Numerical Dissipation Control in High-Order Methods for Compressible Turbulence: Recent Development †
Abstract
:1. Preliminary, Specifics, Objectives, and Outlines
1.1. Specifics and Relevancy
1.2. Recent Development in High-Order Shock-Capturing and Shock-Fitting Methods
1.3. Alternative Methods for Shock Capturing—Front-Tracking Methods and Moretti’s Shock-Fitting Methods
1.4. Artificial Viscosity Methods
1.5. Riemann Solvers of Euler Equations
1.6. Objectives and Outline
2. Overview of Recent Trends in High-Order Methods’ Development for Compressible Turbulence
2.1. Rationale for the Need of Efficient High-Order Methods with Smart Flow Sensors for Adaptive Numerical Dissipation Control
2.1.1. Recent Trends
2.1.2. Nomenclature
2.1.3. High-Order Non-Dissipative Linear Spatial Discretizations
2.2. Short Overview of Hybrid Methods
2.3. Padé vs. Central Non-Dissipative Spatial Differencing
2.4. Overview of Nonlinear Filter
2.4.1. Base Scheme Step
2.4.2. Post-Processing (Nonlinear Filter) Step
2.4.3. A Historical Note on Nonlinear Filter Approaches
2.4.4. Accuracy Comparison: Hybrid vs. Nonlinear Filter Approaches
3. Rationale for the Need for Efficient High-Order Structure-Preserving Methods Blending with High-Order Shock-Capturing Methods
3.1. SPM Finite Difference Formulation in Split Form: Skew-Symmetric Splittings of the Compressible Euler Flux Derivatives
3.2. Conservative Splitting of Ducros et al. Type
3.3. Special Class of Entropy-Conserving SPM—Entropy Split Method (Entropy-Splitting Approach)
3.3.1. Key Entropy-Conserving Methods for the Compressible Euler and Ideal MHD Equations
3.4. Newer Class of Entropy Split Methods in Numerical Flux Form: Not Relying on the Homogeneous Property of the Inviscid Flux and Symmetrizable Inviscid Flux Derivatives
3.5. Methods with Multiple Structure-Preserving Properties
4. Methods for Problems with Source Terms and Stiff Source Terms with Shocks
4.1. Test Cases for Blending of Numerical Methods Using Flows WITH or WITHOUT Source Terms
4.1.1. Chapman–Joguet (C-J) Detonation Containing Stiff Source Terms and Discontinuities
4.1.2. 1D and 2D 13-Species EAST Simulations
4.1.3. Three-Dimensional Supersonic Shock–Turbulence Interaction via a Structure-Preserving Method [14]
4.2. Problems with Random Forcing Source Term Simulation
5. High-Order Structure-Preserving Method Formulations for Compressible Turbulence in Nonuniform Curvilinear Grids
5.1. High-Order Entropy Split Methods Using Linear Difference Operators [19,20,22,26,76]
5.2. Spatial Discretizations via Two-Point Numerical Fluxes
5.3. Extension to High-Order Spatial Discretizations [20,76]
5.4. High-Order Numerical Fluxes in Curvilinear Grids for Comparison Study [20,76]
5.4.1. Kinetic Energy-Preserving (KEP) Property
5.4.2. Tadmor-Type Entropy-Conserving Numerical Flux Using the Entropy Function : ECLOG
5.4.3. Entropy-Conserving Numerical Flux of Tadmor-Type Using the Entropy Function with the KEP Property [90]: ECLOGKP
5.4.4. Tadmor-Type Entropy-Conserving Numerical Flux Using the Harten Entropy Function with the KEP Property [90]: ECHKP
5.4.5. Momentum-Conserving Method of Ducros et al. [19,87]: DS
5.4.6. Ducros et al. Momentum-Conserving Method with KEP Property [90]: DSKP
5.4.7. Kennedy–Gruber–Pirozzoli Kinetic Energy-Preserving Method: KGP
6. Entropy Split Method and Recent Extensions ES
6.1. Hybridized Entropy Split Method with Ducros et al. Splitting: ESDS
6.2. New Conservative Entropy Split Method ESSW
7. Gas Dynamics Comparison Among High-Order Methods
7.1. Spatial Discretization with Various Structure-Preserving Properties
- ECLOG: The Tadmor-type entropy-conserving method using the Tadmor entropy function .
