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Abstract: Computational Fluid Dynamics (CFD) simulations were utilized in this study to com-
prehensively explore the fluid dynamics within an accelerated toroidal vessel, specifically those
central to Particle Imaging Velocimetry Gyroscope (PIVG) technology. To ensure the robustness of
our simulations, we systematically conducted grid convergence studies and quantified uncertainties,
affirming the stability, accuracy, and reliability of our computational grid and results. Comprehensive
validation against experimental data further confirmed our simulations’ fidelity, emphasizing the
model’s fidelity. As the PIVG is set up to address the primary flow through the toroidal pipe, we
focused on the interaction between the primary and secondary flows to provide insights into the
relevant dynamics of the fluid. In our investigation covering Dean numbers (De) from 10 to 70, we
analyzed diverse aspects, including primary flow, secondary flow patterns, pressure distribution,
and the interrelation between primary and secondary flows within toroidal structures, offering a
comprehensive view across this range. Our research indicated stability and fully developed fluid
dynamics within the toroidal pipe under accelerated angular velocity, particularly for low De. Fur-
thermore, we identified an optimal Dean number of 11, which corresponded to ideal dimensions for
the toroidal geometry with a curvature radius of 25 mm and a cross-sectional diameter of 5 mm. This
study enhances our understanding of toroidal fluid dynamics and highlights the pivotal role of CFD
in optimizing toroidal vessel design for advanced navigation technologies.

Keywords: computational fluid dynamics (CFD); inertial navigation sensor (INS); gyroscope; particle
imaging velocimetry gyroscope (PIVG); fluid-based gyroscope; toroidal; Dean number (De)

1. Introduction

Inertial measurement units (IMUs) are integral components of navigation systems; they
provide essential information about a moving platform’s position, velocity, and attitude.
IMUs rely on the accurate measurement of linear acceleration and angular rate. However,
the traditional gyroscopes used in commercial IMUs suffer from bias instability, which
affects their performance and introduces errors in attitude estimation. To overcome this
limitation, novel gyroscope technologies are being explored to improve the accuracy and
reliability of IMUs [1–3].

One such emerging technology is the Particle Imaging Velocimetry Gyroscope (PIVG).
The PIVG is a fluid-based gyroscope that offers several advantages over conventional
gyroscopes. It is nearly drift-free and exhibits minimal bias instability, even for navigation-
grade IMUs. Additionally, the PIVG boasts a high signal-to-noise ratio (SNR), making it an
attractive alternative for various navigation applications. Moreover, its low cost makes it a
cost-effective solution in comparison to traditional gyroscopes. The PIVGs are constructed
with three channels that are arranged in perpendicular axes, each with a circular, toroidal

Fluids 2024, 9, 103. https://doi.org/10.3390/fluids9050103 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids9050103
https://doi.org/10.3390/fluids9050103
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0003-0920-0386
https://orcid.org/0000-0003-4227-8468
https://doi.org/10.3390/fluids9050103
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids9050103?type=check_update&version=1


Fluids 2024, 9, 103 2 of 25

shape. A significant process employed in this configuration is Particle Imaging Velocimetry
(PIV). This involves utilizing digital cameras to capture images of particles while they move
through the water within toroidal channels. After capture, the images undergo processing;
determining the displacement of each particle provides a measurement indicating fluid
velocity. This information allows us to calculate the angular acceleration of the toroidal
structure and provides valuable insights into the rotational dynamics of the PIVG. This
three-axis design allows the gyroscope to comprehensively measure angular motion in
multiple dimensions. However, for some applications, the design can be simplified to
a single-axis system by using only one circular channel, making the construction more
streamlined and less complex [1].

The study of fluid flow behavior in curved geometries is significant in various engi-
neering applications, such as pipeline systems, ducting in internal combustion engines,
heat exchangers, biological system flows, and microfluidic devices [4]. This behavior,
which is complex in nature, exhibits secondary flows and vortices. Our literature review
focuses on two phenomena: pressure-driven flow and rotating or spinning curved pipes. By
leveraging insights from these studies, we can enhance our understanding of the intricate
fluid behavior within the toroidal chamber of the PIVG. These phenomena, despite their
different driving mechanisms, share common dynamics and characteristics, underscoring
the importance of their study in the context of fluid flow in curved structures.

