (5)–(7). Since the numerical study solved the same governing equations and
boundary conditions without any terms being neglected, the direct comparison with the
numerical solution can quantify the extent of errors in the analytical solutions due to the
omission of high order terms and the linearization of the governing equation using the
Newtonian fluid results, and offer insights on the dominant factors that affect the flow drag
on the droplets. The performance and difference of analytical model predictions are then
quantified and discussed in the next section.

3. Results and Discussion

Figure 2 shows the comparison of the two models (model 1 and model 2) developed
in the present study and the model of Jarzebski and Malinowski [21] with the numerical
solutions of Zhu and Deng [22] when the drop holdup is e = 0.6. Three viscosity ratio
(i.e., parameter a) values of 0.1, 1, and 10 are used in the comparison, which span a
spectrum from close to bubbles (a = 0.1) to close to solid particles (a = 10). The difference
between model 1 and model 2 lies in the treatment of the shear stress boundary condition
in Equation (7). In model 1, all the terms are retained in the evaluation of the second
invariant of the rate of deformation tensor Π1 in the boundary condition at the interface of
the droplet and the outside non-Newtonian fluid (i.e., at ξ = 1). In model 2, however, only
the highest ξ order term is used in the evaluation of Π1. In the outside region, where ξ is
greater than 1, neglecting the lower order term of ξ might be reasonable. At the interface
where ξ is equal to 1, however, the lower order terms of ξ could be as important as the
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highest order term of ξ, and the simple treatment of the shear stress boundary condition
in Equation (7) by retaining only the highest order could lead to significant errors. It
can be seen from the comparison that the solutions of model 1 compare more favorably
with the finite-difference numerical solutions. If the power-law fluid viscosity and the
Newtonian fluid droplet viscosity have the same order of magnitude when the value
of a is in the order of 1, the improvement using model 1 over the other two models is
especially significant, which indicates that the treatment of the stress boundary condition
at the interface is important. For a = 1, the solution of Jarzebski and Malinowski [21] could
significantly over-estimate the drag at n = 0.6, while model 1 is closest at over-predicting
by less than 4%. The prediction from model 2 from the present study is only slightly better
that that from Jarzebski and Malinowski [21], which illustrates that the treatment of the
boundary condition at the interface is the main contributor of drag prediction errors, while
the contribution of approximating the governing equation is secondary.
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The comparison of the correction factor of the flow drag of a power-law fluid through a
swarm of Newtonian fluid droplets among the models, with the finite-difference numerical
solutions at three different levels of drop holdup when a = 1, is shown in Figure 3. The
closest agreement with the finite-difference numerical solutions is observed in model 1.
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The main difference between model 2 and the model of Jarzebski and Malinowski [21]
is the different linearization approximation in the main governing equation expressed
in Equation (2). The model results of the correction factor for the drag coefficient from
Jarzebski and Malinowski [21] and those from model 2 are close to each other, with model
2 being slightly better. Compared to the study of Jarzebski and Malinowski [21], the flow
governing equation expressed in Equation (15) in the present study is the result of further
simplification by using the Newtonian fluid solutions in evaluating all the terms that are
multiplied by the factor (1 − n) or (n − 1). In the study of Jarzebski and Malinowski [21],
however, the terms involving the second-order derivative of the unknown stream function
were not approximated by using the Newtonian fluid results, although these two terms are
also similarly multiplied by the factor (n − 1). Therefore, the resulting final approximate
governing equation in Jarzebski and Malinowski [21] was more complex than that in the
present study. With the same stress boundary condition approximation in dealing with
Equation (7), the model of Jarzebski and Malinowski [21] produces similar results as model
2, as both significantly over-estimate the drag, which illustrates that the treatment of the
stress boundary condition at the interface has the dominant effect on the model prediction.
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Figure 3. Comparison of theoretical models with numerical solutions when the viscosity ratio a = 1
at three different levels of holdup. Factor c is determined by Equation (19) for model 1 and is given
in Equation (20) for model 2. ”J&M” is Jarzebski and Malinowski [21] and “numerical” means the
finite-difference solution of Zhu and Deng [22].