- DS: A momentum-conserving Ducros et al. skew-symmetric split of the inviscid flux derivative [87].
- ESDS: Entropy split with Ducros et al. splitting [19].
- ESSW: Entropy split with Ducros et al. splitting but a switch to regular central near-discontinuities [22].
- ECLOGKP: A Tadmor-type entropy-conserving method using the Tadmor entropy function with Ranocha’s kinetic energy-preserving modification [90].
- DSKP: Ducros split with KEP.
7.2. Smooth Flow Test Case for Gas Dynamics: 2D Isotropic Vortex Convection the Popular Test Case to Test the Stability and Accuracy of Long-Time Integration for a Smooth Flow Is the 2D Isentropic Vortex Convection with the Initial Data Indicated in Figure 24
7.3. Three-Dimensional Shock-Free Compressible Turbulence Gas Dynamics Test Case—3D Taylor–Green Vortex
7.4. A Difficult Brio–Wu MHD Shock Tube Test Case
7.5. Summary
8. Generalization to a Wider Class of Entropy Split Methods for Compressible Ideal MHD [23]
8.1. New Approach to High-Order Entropy Split Methods Using Two-Point Numerical Flux Approach
8.2. Extension of the New Entropy Split Formulation for the Equations of Ideal MHD
8.3. Derivation of a Split-Form Entropy-Conserving Method
8.4. Numerical Experiments
8.4.1. Alfvén Wave
8.4.2. Brio–Wu MHD Riemann Problem
8.5. Shock–Oscillations Interaction MHD Problem
Execution Time Comparison
9. Concluding Remark
Funding
Acknowledgments
Conflicts of Interest
References
- Bihari, B.; Schwendeman, D. Multiresolution Schemes for the Reactive Euler Equations. J. Comput. Phys. 1999, 154, 197–230. [Google Scholar] [CrossRef]
- Griffiths, D.F.; Stuart, A.M.; Yee, H.C. Numerical Wave Propagation in an Advection Equation with a Nonlinear Source Term. SIAM J. Numer. Anal. 1992, 29, 1244–1260. [Google Scholar] [CrossRef]
- Helzel, C.; LeVeque, R.; Warneke, G. A Modified Fractional Step Method for the Accurate Approximation of Detonation Waves. SIAM J. Sci. Stat. Comp. 1999, 22, 1489–1510. [Google Scholar] [CrossRef]
- Jeltsch, R.; Klingenstein, P. Error Estimators for the Position of Discontinuities in Hyperbolic Conservation Laws with Source Term Which are Solved Using Operator Splitting. Comput. Vis. Sci. 1999, 1, 231–249. [Google Scholar] [CrossRef]
- LeVeque, R.J.; Yee, H.C. A Study of Numerical Methods for Hyperbolic Conservation Laws with Stiff Source Terms. J. Comp. Phys. 1990, 86, 187–210. [Google Scholar] [CrossRef]
- LeVeque, R.J.; Shyue, K.-M. One-Dimensional Front Tracking Based on High Resolution Wave Propagation Methods. SIAM J. Sci. Comput. 1995, 16, 348–377. [Google Scholar] [CrossRef]
- Tosatto, L.; Vigevano, L. Numerical Solution of Under-Resolved Detonations. J. Comp. Phys. 2008, 227, 2317–2343. [Google Scholar] [CrossRef]
- Wang, W.; Shu, C.W.; Yee, H.C.; Sjögreen, B. High Order Finite Difference Methods with Subcell Resolution for Advection Equations with Stiff Source Terms. J. Comput. Phys. 2012, 231, 190–214. [Google Scholar] [CrossRef]
- Yee, H.C. Building Blocks for Reliable Complex Nonlinear Numerical Simulations. In Turbulent Flow Computation; Drikakis, D., Geurts, B., Eds.; Kluwer Academic Publishers: Philip Drive Norwell, MA, USA, 2002. [Google Scholar]
- Yee, H.C.; Sjögreen, B.; Barone, M. High order numerical schemes for hypersonic flow simulations. In Proceedings of the VKI Lecture Series: Course on Hypersonic Entry and Cruise Vehicles, Moffett Field, CA, USA, 30 June–3 July 2008. [Google Scholar]