In pressure-driven research, Dean proposed an analytical solution for Newtonian flow
in a curved conduit with a circular cross-section in 1928 [5,6]. He considered the secondary
flow as a minor perturbation upon the primary flow, like Poiseuille flows in a straight
pipe. Dean’s study established that the axial velocity within a curved pipe and the stream
function of the secondary radial flow depend on the curvature parameter (k), which is
summarized in the equation:

k = 2Re
2 a

R
(1)

where “a” is the channel’s radius, “R” is the torus’s radius, and “Re” is the Reynolds
number. Subsequently, White introduced the term “Dean’s number (De)”:

De = Re

√
a
R

(2)

The Dean number (De) and the curvature number (k) provide valuable insights into
the flow behavior in curved pipes. The Dean number measures the relative influence of
centrifugal forces compared to viscous forces, indicating the fluid flow’s behavior. Simulta-
neously, the curvature number quantifies the importance of the pipe’s curvature in relation
to the fluid’s viscosity. A crucial finding emerged in the insightful studies conducted by
Ligrani [7] under laminar flow conditions. It was revealed that a critical limit exists for the
Dean number, specifically in the De ≤ 40~60 range, under which the influence of secondary
flows on the primary flow remains minimal. This vital understanding emphasizes the
critical balance necessary to maintain the stability and integrity of the fluid dynamics
within the given parameters.

On the other hand, in 1963 Greenspan and Howard [8], who were researching spin-
ning curved pipes, employed linear techniques to investigate spin-up phenomena. They
recognized three unique phases: the formation of Ekman boundary layers, secondary flow
within the body of the fluid, and viscous decay of residual motion. Additionally, they
applied linear theory to estimate the characteristic spin-up time for two cylindrical geome-
tries. In the first scenario, the cylinder was bounded by a flat disk, while in the second,
it was enclosed by a conical section. Notably, the disk and the conical sections rotated
along the cylinder walls. Through experimentation, Greenspan and Howard validated
their theoretical predictions in each case. Greenspan (1968) [9] provided specifics of the
methods involved, and a significant portion of the early work in this field is described.

Moreover, Cowley et al. [10] studied the fluid inside a curved pipe rotated around its
curvature axis. In the limit of a high De, they demonstrated that boundary-layer collision
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and unsteady separation can occur impulsively and can begin to flow through a stationary
curved conduit. A more thorough explanation of this phenomenon is given by Lam [11],
who also includes estimates of the flow caused by the impulsive rotation of a curved pipe
around its curvature axis.

The work that aligns most closely with our research, albeit with different objectives, is
the study conducted by Madden and Mullin in 1994 [12]. They explored how fluid flow
behaved within a toroidal sealed pipe under the impact of inertial angular rotation. Their
study aimed to examine fluid velocity affected by inertia and the effects of ocean flow
on the earth’s surface. They performed experiments on a toroidal pipe filled with water.
However, Laser Doppler Velocimetry (LDV) was used to track the fluid movement inside
the toroidal pipe. Therefore, tracer particles were added to the stream. The tracer particles
were observed to calculate the fluid flow velocity field in a Eulerian frame. Additionally, the
study made sure that the toroidal pipe was not subjected to any external forces aside from
the inertial force that was created when the pipe was spun about its vertical axis from rest
up to a constant angular velocity with a linear acceleration ramp, ensuring the pipe reached
its top speed in 0.8 s. The experimental setup measured the absolute velocity field in
relation to a stationary LDV setup. Moreover, the study conducted a numerical simulation
for various fluid flow channel dimensions to produce a definite conclusion regarding the
fluid behavior under the effect of an angular rotation in the form of a spin-up from rest up
to a specific angular velocity. However, the study’s computational and experimental results
showed that the fluid flow inside the toroidal pipe would have two main components to
its velocity. A primary flow constitutes the majority of the fluid flow and moves in the
opposite direction of the pipe flow. A second fluid flow also exists, and it moves in the
radial direction of the toroidal pipe cross-section.

In this study, our aim is to conduct a thorough investigation of the fluid dynamics
within accelerated toroidal geometry and its implications for PIVG systems. Two key criteria
were evaluated with Computational Fluid Dynamics (CFD), namely domain validity and
model fidelity. The range of Dean numbers (De) for reliable predictions of fluid velocities
within the profile, known as domain validity, and model fidelity, which evaluates the
mathematical model’s accuracy in estimating these numbers needs to be considered when
evaluating PIVG performance. Therefore, precise measurements of primary flow dynamics
by integrated cameras are crucial for accurate angular acceleration measurement, which
could be impeded by secondary flow phenomena. Hence, we examined primary and
secondary flows across different toroidal channel dimensions and De ranges, and we
analyzed pressure distributions during this study. According to empirical evidence, the
Reynolds number is a key parameter, and laminar flow should not exceed 200, according to
a literature review. Similarly, the Dean number plays a part in characterizing secondary
flow effects; thus, a suggested range of 40–60 has been identified to reduce these effects
while maintaining mostly one-dimensional profiles. Altogether, these criteria furnish
a comprehensive framework for optimizing fluid dynamics within the PIVG, thereby
ensuring its accurate operation and performance [1,2,13].

