Convergence towards High-Speed Steady States Using High-Order Accurate Shock-Capturing Schemes
Abstract
:1. Introduction
1.1. Literature Review
1.1.1. Spatial Discretization
1.1.2. Temporal Discretization
1.1.3. Convergence towards Steady States
1.2. Present Contributions
2. Methodology
2.1. Governing Equations
2.2. Grid Generation
2.3. Numerical Methods
2.3.1. Viscous Flux Discretization
2.3.2. Inviscid Flux Discretization
Conservative Schemes
Flux Function Splitting
WENO Schemes
Extension to a System of Equations
2.3.3. Temporal Integration
3. Results
3.1. Compression Ramp
3.2. Blunt Wedge
3.3. Quarter Cylinder
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Wall Properties
Appendix A.1. Compression Ramp
Appendix A.2. Blunt Body
Appendix A.3. Cylinder
References
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics. The Finite Volume Method; Prentice Hall: London, UK, 1995. [Google Scholar]
- Tannehill, J.C.; Anderson, D.A.; Pletcher, R.H. Computational Fluid Mechanics and Heat Transfer; Taylot & Francis: Philadelphia, PA, USA, 1997. [Google Scholar]
- Lomax, H.; Pulliam, T.H.; Zingg, D.W. Fudamentals of Computational Fluid Dynamics; Scientific Computation, Springer & Verlag: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Hirsch, C. Numerical Computation of Internal and External Flows; Fundamentals of Computational Fluid Dynamics; Elsevier: Amsterdam, The Netherlands, 2007; Volume 1. [Google Scholar]
- Butcher, J.C. Numerical Methods for Ordinary Differential Equations; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Santos, R.D. A Study of Runge–Kutta Schemes with Stronge Linear and Nonlinear Numerical Stability. Ph.D. Thesis, Fluminense Federal University, Niterói, Brazil, 2020. [Google Scholar]
- Assis, J.C. Grid Shock Alignment, Boundary Conditions Axial Symmetry and 3D simulations of Hypersonic Flows over Blunt Bodies. Master’s Thesis, Universidade Federal Fluminense, Niterói, Brazil, 2024. [Google Scholar]
- Harbison, S.P.; Steele, G.L., Jr. C—A Reference Manual, 4th ed.; Tartan, Inc.: Monroeville, PA, USA, 1995. [Google Scholar]
- Santiago, K.F.S.; Alves, L.S.B. Conservative and nondispersive schemes for diffusion terms with strong property variations. Numer. Heat Transf. Part B Fundam. 2017, 71, 133–145. [Google Scholar] [CrossRef]
- Harten, A. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 1983, 49, 357–393. [Google Scholar] [CrossRef]
- Hirsch, C. Numerical Computation of Internal and External Flows, Computational Methods for Inviscid and Viscous Flows; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- Laney, C.B. (Ed.) Computational Gas Dynamics; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Roe, P.L. Some contributions to the modelling of discontinuous flows. In Large-Scale Computations in Fluid Mechanics; Engquist, B.E., Osher, S., Somerville, R.C.J., Eds.; AMS-SIAM: Providence, RI, USA, 1985; Volume 22, pp. 163–193. [Google Scholar]
- Roe, P.L. Numerical Algorithms for the Linear Wave Equation; Royal Aircraft Establishment: Farnborough, UK, 1981. [Google Scholar]
- Roe, P.L.; Baines, M.J. Algorithms for advection and shock problems. In Proceedings of the 4th Conference on Numerical Methods in Fluid Mechanics, Paris, France, 7–9 October 1981. [Google Scholar]
- Sweby, P.K.; Baines, M.J. On convergence of Roe’s scheme for the general non-linear scalar wave equation. J. Comput. Phys. 1984, 56, 135–148. [Google Scholar] [CrossRef]
- van Leer, B. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys. 1977, 23, 276–299. [Google Scholar] [CrossRef]
- van Leer, B. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 1974, 14, 361–370. [Google Scholar] [CrossRef]