- Yee, H.C.; Kotov, D.V.; Wang, W.; Shu, C.-W. Spurious behavior of shock-capturing methods by the fractional step approach: Problems containing stiff source terms and discontinuities. J. Comput. Phys. 2013, 241, 266–291. [Google Scholar] [CrossRef]
- Hadjadj, A.; Yee, H.C.; Sjogreen, B. LES of Temporally Evolving Mixing Layers by an Eighth-Order Filter Scheme. Int. J. Num. Meth. Fluids 2012, 70, 1405–1427. [Google Scholar] [CrossRef]
- Kotov, D.V.; Yee, H.C.; Pansei, M.; Prabhu, D.K.; Wray, A.A. Computational Challenges for Simulations Related to the NASA Electric Arc Shock Tube (EAST) Experiments. J. Comput. Phys. 2014, 269, 215–233. [Google Scholar] [CrossRef]
- Kotov, D.V.; Yee, H.C.; Wray, A.A.; Hadjadj, A.; Sjögreen, B. High Order Numerical Methods for the Dynamic SGS Model of Turbulent Flows with Shocks. Commun. Comput. Phys. 2016, 19, 273–300. [Google Scholar] [CrossRef]
- Kotov, D.V.; Yee, H.C.; Wray, A.A.; Sjögreen, B.; Kritsuk, A.G. Numerical dissipation control in high order shock-capturing schemes for LES of low speed flows. J. Comput. Phys. 2016, 307, 189–202. [Google Scholar] [CrossRef]
- Sandham, N.D.; Li, Q.; Yee, H.C. Entropy Splitting for High-Order Numerical Simulation of Compressible Turbulence. J. Comput. Phys. 2002, 23, 307–322. [Google Scholar] [CrossRef]
- Sjögreen, B.; Yee, H.C. Multiresolution Wavelet Based Adaptive Numerical Dissipation Control for Shock-Turbulence Computation. J. Scient. Comput. 2004, 20, 211–255. [Google Scholar] [CrossRef]
- Sjögreen, B.; Yee, H.C. Accuracy Consideration by DRP Schemes for DNS and LES of Compressible Flow Computations. Comput. Fluids 2017, 159, 123–136. [Google Scholar]
- Sjögreen, B.; Yee, H.C. Entropy Stable Method for the Euler Equations Revisited: Central Differencing via Entropy Splitting and SBP. J. Sci. Comput. 2019, 81, 1359–1385. [Google Scholar] [CrossRef]
- Sjögreen, B.; Yee, H.C.; Kotov, D.V.; Kritsuk, A.G. Skew-Symmetric Splitting for Multiscale Gas Dynamics and MHD Turbulence Flows. J. Sci. Comput. 2020, 83, 43. [Google Scholar] [CrossRef]
- Sjögreen, B.; Yee, H.C. High Order Compact Central Spatial Discretization Under the Framework of Entropy Split Methods. In Proceedings of the ICOSAHOM21, Vienna, Austria, 12–16 July 2021. [Google Scholar]
- Sjögreen, B.; Yee, H.C. Construction of Conservative Numerical Fluxes for the Entropy Split Method. Comm. Appl. Math. Comput. 2021, 5, 653–678. [Google Scholar] [CrossRef]
- Sjögreen, B.; Yee, H.C. Generalization to a Wider Class of Entropy Split Methods for Compressible Ideal MHD. Comput. Fluids 2024, 268, 106087. [Google Scholar] [CrossRef]
- Vinokur, M.; Yee, H.C. Extension of Efficient Low Dissipation High-Order Schemes for 3D Curvilinear Moving Grids. In Frontiers of Computational Fluid Dynamics, Proceedings of the Robert MacCormack 60th Birthday Conference, Half Moon Bay, CA, USA, 26–28 June 2000; NASA/TM-2000-209598; World Scientific: Singapore, 2002; p. 129164. [Google Scholar]
- Yee, H.C.; Sandham, N.D.; Djomehri, M.J. Low-Dissipative High Order Shock-Capturing Methods Using Characteristic-Based Filters. J. Comput. Phys. 1999, 150, 199–238. [Google Scholar] [CrossRef]
- Yee, H.C.; Vinokur, M.; Djomehri, M.J. Entropy Splitting and Numerical Dissipation. J. Comp. Phys. 2000, 162, 33–81. [Google Scholar] [CrossRef]
- Yee, H.C.; Sjögreen, B. Development of Low Dissipative High Order Filter Schemes for Multiscale Navier-Stokes and MHD Systems. J. Comput. Phys. 2007, 225, 910–934. [Google Scholar] [CrossRef]