The structure of this paper is organized as follows. In Section 2, we present an overview
of the governing equations that describe the fluid dynamics inside the toroidal geometry of
the PIVG system. Section 3 presents our numerical setup for simulating fluid dynamics
in the toroidal geometry, detailing the computational domain, boundary conditions, and
solution methods for the governing equations. In Section 4, we ensure accuracy through
grid convergence and validate our simulations against experiments, establishing credibility.
We then present vital insights from our numerical analysis, following a systematic approach.
Finally, in Section 5, we conclude the paper by summarizing the contributions of this study
and highlighting the implications for the design and optimization of the toroidal geometry
in fluid-based gyroscopes.
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2. Governing Equations

In the study of fluid flow in toroidal pipes, a toroidal coordinate system (r, θ, ϕ), as
shown in Figure 1, is commonly used. Here, ‘r’ is the coordinate along the radial direction,
‘θ’ represents the inclination of the cross-section in relation to a fixed axial plane, and ‘ ϕ ‘
is the coordinate along OZ (which corresponds to the axis of the toroidal). Additionally,
the system is characterized by other key parameters: the cross-section radius of the pipe,
denoted by ‘a’, and the curvature radius of the toroidal, denoted by ‘R’. Assuming the flow
occurs in the direction of increasing ϕ due to angular acceleration around the z-axis, the
velocity components can be defined as follows: ‘u’ in the r-direction, ‘v’ in the θ-direction,
and ‘w’ in the ϕ-direction.
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+
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= 0, (6)

where ν denotes the fluid’s kinematic viscosity, ρ is the fluid’s density, and fϕ is the body
force, as shown in the equation. Equation (7) is valid when the radius of the toroidal pipe is
much smaller than the radius of the toroidal (a << R) [15,16].

fϕ = ρRαz(t), (7)

where αz is the angular acceleration around the toroidal axis (OZ).
Equations (1)–(6), along with appropriate boundary conditions, describe an unsteady

flow problem within a toroidal configuration. By assuming that the flow within the
toroidal structure is fully developed, where the velocity components (u, v, and w) become
independent of the angular coordinate ϕ, and the pressure gradient in the axial direction
(ϕ) remains constant, we strategically simplify the complexities of our study [15,16].

3. Numerical Simulation Setup
3.1. Computational Domain and Mesh Generation

The computational domain was designed to accurately represent the geometry of
the accelerated toroidal system. The toroidal pipe was carefully modeled to capture
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the dynamic flow, as shown in Figure 2. To discretize the domain, a structured mesh
generation technique was employed. A structured Hex dominant mesh, capable of handling
complex geometries, was created using the built-in software ICEM CFD 14.5 to discretize
the computational domain. The mesh resolution was carefully chosen to ensure an accurate
representation of the flow features and gradients within the system. Special attention was
given to maintaining the mesh quality, ensuring proper element aspect ratios and skewness
to prevent numerical instabilities and inaccuracies. The overall mesh size and density
were determined through mesh independence studies to ensure that the results were not
significantly affected by the mesh resolution.
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3.2. Boundary Conditions and Physical Model

The simulation of fluid flow inside an accelerated toroidal domain involves the ap-
plication of specific boundary conditions to accurately model the behavior of the fluid. In
this case, there are no distinct inlet and outlet boundaries, due to the toroidal geometry.
Instead, the boundary conditions focus on the no-slip condition and the prescribed angular
velocity variation.

In addition to the no-slip condition, the angular velocity of the toroidal domain is
prescribed as a ramp function, as shown in Figure 3. The toroidal domain is at rest from 0
to t = 0.5 s, during which the angular velocity is 0 rad/s. Subsequently, the angular velocity
gradually increases linearly until it reaches a constant value of 0.2793 rad/s (16 ◦/s) at
t = 4.5 s. This ramp function represents the time variation of the angular velocity and is
applied as a boundary condition at the toroidal surfaces. By incorporating the prescribed
angular velocity, the simulation captures the effect of the acceleration on the fluid flow
inside the toroidal domain.

In our simulation setup, we considered a transient flow regime with laminar flow
characteristics, which mimicked the behavior of water as the fluid medium (density
ρ = 998.2 kg/m3), with a dynamic viscosity of µ = 0.001003 kg/m.s. The walls were as-
sumed to be stationary. To capture the rotational motion of the toroidal domain, we
employed a rotating reference frame with angular accelerated motion. This setup allowed
us to simulate the dynamic behavior of the toroidal vessel accurately. In terms of simulation
initialization, a hybrid method was used, and the time step size was set to 0.1 s. The simula-
tion was allowed a maximum of 100 iterations per time step, ensuring convergence within
each step. Residuals for continuity and velocity were limited to 1 × 10−6 to guarantee accu-
rate and stable results. The input angular velocity and corresponding angular acceleration
profiles, which are crucial for the toroidal rotation, were carefully converted into an ASCII
format in order to integrate them into the ANSYSFluent 2021R1 software. This approach
to boundary conditions and the physical model accurately represented real-world fluid
dynamics within the toroidal domain.
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4. Results and Discussion
4.1. Grid Independence Study