When a = 1 and the viscosities of the Newtonian fluid droplets and outside power-law
fluid are comparable, the difference of model 1 in the present study and Jarzebski and
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Malinowski [21] is largest. In this case, the contribution from both normal stress and
shear stress to the drag is comparable. In the study of Jarzebski and Malinowski [21],
only the highest order term on the normal stress portion was retained. When a is large
(approaching particles) and a is small (approaching bubbles), the effect of approximat-
ing the c factor diminishes and, therefore, the results from this study and Jarzebski and
Malinowski [21] converge.

The results of the correction factor for the drag coefficient of a power-law fluid flow
over a single droplet are obtained by using a small value of the drop holdup of e = 10−10,
as shown in Figure 4. In the case of a single droplet, the radius ratio of the outside cell
over the droplet radius (i.e., the q parameter defined in Equation (1)) approaches infinity,
and retaining only the highest order produces similar results as including all terms in
dealing with the stress boundary condition (Equation (7)) at the interface between the
droplet and the outside power-law fluid. The difference among the models mainly comes
from the different ways of linearizing the governing equation in Equation (2). Unlike the
high droplet holdup cases, the results from all three models are closer to those from the
finite-difference numerical results for the single drop case for the scenarios considered.
Therefore, the approach of linearizing the governing equation works better under the low
droplet holdup conditions.
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”J&M” is Jarzebski and Malinowski [21] and “numerical” means the finite-difference solution of Zhu
and Deng [22].
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For a single droplet in a non-Newtonian power-law fluid, the results of the correction
factor of the drag coefficient from model 2 are closer to the finite-difference numerical
solutions than those from the study of Jarzebski and Malinowski [21] when a = 10. On
the other hand, however, the results of Jarzebski and Malinowski [21] are closer to the
finite-difference numerical solution than model 2 when a = 0.1. For a single droplet, there
is an improvement by using model 1, but the improvement is not significant, especially
when the viscosity ratio is small, which means that the droplet is close to a bubble. For a
single droplet, retaining only the highest order term in the shear stress boundary condition
treatment at the interface is more reasonable compared to the higher droplet holdup cases.
Therefore, the difference among the models with varying approaches of linearizing the
governing equation and approximating the boundary conditions is relatively small. Overall,
the new approaches of approximating the boundary condition result in improvements in
predicting the drag experienced by a swarm of droplets in a non-Newtonian power-law
fluid. As expected, as the power-law fluid index deviates further from 1 (i.e., further from
Newtonian fluid behavior), the results from all three models also show increasing difference
from the finite-difference numerical solutions because the approximation errors are all
proportional to |1 − n|.

From the results and discussion above, the solutions developed in the present study
perform well in comparison with the finite-difference numerical solutions. Since the drag
experienced by the droplets is intimately related to the stress and pressure at the interface
between the droplets and the surrounding non-Newtonian fluid, the accurate evaluation of
the second invariant of the rate of deformation tensor at the interface is essential. Therefore,
the new treatment of the stress boundary condition at the interface by including all terms in
the second invariant of the rate of deformation tensor and a simpler linearization approach
for the governing equation used in the present study can produce an accurate prediction of
drag compared to the finite-difference numerical solutions. It should be noted, however,
that there are limitations inherent in the underlying assumptions. Since the Newtonian
fluid results are used for the terms that are multiplied by the factor (n − 1), the solutions
are only applicable when |n − 1| is small, which means that the pseudoplastic effect of
the power-law fluid is not strong.

4. Concluding Remarks

In this study, a new and improved solution is developed for the drag of a non-
Newtonian power-law fluid flow through a swarm of Newtonian droplets. Both the
new solution and existing model in the literature are compared with the finite-difference
numerical solutions.

The most significant improvement in the present study is observed under the condition
of comparable viscosities of Newtonian droplets and the outside power-law fluid.

Using Newtonian fluid results in part of the terms to linearize and simplify the
governing equation is reasonable. However, the approximation of the shear stress boundary
condition has a major impact on the model prediction of drag when the droplets and
non-Newtonian fluids have a similar magnitude of viscosity because the drag results are
sensitive to the treatment of the interface shear stress boundary condition.

Under the two extreme conditions of high viscosity ratio (approaching particles) and
low viscosity ratio (approaching bubbles), the drag results are less sensitive to the treatment
of the interface shear stress boundary condition, and the present and existing solutions
produce similar results.
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