- Yee, H.C.; Sjögreen, B. High Order Filter Methods for Wide Range of Compressible Flow Speeds. In Proceedings of the ICOSAHOM09, Trondheim, Norway, 22–26 June 2009. [Google Scholar]
- Yee, H.C.; Sjögreen, B. Comparative Study on a Variety of Structure-Preserving High Order Spatial Discretizations with the Entropy Split Methods for MHD. In Proceedings of the ICOSAHOM21, Vienna, Austria, 12–16 July 2021. [Google Scholar]
- Yee, H.C.; Sjögreen, B. Recent Advancement of Entropy Split Methods for Compressible Gas Dynamics and MHD. J. Appl. Math. Comput. 2023, 463, 127545. [Google Scholar] [CrossRef]
- Johnsen, E.; Larsson, J.; Bhagatwala, A.; Cabot, W.; Moin, P.; Olson, B.; Rawat, P.; Shankar, S.; Sjgreen, B.; Yee, H.; et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J. Comput. Phys. 2010, 229, 1213–1237. [Google Scholar] [CrossRef]
- Pirozzoli, S. Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 2011, 43, 163–194. [Google Scholar] [CrossRef]
- Pirozzoli, S. Stabilized non-dissipative approximations of Euler equations in generalized curvilinear coordinates. J. Comput. Phys. 2011, 230, 2997–3014. [Google Scholar] [CrossRef]
- Toro, E.F.; Hidalgo, A. ADER finite volume schemes for nonlinear reaction-diffusion equations. Appl. Numer. Math. 2009, 59, 73–100. [Google Scholar] [CrossRef]
- Yee, H.C.; Sjögreen, B. Simulation of Richtmyer-Meshkov Instability by Sixth-order Filter Methods. Shock Waves J. 2007, 17, 185–193. [Google Scholar] [CrossRef]
- Sjögreen, B.; Yee, H.C.; Vinokur, M. On high order finite-difference metric discretizations satifying GCL on mmoving and deforming grids. J. Comput. Phys. 2014, 265, 211–220. [Google Scholar] [CrossRef]
- Yee, H.C.; Warming, R.F.; Harten, A. Implicit total variation diminishing (TVD) schemes for steady-state calculations. J. Comput. Phys. 1985, 57, 327–360. [Google Scholar] [CrossRef]
- Yee, H.C. A Class of High-Resolution Explicit and Implicit Shock-Capturing Methods; VKI Lecture Series 1989-04; NASA: Washington, DC, USA, 1989. [Google Scholar]
- Sjögreen, B.; Yee, H.C. Variable High Order Multiblock Overlapping Grid Methods for Mixed Steady and Unsteady Multiscale Viscous Flows. Commun. Comput. Phys. 2009, 5, 730–744. [Google Scholar]
- Gassner, G.; Winters, A.R. A Novel Robust Strategy for Discontinuous Galerkin Methods in Computational Fluid Mechanics: Why? When? What? Where? Front. Phys. 2021, 8, 500690. [Google Scholar] [CrossRef]
- Abgrall, R. A Review of Residual Distribution Schemes for Hyperbolic and Parabolic Problems: Their July 2010 State of the Art. Commun. Comput. Phys. 2012, 11, 1043–1080. [Google Scholar] [CrossRef]
- Abgrall, R. The notion of conservation for residual distribution schemes (for fluctuation splitting schemes), with some applications. arXiv 2019, arXiv:1904.02198v1. [Google Scholar] [CrossRef]
- Deconinck, H.; Ricchiuto, M. Residual Distribution Schemes: Foundations and Analysis; INRIA Report; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Xu, K.; Huang, J.-C. A unified gas-kinetic scheme for continuum and rarefied flows. J. Comput. Phys. 2010, 229, 7747–7764. [Google Scholar] [CrossRef]
- University of Chicago. Flash Manual—UserManual.Wiki; University of Chicago: Chicago, IL, USA, 2021. [Google Scholar]
- Teunissen, J.; (Dutch national center for mathematics and computer science, Amsterdam, The Netherlands); Keppens, R.; (Mathematics Department of the KU Leuven, Leuven, Belgium). Slides presentation at University of Yunnan, Kunming, China.