A grid convergence study was conducted to ensure that the numerical solution was
independent of the mesh size and to estimate the numerical uncertainty associated with
spatial discretization. The study utilized the Richardson extrapolation method, which
is a widely accepted approach for assessing grid convergence [17]. In this work, three
different meshes were generated by systematically refining the computational domain. The
refinement ratio between the successive meshes was maintained at a value higher than
1.3, ensuring significant differences in grid resolution. The details of the three meshes are
presented in Table 1, which showcases the varying levels of refinement achieved. This grid
convergence study allows a reliable assessment of the numerical solution and provides
valuable insights into the accuracy and reliability of the computed results. Additionally, the
table provides visual representations of the three meshes employed in the grid convergence
study, along with the corresponding total number of elements for each mesh. The slices of
the meshes offer insights into the varying levels of refinement achieved.

To assess the uncertainty in the computed values of the tangential velocity, the relative
tangential velocity (RTV) at a specific horizontal line on the cross-section is computed
for each mesh, as depicted in Figure 4; to quantify the uncertainty resulting from spatial
discretization, the grid convergence index (GCI) is calculated for the medium and fine
meshes. The GCI is a measure used to estimate the uncertainty in the solution of a compu-
tational fluid dynamics (CFD) simulation due to spatial discretization. It is calculated by
performing the simulation on two or more successively finer grids. As the grid is refined
(the grid cells become smaller and the number of cells in the flow domain increases), the
spatial discretization error should asymptotically approach zero [18]. The GCI values are
summarized in Table 2. The table reveals that the medium mesh exhibits a higher uncer-
tainty (GCI32%) compared to the fine mesh (GCI21%). The average uncertainty attributed to
spatial discretization is 1.47% for GCI32% and 0.27% for GCI21%. These results indicate that
as the number of elements increases, the solution becomes more independent of the grid
refinement, indicating the consistency and reliability of the numerical scheme employed.
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Table 1. Mesh refinement strategy.

Coarse Medium Fine

Element Size 1.9309 × 10−4 1.4586 × 10−4 1.0319 × 10−4

No. of Element (m) 427,680 992,160 2,803,600
Mesh Slice
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Table 2. Grid convergence index.

Radius (r) V3, Coarse V2, Medium V1, Fine GCI21% GCI32%

2.455 0.246183 0.250896 0.2519 0.731915 4.488632

2.005 0.93731 0.943939 0.9453 0.264389 1.678087

1.509 1.4937 1.49881 1.5009 0.255711 0.814675

1.0135 1.86093 1.86721 1.8681 0.087487 0.803668

0.518 2.07132 2.07658 2.0776 0.090156 0.605268

0.0225 2.14335 2.14728 2.1496 0.198192 0.437335

4.2. Validation

To validate our numerical simulation of the fluid-filled toroidal used in the PIVG
sensor, we compare our results with the experimental work of Madden (1991) [12], who
investigated the spin-up of a torus from rest. The experimental setup involved a torus
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made of Perspex with a radius of curvature of 125 ± 0.1 mm and a cross-sectional radius of
16 ± 0.1 mm, giving a radius ratio of δ = 0.128. The torus was filled with distilled water.
A powerful servo-controlled motor was used to rotate the torus, and its rotational speed
was measured using an optical shaft encoder. Madden used a nonlinear ramp to increase
the rotational speed from rest to a pre-selected rotation rate over 0.8 s. In this research, to
compare the numerical results with the experimental data of Madden, a toroidal vessel
was modeled with similar dimensions and operating conditions, including fluids with
corresponding viscosities. The numerical model was solved using ANSYSFluent 2021R1
software, and the primary velocity time series at a specific point in the center of the pipe
was extracted for validation purposes. These data were compared with previous findings
by Madden to assess the accuracy and reliability of the numerical simulation.

The Reynolds number (Re), which is a dimensionless quantity, plays a crucial role in
characterizing fluid flow. It is defined as the ratio of inertial forces to viscous forces and
provides insights into the flow regime. In the context of this study, the Re is particularly
relevant as it is influenced by the angular velocity of the toroidal vessel. At a specific
angular velocity, the Re can be calculated using the characteristic length scale and fluid
properties, as shown in Equation (8) [19].