- She, D.; Kaufman, R.; Lim, H.; Melvin, J.; Hsu, A.; Glimm, J. Chapter 15—Front-Tracking Methods. In Handbook of Numerical Methods for Hyperbolic Problems Basic and Fundamental Issues; Abgrall, R., Shu, C.-W., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Chapter 15; Volume 17, pp. 383–402. [Google Scholar]
- Bonfiglioli, A.; Paciorri, R.; Nasuti, F.; Onofri, M. Chapter 16—Moretti’s shock-Fitting Methods on Structured and Unstructured Meshes. In Handbook of Numerical Methods for Hyperbolic Problems Basic and Fundamental Issues; Abgrall, R., Shu, C.-W., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Chapter 16; Volume 17, pp. 403–439. [Google Scholar]
- Margolin, L.G.; Lloyd-Ronning, N. Artificial viscosity—Then and now. arXiv 2022, arXiv:2202.11084. [Google Scholar] [CrossRef]
- Cook, A.W.; Cabot, W.H. Hyperviscosity for shock-turbulence interactions. J. Comput. Phys. 2005, 203, 379–385. [Google Scholar] [CrossRef]
- Roe, P.L. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. J. Comput. Phys. 1981, 43, 357–372. [Google Scholar] [CrossRef]
- Yee, H.C.; Klopfer, G.H.; Mongtagné, J.-L. High-Resolution Shock-Capturing Schemes for Inviscid and Viscous Hypersonic Flows. J. Comput. Phys. 1990, 88, 31–61. [Google Scholar] [CrossRef]
- Harten, A.; Lax, P.; van-Leer, B. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws. SIAM Rev. 1983, 25, 35–61. [Google Scholar] [CrossRef]
- Toro, E.F. Riemann Solver & Numerical Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 9783662034927. [Google Scholar]
- Toro, E.F. Chapter II: The Riemann problem: Solvers and numerical fluxes. In Handbook of Numerical Methods for Hyperbolic Problems Basic and Fundamental Issues; Abgrall, R., Shu, C.-W., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 17, pp. 19–54. [Google Scholar]
- Dumbser, M.; Toro, E.F. A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems. J. Sci. Comput. 2011, 48, 70–88. [Google Scholar] [CrossRef]
- Dumbser, M.; Toro, E.F. On universal Osher type schemes for general nonlinear hyperbolic conservation laws. Comm. Comput. Phys. 2011, 10, 70–88. [Google Scholar] [CrossRef]
- Steger, J.L.; Warming, R.F. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. J. Comput. Phys. 1981, 40, 263–293. [Google Scholar] [CrossRef]
- Book, D.L.; Boris, J.P.; Hain, K. Flux-corrected transport II: Generalizations of the method. J. Comput. Phys. 1975, 18, 248–283. [Google Scholar] [CrossRef]
- Harten, A. The Artificial Compression Method for Computation of Shocks and Contact Discontinuities: (III). Self-Adjusting Hybrid Schemes. Math. Comput. 1978, 32, 363–389. [Google Scholar]
- Balsara, D.; Shu, C.-W. Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy. J. Comput. Phys. 2000, 160, 405–452. [Google Scholar] [CrossRef]
- Jiang, G.-S.; Shu, C.-W. Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys. 1996, 126, 202–228. [Google Scholar] [CrossRef]
- Blaisdell, G. Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. AIAA J. 2008, 46, 3168. [Google Scholar] [CrossRef]
- Rafei, E. Investigation of Numerical Dissipation in Classical and Implicit Large Eddy Simulations. Aerospace 2017, 4, 59. [Google Scholar] [CrossRef]
- Harten, A. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 1983, 49, 357–393. [Google Scholar] [CrossRef]
- Sjögreen, B.; Yee, H.C.; Kotov, D.V. Skew-symmetric Splitting and Stability of High Order Central Schemes. J. Phys. Conf. Ser. 2017, 837, 012019. [Google Scholar] [CrossRef]