Re =
ΩaR

ν
, (8)

The numerical and experimental investigations were conducted at the same Re of
300, indicating similar flow behavior in terms of inertia and viscosity. By maintaining a
constant Re, the focus was on comparing different modeling approaches. The agreement
between the numerical and experimental outcomes at this Re highlights the consistency
and reliability of the numerical simulation. This agreement not only validates our model
but also attests to its good domain fidelity performance, further enhancing the reliability
of our study. The primary velocity, recorded at the pipe’s center, was normalized to
facilitate precise comparisons. This normalization method provides consistent scaling
for meaningful analysis, as depicted in Figure 5. The dimensionless velocity profiles
from the numerical simulation and experimental measurements exhibited close agreement,
validating the accuracy of the numerical model in capturing the fluid flow characteristics
in the accelerated toroidal.
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4.3. Numerical Results
4.3.1. Dean Number (De) Study

The Dean number, denoted as De, serves as a fundamental parameter in fluid dy-
namics, particularly in the context of flow through curved conduits like toroidal pipes.
In our examination, we systematically varied the De across a range from 10 to 70. This
variation allowed us to analyze a complex interaction of factors that significantly influence
fluid behavior within toroidal configurations. At the heart of our investigation lies the
profound impact of the De on several critical aspects of fluid dynamics. First and foremost,
it determines the RTV profile of the fluid within the toroid. This tangential velocity, a key
parameter in the case of our PIVG sensor, plays a crucial role in determining the angular
velocity [1,2]. Moreover, the De shapes the toroid’s radial and axial flow profiles. Under-
standing how fluid moves in these directions is essential for optimizing toroidal designs
in our PIVG application and for other contexts where precise fluid mixing, or efficient
heat transfer is a priority. One of the most exciting outcomes of our study involved the
development of secondary flows. By comprehensively exploring the Dean number’s role
in shaping secondary flows, we gain insights into how to utilize or reduce its effects in
practical settings. In the context of PIVG, measuring angular velocity hinges on obtaining
accurate relative tangential velocity data inside the toroidal while minimizing the impact
of secondary flows.

Before delving into the analysis of Figures 6–8, let us first define some of the key
parameters that these graphs represent: D is the curvature diameter of the toroid, d is
the cross-section diameter of the toroid, and δ is the ratio between the cross-section and
curvature diameters. Figures 6–8 visually represent the RTV, radial, and axial contour
within the toroidal pipe at different time steps of 2, 4, and 8 s. These contour maps illustrate
the distribution of tangential velocity, radial, and radial velocity across the cross-section of
the toroid. Red lines indicate areas with lower velocities, while blue lines signify regions
with higher velocity due to the negative sign associated with velocity calculation. These
maps showcase how the De, a key parameter in our study, influences the rotational flow
patterns within the toroid.

At a lower Dean number (De = 11), the maximum relative tangential velocity (RTV)
is observed at the center of the cross-section, indicating a uniform flow dominated by
viscous forces at 2, 4, and 8 s (as shown in Figures 6a, 7a and 8a). However, as the Dean
number increases to 70, the RTV exhibits distinct behaviors over time intervals. At 2 s,
and Dean number 70, the RTV peaks, forming an elliptical shape (as shown in Figure 6a).
Subsequently, at 4 s, the maximum velocity shifts towards the inner curvature of the
toroid, indicating a transition in flow dynamics. Finally, at 8 s, the maximum velocity
shifts towards the outer diameter of the toroidal curvature. This shift is attributed to the
heightened influence of centrifugal forces at higher Dean numbers, which intensify the
secondary flow and decelerate the RTV.

The observed changes in RTV behavior at different time intervals and De underscore
the complexities of fluid dynamics within toroidal structures. Specifically, the shift in
maximum velocity positions presents challenges for PIVG measurements, particularly at
higher Dean numbers like 70. As the PIVG relies on capturing primary flow dynamics,
alterations in RTV due to secondary flow effects can impact measurement accuracy. At
Dean 70, where the RTV position shifts, it becomes challenging to precisely capture these
changes using the camera, highlighting the importance of understanding and controlling
secondary flow phenomena for accurate PIVG operation.
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The radial contours are depicted in Figures 6b, 7b and 8b for 2, 4, and 8 s, respectively,
while the axial contours are illustrated in Figures 6c, 7c and 8c at 2, 4, and 8 s. The radial
flow, representing the cross-sectional fluid movement, exhibits an elliptic dimple pattern
with a central vortex, which is indicative of this secondary flow. Concurrently, the axial
flow, which is parallel to the rotation axis, exhibits four distinct vortices, two near the inner
wall and two near the outer wall. Notably, the flow pattern at De 11 demonstrates a higher
degree of uniformity compared to De 70; this is crucial factor for ensuring consistent and
predictable fluid behavior, particularly in systems like the PIVG. The results for other Dean
numbers are provided in Appendix A for further reference.

Figure 9 illustrates the RTV at different De over specific time intervals. The graphs are
normalized, simplifying the comparison of trends across different Dean numbers. At 2 s,
the fluid appears notably unstable, forming a parabolic shape only at De = 11, suggesting a
specific stability threshold at this early stage. Moving to 4 s, De = 10, 20, and 30, exhibiting
stability and forming parabola shapes which are indicative of potential full development,
while the other Dean numbers do not follow this pattern. By 6 s, all the Dean numbers,
except for 70, demonstrate stability, suggesting a transition to a more consistent flow pattern.
Finally, at 8 s, all the Dean numbers stabilize and form parabolic shapes, indicating a fully
developed and stable flow regime—characterized by consistent and predictable behavior
over time, without sudden fluctuations.
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Figure 9. RTV at different De (a) 2 s, (b) 4 s, (c) 6 s, (d) 8 s.

In addition, it is noteworthy that at all time intervals, the De of 11 consistently exhibits a
uniform and predictable profile, aligning closely with the input velocity shown in Figure 4.
This stability ensures that the PIVG measurement can accurately capture the angular
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velocity at each time step. In contrast, higher Dean numbers exhibit fluctuations, resulting
in less reliable measurements and potentially compromising the accuracy of the PIVG
system. This highlights the significance of selecting an optimal Dean number, such as
11, to ensure consistent and reliable performance in capturing fluid dynamics within the
toroidal pipe.

The normalized axial and radial velocity profiles are shown in Figure 10, which
highlights the complex secondary flow patterns within the toroidal pipe at various Dean
numbers. As mentioned, normalization enhances comparability, allowing a detailed analy-
sis of these patterns. The axial velocity profile showcases consistent flow patterns at lower
Dean numbers, resembling sinusoidal trends. This sinusoidal behavior signifies stable fluid
movement along the toroid’s length. However, as the Dean numbers increase, especially
around 70, the sinusoidal pattern becomes more frequent, indicating a higher number
of oscillations within a given time frame. This increase in frequency implies intensified
oscillatory behavior in the fluid’s axial and radial movements. Similarly, the radial velocity
profiles, exhibit sinusoidal trends at lower Dean numbers, indicating predictable radial
fluid movements. Yet, at higher Dean numbers, particularly around 70, the sinusoidal
pattern becomes more rapid, signifying a higher frequency of radial oscillations. This
observation emphasizes the complex fluid dynamics that accompany higher Dean numbers,
leading to rapid and complex movements. Understanding these complications is crucial
when researching secondary flows in many engineering contexts.
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Figure 10. Axial velocity (a) 2 s, (b) 4 s, (c) 6 s, (d) 8 s and radial velocity (e) 2 s, (f) 4 s, (g) 6 s, (h) 8 s,
at different De.

4.3.2. Optimal Fluid Dynamics at De = 11 for PIVG Operation

In this part, we consider the vital decision regarding selecting a De of 11 for the
PIVG system. Our purpose is to illuminate the dependability and uniformity of fluid flow
phenomena under these specific circumstances and to provide useful thoughts about the
design and operation.

• The RTV and Secondary Flow

In this section of results, attention is directed towards the optimization of the PIVG
system, with a specific emphasis on the most pertinent Dean number, De = 11. This choice
is pivotal for ensuring the ideal conditions for PIVG functionality and marks a crucial
step towards enhancing the reliability and precision of the PIVG sensor. Additionally, it is
important to note that the results presented in this section are not normalized, and they
allow a clear distinction between the values of the primary and secondary flow.

In this 3D (Figure 11) graph the exponential increase in velocity until 4.5 s, followed
by an exponential decrease until the end, confirms the correlation between the velocity
distribution and the input angular acceleration rate. These findings further support the
consistency between the numerical simulation and the expected behavior of the fluid flow
inside the toroidal system. The stability is vital for the PIVG sensor’s accurate operation;
regardless of the PIV’s position, it will yield consistent results. Furthermore, this finding
underscores the suitability of the toroidal dimensions and fluid behavior for integration
into the PIVG system.
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The secondary flow at the De = 11 is shown here, and the velocity vector field on the
radial cross-section of the toroidal pipe is displayed, offering insights into flow dynamics
at different time steps, as shown in Figure 12. Velocity vectors intensify until 4 s, reflecting
the toroidal system’s increasing angular velocity. A transformation occurs from 6 to 8 s;
while the counter vortices are always present at all times, their intensity notably increases
between 6 and 8 s. This evolution from outwards to inwards aligns with Dean’s curved
pipe study [4,6,20], underlining the enduring relevance of his insights. Additionally, in
Figure 13, the temporal evolution of the secondary flow (SF) at time intervals measured at
radial positions r = 0 (center), r = 1, and r = 2 within the toroidal pipe is illustrated. Clearly,
for all three radial positions, the secondary flow exhibits a consistent pattern of gradual
augmentation from 2 to 4 s, culminating in a prominent peak at the 4 s mark. This peak
is observed both at the center (r = 0) and progressively towards the outer radial positions
(r = 1 and r = 2), accentuating the synchronized nature of this phenomenon across the
toroidal pipe’s cross-section. Beyond this peak, the secondary flow gradually decreases at 6
and 8 s, indicating a consistent behavior across various radial positions.