- Yee, H.C.; Sjögreen, B. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, II: Minimization of ∇·B Numerical Error. J. Sci. Comput. 2006, 29, 115–164. [Google Scholar] [CrossRef]
- Yee, H.C.; Sjögreen, B. Adaptive Filtering and Limiting in Compact High Order Methods for Multiscale Gas Dynamics and MHD Systems. Comput. Fluid 2008, 37, 593–619. [Google Scholar] [CrossRef]
- Adam, Y. Highly accurate compact implicit methods and boundary conditions. J. Comput. Phys. 1977, 24, 10–22. [Google Scholar] [CrossRef]
- Hirsh, R.S. Higher Order Accurate Difference Solutions of Fluid Mechanics Problems by a Compact Differencing Eechnique. J. Comput. Phys. 1975, 19, 90–109. [Google Scholar] [CrossRef]
- Lele, S.K. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 1992, 103, 16–42. [Google Scholar] [CrossRef]
- Fang, J.; Gao, F.; Moulinec, C.; Emerson, D.R. An Improved Parallel Compact Scheme for Domain-Decoupled Simulation of Turbulence. Int. J. Numer. Methods Fluids 2019, 90, 479–500. [Google Scholar] [CrossRef]
- Sengupta, T.K.; Dipankar, A.; Rao, K. A New Compact Scheme for Parallel Computing using Domain Decomposition. J. Comput. Phys. 2007, 220, 654–677. [Google Scholar] [CrossRef]
- Tam, C.K.W. A CAA Primer for Practicing Engineers; AEDC-TR-08-2; Arnold Engineering Development Center: Arnold Air Force Base, TN, USA, 2008. [Google Scholar]
- Tam, C.K.W. Computational Aeroacoustics: A Wave Number Approach; Cambridge Aerospace Series; Cambridge University Press: New York, NY, USA, 2012; Volume 33. [Google Scholar]
- Sjögreen, B.; Yee, H.C. High order entropy conservative central schemes for wide ranges of compressible gas dynamics and MHD flows. J. Comput. Phys. 2018, 364, 153–185. [Google Scholar] [CrossRef]
- Olsson, P. Summation by Parts, Projections, and Stability. I. Math. Comp. 1995, 64, 1035–1065. [Google Scholar] [CrossRef]
- Sjögreen, B.; Yee, H.C. On Tenth-Order Central Spatial Schemes. In Proceedings of the TSFP-5, Munich, Germany, 27–29 August 2007. [Google Scholar]
- Ducros, F.; Ferrand, V.; Nicoud, F.; Weber, C.; Darracq, D.; Gacherieu, C.; Poinsot, T. Large-Eddy Simulation of the Shock/Turbulence Interaction. J. Comput. Phys. 1999, 152, 517–549. [Google Scholar] [CrossRef]
- Palha, A.; Gerritsma, M. A Mass Energy, Enstrophy and Vorticity Conserving (MEEVC) Mimetic Spectral Element Discretization for the 2D Incompressible Navier-Stokes Equations. J. Comput. Phys. 2017, 328, 200–220. [Google Scholar] [CrossRef]
- Harten, A. On the Symmetric Form of Systems for Conservation Laws with Entropy. J. Comput Phys. 1983, 49, 151. [Google Scholar] [CrossRef]
- Tadmor, E. Entropy Stability Theory for Difference Approximations of Nonlinear Conservation Laws and Related Time-Dependent Problems. Acta Numer. 2003, 12, 451–512. [Google Scholar] [CrossRef]
- Cano, B.; Sanz-Serna, J.M. Error growth in the numerical integration of periodic orbits, with application to Hamiltonian and reversible systems. SIAM J. Numer. Anal. 1997, 34, 1391–1417. [Google Scholar] [CrossRef]
- Arakawa, A. Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow, Part I. J. Comput. Phys. 1966, 1, 119–143. [Google Scholar] [CrossRef]
- Blaisdell, G.A.; Spyropoulos, E.T.; Qin, J.H. The Effect of the Formulation of Nonlinear Terms on Aliasing Errors in Spectral Methods. Appl. Num. Math. 1996, 21, 207–219. [Google Scholar] [CrossRef]
- Coppola, G.; Capuano, F.; Pirozzoli, S.; de Luca, L. Numerically Stable Formulations of Convective Terms for Turbulent Compressible Flows. J. Comput. Phys. 2019, 382, 86–104. [Google Scholar] [CrossRef]