The graph (Figure 14) presents a comparative visualization of two crucial flow aspects
within a toroidal system: secondary flow and RTV. Remarkably, it is discernible that the
secondary flow exhibits notably weaker intensity in contrast to the comparatively more
dominant RTV. The noticeable difference in strength implies that the secondary flow can
be disregarded, especially when using particle image velocimetry (PIV) to measure RTV,
which is crucial for the function of the PIVG. The reduced impact of the secondary flow
allows a simplified measurement process (i.e., u = v = 0). This simplification enables a
direct and precise determination of fluid velocity specifically in the direction of relative
tangential motion, rather than measuring in three dimensions using PIV techniques.

• Pressure Distribution

The examination of pressure along the curvature of the toroidal geometry in Figure 15
offers valuable insights into the fluid dynamics within the PIVG system. By measuring
pressure at various angles along the curvature, we gain an understanding of how centrifugal
forces are distributed within the toroidal vessel. The consistent pattern observed in the
pressure gradient graph, with the gradient remaining close to zero across different angles,
indicates a balanced distribution of centrifugal forces. This balance is attributed to the
uniform curvature of the toroidal cross-section, which ensures consistent fluid behavior
regardless of the angle of measurement. Importantly, the near-zero pressure gradient
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(∂P/∂ϕ = 0) signifies a stable fluid flow pattern, which is crucial for accurate and reliable
performance of the PIVG. Understanding the pressure distribution along the toroidal
curvature helps optimize the design of the PIVG system, ensuring uniform fluid behavior
and minimizing disturbances that could affect angular velocity measurements.
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From the CFD results, it can be inferred that the mathematical model, represented
by the Navier–Stokes equation, for the PIVG sensor provides a wide domain of validity
with high fidelity. However, ensuring that the fluid behavior aligns with the prescribed
limits, particularly in terms of laminar flow with a low Dean number, is crucial for optimal
PIVG performance. After analyzing a range of Dean numbers from 10 to 70, our study
identified a De of 11 as optimal for achieving favorable fluid dynamics within the toroidal
vessel. This finding has significant implications for the design of the toroidal geometry,
as we pinpointed ideal dimensions characterized by a curvature radius of 25 mm and a
cross-sectional diameter of 5 mm. These dimensions were found to promote stable and
well-developed fluid flow patterns, which are particularly suitable for PIVG operation.
With these dimensions identified, we can tailor the packaging of the gyroscope to ensure
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optimal performance and functionality, offering valuable guidance for decision making in
the design and implementation of PIVG systems, thereby enhancing their effectiveness in
inertial navigation applications.
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5. Conclusions

In conclusion, our study, which is specifically tailored to the accelerated toroidal pipes
utilized in PIVGs, stands as a cornerstone in the ongoing enhancement of navigation sensor
technologies. The study examined several aspects, including a convergence study, valida-
tion, evaluation of the pressure gradients, and a detailed examination of relative tangential
and secondary flows. The convergence study revealed notable differences, with the medium
mesh exhibiting a higher uncertainty (GCI32%) than the fine mesh (GCI21%). The average
uncertainty attributed to spatial discretization is 1.47% for GCI32% and 0.27% for GCI21%.
In the validation phase, the study showed remarkable agreement with the experimental
data, validating the accuracy of our simulations. This agreement establishes the domain
fidelity crucial for PIVG performance. Our simulations have provided a viewpoint on an
accelerated toroidal geometry, highlighting how the fluid behaves under this acceleration
and different conditions, with Dean numbers ranging from 10 to 70, and we utilized a ramp
profile as the input angular velocity for the toroidal pipe. However, the most stable config-
uration, which was particularly beneficial for PIVG applications, was identified at De = 11
due to its stable dynamic fluid behavior, aligning with the toroid’s specific dimensions.
By selecting De = 11, we not only identify suitable dimensions for toroidal construction
but also mitigate secondary flow effects, thus enhancing the precision and reliability of
PIVGs in inertial navigation applications. Moreover, by selecting De = 11 and minimizing
secondary flow, our study suggests the potential for a reduction in the mathematical model
complexity and a focus on PIVG measurements based solely on primary flow dynamics;
this offers a promising avenue for future research and practical implementation.
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Appendix B. The Pressure Distribution at Different De

Figure A4 presents the pressure distribution profiles at various time points and differ-
ent De, offering a comprehensive insight into the pressure behaviors within the toroidal
vessel. Incredibly, the pressure trends mirror the patterns observed in the RTV profiles,
indicating a significant correlation between fluid pressure and rotational dynamics. No-
tably, all the profiles have been normalized, ensuring a consistent basis for comparison.
These findings have pivotal implications for applications such as the PIVG sensor, where
understanding pressure dynamics is integral.

Fluids 2024, 9, x FOR PEER REVIEW 22 of 24 
 

D = 59,  
d = 13 
δ = 0.22 
De = 50 

    

D = 55,  
d = 15 
δ = 0.273 
De = 60 

    

D = 52,  
d = 17 
δ = 0.327 
De = 70 

    
Figure A3. Axial velocity contour at (a) 2 s, (b) 4 s, (c) 6 s, and (d) 8 s and different values of De. 