- Ducros, F.; Laporte, F.; Soulères, T.; Guinot, V.; Moinat, P.; Caruelle, B. High-Order Fluxes for Conservative Skew-Symmetric-Like Schemes in Structured Meshes: Application to Compressible Flows. J. Comput. Phys. 2000, 161, 114–139. [Google Scholar] [CrossRef]
- Gerritsen, M.; Olsson, P. Designing an Efficient Solution Strategy for Fluid Flows: 1. A Stable High Order Finite Difference Scheme and Sharp Shock Resolution for the Euler Equations. J. Comput. Phys. 1996, 129, 245–262. [Google Scholar] [CrossRef]
- Pirozzoli, S. Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 2010, 219, 7180–7190. [Google Scholar] [CrossRef]
- Ranocha, H. Entropy Conserving and Kinetic Energy Preserving Numerical Methods for the Euler Equations Using Summation-by-Parts Operators. In Proceedings of the ICOSAHOM-2018, Imperial College, London, UK, 9–13 July 2018. [Google Scholar]
- Kennedy, C.A.; Gruber, A. Reduced Aliasing Formulations of the Convective Terms Within the Navier-Stokes Equations. J. Comput. Phys. 2008, 227, 1676–1700. [Google Scholar] [CrossRef]
- Olsson, P.; Oliger, J. Energy and Maximum Norm Estimates for Nonlinear Conservation Laws; RIACS Technical Report 94.01; NASA: Washington, DC, USA, 1994. [Google Scholar]
- Johansson, S. High Order Summation by Parts Operator Based on a DRP Scheme Applied to 2D; Technical Report 2004-050; Uppsala University: Uppsala, Sweden, 2008. [Google Scholar]
- Sjögreen, B.; Yee, H.C. An entropy stable method revisited: Central differencing via entropy splitting and SBP. In Proceedings of the ICOSAHOM-2018, Imperial College, London, UK, 9–13 July 2018. [Google Scholar]
- Yee, H.C.; Sjögreen, B. Recent Developments in Accuracy and Stability Improvement of Nonlinear filter Methods for DNS and LES of Compressible Flows. Comput. Fluids 2018, 169, 331–348. [Google Scholar] [CrossRef]
- Sjögreen, B.; Yee, H.C. A New Approach for a Wider Class of Entropy Split Methods for Compressible Gas Dynamics and MHD. In Proceedings of the ICCFD11 Conference, Maui, HI, USA, 11–15 July 2022. [Google Scholar]
- Tadmor, E. Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes. Math. Comput. 1984, 43, 369–381. [Google Scholar] [CrossRef]
- Wang, W.; Yee, H.C.; Sjögreen, B.; Magin, T.; Shu, C.W. Construction of Low Dissipative High-Order Well-Balanced Filter Schemes for Nonequilibrium Flows. J. Comput. Phys. 2011, 230, 4316–4335. [Google Scholar] [CrossRef]
- Wang, W.; Yee, H.C.; Shu, C.-W.; Yee, H.C.; Sjögreen, B. High-Order well-balanced schemes and applications to non-equilibrium flow. J. Comput. Phys. 2009, 228, 6682–6702. [Google Scholar] [CrossRef]
- Colella, P.; Majda, A.; Roytburd, V. Theoretical and Numerical Structure for Numerical Reacting Waves. SIAM J. Sci. Stat. Comput. 1986, 7, 1059–1080. [Google Scholar] [CrossRef]
- Strang, G. On the Construction and Comparison of Difference Schemes. SIAM J. Numer. Anal. 1968, 5, 506–517. [Google Scholar] [CrossRef]
- Berkenbosch, A.; Kaasschieter, E.; Klein, R. Detonation Capturing for Stiff Combustion Chemistry. Combust. Theory Model 1998, 2, 313–348. [Google Scholar] [CrossRef]
- Bourlioux, A.; Majda, A.; Roytburd, V. Theoretical and Numerical Structure for Unstable One-Dimensional Detonations. SIAM J. Appl. Math. 1991, 51, 303–343. [Google Scholar] [CrossRef]
- Pember, R. Numerical Methods for Hyperbolic Conservation Laws with Stiff Relaxation, I. Spurious Solutions. SIAM J. Appl. Math. 1993, 53, 1293–1330. [Google Scholar] [CrossRef]
- Wang, W.; Shu, C.W.; Yee, H.C.; Kotov, D.V.; Sjögreen, B. High order finite difference methods with subcell resolution for stiff multispecies detonation capturing. Comm. Comput. Phys. 2015, 17, 317–336. [Google Scholar] [CrossRef]
- Zhang, X.; Shu, C.-W. Positivity-Preserving High Order Finite Difference WENO Schemes for Compressible Euler Equations. J. Comput. Phys. 2012, 231, 2245–2258. [Google Scholar] [CrossRef]
- Kritsuk, A.; Kotov, D.V.; Sjögreen, B.; Yee, H.C. High order nonlinear filter methods for subsonic turbulence simulation with stochastic forcing. J. Comput. Phys. 2021, 431, 110118. [Google Scholar] [CrossRef]
- Strand, B. Summation by Parts for Finite Difference Approximations for d/dx. J. Comput. Phys. 1996, 110, 47–97. [Google Scholar] [CrossRef]
- Yee, H.C.; Sjögreen, B. On Entropy Conservation and Kinetic Energy Preservation Methods. In Proceedings of the ICOSAHOM-2019, Paris, France, 1–5 July 2019. [Google Scholar]
- Sjögreen, B.; Yee, H.C. On Skew-Symmetric Splitting and Entropy Conservation Schemes for the Euler Equations. In Proceedings of the ENUMATH09, Uppsala, Sweden, 29 June–2 July 2009; Uppsala University: Uppsala, Sweden, 2009. [Google Scholar]
- Bogey, C.; Bailly, C. A Family of Low dispersive and Low Dissipative Explicit Schemes for Computing the Aerodynamic Noise. In Proceedings of the 8th ARAA/CEAS Aeroacoustics Conference & Exhibit, Breckenridge, CO, USA, 17–19 June 2002. AIAA-Paper 2002-2509. [Google Scholar]
- Brambley, E.J. Optimized finite-difference (DRP) schemes perform poorly for decaying or growing oscillations. J. Comput. Phys. 2015, 324, 258–274. [Google Scholar] [CrossRef]
- Taylor, G.; Green, A. Mechanism of the Production of Small Eddies from Large Ones. Proc. R. Soc. Lond. A 1937, 158, 499–521. [Google Scholar]
- Castro, M.J.; Gallardo, J.M.; Marquina, A. Jacobian-Free Incomplete Riemann Solvers. In Theory, Numerics and Application Problems I; Springer: Aachen, Germany, 2016; pp. 292–307. [Google Scholar]
- Colella, P.; Woodward, P.R. The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations. J. Comput. Phys. 1984, 54, 174–201. [Google Scholar] [CrossRef]
- Gurski, K.F. An HLLC-Type Approximate Riemann Solver for Ideal Magnetohydrodynamics. SIAM J. Sci. Comput. 2004, 25, 2165–2187. [Google Scholar] [CrossRef]
- Li, S. An HLLC Riemann Solver for Magneto-Hydrodynamics. J. Comput. Phys. 2005, 203, 344–357. [Google Scholar] [CrossRef]
- Godunov, S.K. Symmetric Form of the Equations of Magnetohydrodynamics. Numer. Methods Mech. Contin. 1972, 13, 26–34. [Google Scholar]
- Shu, C.-W.; Osher, S.J. Efficient Implementation of Essentially Non-oscillatory Shock Capturing Schemes. J. Comput. Phys. 1989, 83, 32–78. [Google Scholar] [CrossRef]
Method | CPU Seconds | Ratio |
---|---|---|
ECH | 252 | 2.02 |
ESSWnew | 127 | 1.02 |
ESnew | 125 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yee, H.C.; Sjögreen, B. Numerical Dissipation Control in High-Order Methods for Compressible Turbulence: Recent Development. Fluids 2024, 9, 127. https://doi.org/10.3390/fluids9060127
Yee HC, Sjögreen B. Numerical Dissipation Control in High-Order Methods for Compressible Turbulence: Recent Development. Fluids. 2024; 9(6):127. https://doi.org/10.3390/fluids9060127
Chicago/Turabian StyleYee, H. C., and Björn Sjögreen. 2024. "Numerical Dissipation Control in High-Order Methods for Compressible Turbulence: Recent Development" Fluids 9, no. 6: 127. https://doi.org/10.3390/fluids9060127
APA StyleYee, H. C., & Sjögreen, B. (2024). Numerical Dissipation Control in High-Order Methods for Compressible Turbulence: Recent Development. Fluids, 9(6), 127. https://doi.org/10.3390/fluids9060127