Appendix B. The Pressure Distribution at Different De 
Figure A4 presents the pressure distribution profiles at various time points and dif-

ferent De, offering a comprehensive insight into the pressure behaviors within the toroidal 
vessel. Incredibly, the pressure trends mirror the patterns observed in the RTV profiles, 
indicating a significant correlation between fluid pressure and rotational dynamics. No-
tably, all the profiles have been normalized, ensuring a consistent basis for comparison. 
These findings have pivotal implications for applications such as the PIVG sensor, where 
understanding pressure dynamics is integral. 

(a) (b) 

  
  

Radial position

0.0 0.2 0.4 0.6 0.8 1.0 1.2

To
ta

l p
re

ss
ur

e

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De = 11
De = 10

De = 20
De = 30

De = 40
De = 50

De = 60
De = 70

Radial position

0.0 0.2 0.4 0.6 0.8 1.0 1.2

To
ta

l p
re

ss
ur

e

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De = 11
De = 10

De = 20
De = 30

De = 40
De = 50

De = 60
De = 70Fluids 2024, 9, x FOR PEER REVIEW 23 of 24 

 

(c) (d) 

  
Figure A4. Pressure distribution at (a) 2 s, (b) 4 s, (c) 6 s, and (d) 8 s and at different De. 

Appendix C. The Detailed RTV at Different Curvature Angle and Different Radius 
The stability of the fluid dynamics at De = 11 is confirmed by a different approach. 

Figure A5a, representing the relative tangential velocity at the time interval of 2 s at vary-
ing curvature angles, offers an insight into the fluid dynamics within our toroidal system. 
A consistent trend emerges across the diverse angles examined, revealing a uniformity in 
the RTV within the toroidal pipe. As well as Figure A5b shows the RTV against time series 
at different cross-section radii. 

(a) (b) 

 
 

Figure A5. (a) RTV at the different circumferential positions at 2 s, (b) RTV vs. time series at different 
cross-section radii. 

References 
1. Youssef, A.A.; El-Sheimy, N. Particle imaging velocimetry gyroscope. Sensors 2019, 19, 4734. https://doi.org/10.3390/s19214734. 
2. Elaswad, R.; El-Sheimy, N.; Mohamad, A.A. Review—Basic and Advanced Inertial Navigation Fluid-Based Technology. ECS 

Sens. Plus. 2023, 2, 023201. https://doi.org/10.1149/2754-2726/acd0c0. 
3. El-Sheimy, N.; Youssef, A. Inertial sensors technologies for navigation applications: State of the art and future trends. Satell. 

Navig. 2020, 1, 2. https://doi.org/10.1186/s43020-019-0001-5. 
4. Norouzi, M.; Sedaghat, M.; Shahmardan, M. An analytical solution for viscoelastic dean flow in curved pipes with elliptical 

cross section. J. Non-Newtonian Fluid Mech. 2014, 204, 62–71. https://doi.org/10.1016/j.jnnfm.2013.12.006. 
5. Dean, W.R.; Hurst, J.M. Note on the Motion of Fluid in a Curved Pipe. Mathematika 1959, 6, 77–85. 

https://doi.org/10.1112/s0025579300001947. 

Radial position

0.0 0.2 0.4 0.6 0.8 1.0 1.2

To
ta

l p
re

ss
ur

e

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De = 11
De = 10

De = 20
De = 30

De = 40
De = 50

De = 60
De = 70

Radial position

0.0 0.2 0.4 0.6 0.8 1.0 1.2

To
ta

l p
re

ss
ur

e

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De = 11
De = 10

De = 20
De = 30

De = 40
De = 50

De = 60
De = 70

Time series (sec)

0 2 4 6 8 10

RT
V

 (m
m

/se
c)

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

r = 0 
r = 1 
r = 2 

Radial position r (mm)

-3 -2 -1 0 1 2 3

RT
V

 (m
m

/se
c)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0
ϕ = 0°
ϕ = 30°
ϕ = 60°

ϕ = 90°
ϕ = 120°
ϕ = 150°

ϕ = 180°
ϕ = 210°
ϕ = 240°

ϕ = 270°
ϕ = 300°
ϕ = 330°

Figure A4. Pressure distribution at (a) 2 s, (b) 4 s, (c) 6 s, and (d) 8 s and at different De.

Appendix C. The Detailed RTV at Different Curvature Angle and Different Radius

The stability of the fluid dynamics at De = 11 is confirmed by a different approach.
Figure A5a, representing the relative tangential velocity at the time interval of 2 s at varying
curvature angles, offers an insight into the fluid dynamics within our toroidal system. A
consistent trend emerges across the diverse angles examined, revealing a uniformity in the
RTV within the toroidal pipe. As well as Figure A5b shows the RTV against time series at
different cross-section radii.
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