- Koren, B. Chapter A Robust Upwind Discretization Method for Advection, Diffusion and Source Terms. In Numerical Methods for Advection-Diffusion Problems; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Sweby, P.K. High Resolution Schemes Using FLux Limiters for Hyperbolic Conservation Laws. SIAM J. Numer. Anal. 1984, 21, 995–1011. [Google Scholar] [CrossRef]
- Chakravarthy, S.; Osher, S. High resolution applications of the Osher upwind scheme for the Euler equations. In Proceedings of the 6th Computational Fluid Dynamics Conference Danvers, Danvers, MA, USA, 13–15 July 1983. [Google Scholar]
- Waterson, N.P.; Deconinck, H. A Unified Approach to the Design and Applications of Bounded Higher-Order Convection Schemes; Preprint/Von Karman Institute for Fluid Dynamics, VKI: Sint-Genesius-Rode, Belgium, 1995; pp. 182–207. [Google Scholar]
- van Albada, G.D.; van Leer, B.; Roberts, W.W. A Comparative Study of Computational Methods in Cosmic Gas Dynamics. Astron. Astrophys. 1982, 108, 76–84. [Google Scholar]
- Boris, J.P.; Book, D.L. Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works. J. Comput. Phys. 1973, 11, 38–69. [Google Scholar] [CrossRef]
- van Leer, B. Towards the ultimate conservative difference scheme I. The quest of monotonicity. In Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1973; Volume Fundamental Numerical Techniques; pp. 163–168. [Google Scholar]
- Goodman, J.B.; LeVeque, R.J. On the Accuracy of Stable Schemes for 2D Scalar Conservation Laws. Math. Comput. 1985, 45, 15–21. [Google Scholar] [CrossRef]
- Harten, A.; Engquist, B.; Osher, S.; Chakravarthyy, S.R. Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, III. J. Comput. Phys. 1987, 131, 3–47. [Google Scholar] [CrossRef]
- Godunov, S.K. A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sb. 1959, 47, 271–306. [Google Scholar]
- van Leer, B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 1979, 32, 101–136. [Google Scholar] [CrossRef]
- Shu, C.W.; Osher, S. Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes. J. Comput. Phys. 1988, 77, 439–471. [Google Scholar] [CrossRef]
- Shu, C.W.; Osher, S. Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes II. J. Comput. Phys. 1989, 83, 32–78. [Google Scholar] [CrossRef]
- Liu, X.D.; Osher, S.; Chan, T. Weighted Essentially Non-Oscillatory Schemes. J. Comput. Phys. 1994, 115, 200–212. [Google Scholar] [CrossRef]
- Jiang, G.S.; Shu, C.W. Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys. 1996, 126, 202–228. [Google Scholar] [CrossRef]
- Henrick, A.K.; Aslam, T.D.; Powers, J.M. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. J. Comput. Phys. 2005, 207, 542–567. [Google Scholar] [CrossRef]
- Borges, R.; Carmona, M.; Costa, B.; Don, W.S. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 2008, 227, 3191–3211. [Google Scholar] [CrossRef]
- Acker, F.; Borges, R.; Costa, B. An improved WENO-Z scheme. J. Comput. Phys. 2016, 313, 726–753. [Google Scholar] [CrossRef]
- Zhu, J.; Qiu, J. A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 2016, 318, 110–121. [Google Scholar] [CrossRef]
- Zhu, J.; Shu, C.W. Numerical study on the convergence to steady state solutions of a new class of high order WENO schemes. J. Comput. Phys. 2017, 349, 80–96. [Google Scholar] [CrossRef]
- Zhu, J.; Shu, C.W. A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. J. Comput. Phys. 2018, 375, 659–683. [Google Scholar] [CrossRef]
- Zhu, J.; Shu, C.W. Convergence to Steady-State Solutions of the New Type of High-Order Multi-resolution WENO Schemes: A Numerical Study. Commun. Appl. Math. Comput. 2019, 2, 429–460. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, J.; Shu, C.W. A brief review on the convergence to steady state solutions of Euler equations with high-order WENO schemes. Adv. Aerodyn. 2019, 1, 25. [Google Scholar] [CrossRef]
- Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction; Springer-Verlag: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Roe, P.L. Approximate Reimann Solvers, Parameter Vectors and Difference Schemes. J. Comput. Phys. 1981, 43, 357–372. [Google Scholar] [CrossRef]
- Harten, A.; Lax, P.D.; van Leer, B. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws. SIAM Rev. 1983, 25, 35–61. [Google Scholar] [CrossRef]
- Einfeldt, B. On Godunov-Type Methods for Gas Dynamics. SIAM J. Numer. Anal. 1988, 25, 294–318. [Google Scholar] [CrossRef]
- Steger, J.L.; Warming, R.F. Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods. J. Comput. Phys. 1981, 40, 263–293. [Google Scholar] [CrossRef]
- Gottlieb, S.; Shu, C.W. Total-Variation-Diminishing Runge–Kutta Schemes. Math. Comput. 1998, 67, 73–85. [Google Scholar] [CrossRef]
- Spiteri, R.J.; Ruuth, S.J. A new class of optimal high-order strong-stability- preserving time discretization methods. SIAM J. Numer. Anal. 2002, 40, 469–491. [Google Scholar] [CrossRef]
- Gottlieb, S.; Ketcheson, D.; Shu, C.W. High-order strong stability preserving time discretizations. J. Sci. Comput. 2009, 38, 251–289. [Google Scholar] [CrossRef]
- Ferracina, L.; Spijker, M.N. An Extension and Analysis of the Shu-Osher Representation of Runge–Kutta Methods. Math. Comput. 2004, 74, 201–219. [Google Scholar] [CrossRef]
- Ferracina, L.; Spijker, M.N. Computing Optimal Monotonicity-Preserving Runge–Kutta Methods; Technical Report MI2005-07; Leiden University: Leiden, The Netherlands, 2005. [Google Scholar]
- Ferracina, L.; Spijker, M.N. Strong Stability of Singly-Diagonally-Implicit Runge–Kutta Methods. Appl. Numer. Math. 2008, 58, 1675–1686. [Google Scholar] [CrossRef]
- Ketcheson, D.I.; Macdonald, C.B.; Gottlieb, S. Optimal Implicit Strong Stability Preserving Runge–Kutta Methods. Appl. Numer. Math. 2009, 59, 373–392. [Google Scholar] [CrossRef]
- Pareschi, L.; Russo, G. implicit–explicit Runge–Kutta Schemes and Applications to Hyperbolic Systems with Relaxation. J. Sci. Comput. 2005, 25, 129–155. [Google Scholar]
- Santos, R.D.; Alves, L.S. A comparative analysis of explicit, IMEX and implicit strong stability preserving Runge–Kutta schemes. Appl. Numer. Math. 2021, 159, 204–220. [Google Scholar] [CrossRef]
- Zhang, S.; Shu, C.W. A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions. J. Sci. Comput. 2007, 31, 273–305. [Google Scholar] [CrossRef]
- Liseikin, V. Grid Generation Methods; Scientific Computation; Springer: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Thompson, J.F. Elliptic grid generation. Appl. Math. Comput. 1982, 10–11, 79–105. [Google Scholar] [CrossRef]
- Thompson, J.F.; Soni, B.K.; Weatherill, N.P. Handbook of Grid Generation; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Steger, J.L.; Sorenson, R.L. Automatic mesh-point clustering near a boundary in grid generation with elliptic partial differential equations. J. Comput. Phys. 1979, 33, 405–410. [Google Scholar] [CrossRef]
- Hsu, K.; Lee, S.L. A numerical technique for two-dimensional grid generation with grid control at all of the boundaries. J. Comput. Phys. 1991, 96, 451–469. [Google Scholar] [CrossRef]
- Spekreijse, S.P. Elliptic Grid Generation Based on Laplace Equations and Algebraic Transformations. J. Comput. Phys. 1995, 118, 38–61. [Google Scholar] [CrossRef]
- Nunes, M.S.S. Generation of Steady-States for Stationary and Convectively Unstable Flows Using the Frequency Displacement Procedure. Master’s Thesis, Fluminense Federal University, Niterói, Brazil, 2021. [Google Scholar]
- Poinsot, T.J.; Lele, S.K. Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 1992, 101, 104–129. [Google Scholar] [CrossRef]
- Masatsuka, K. I Do Like CFD; Lulu. com: Morrisville, NC, USA, 2009; Volume 1. [Google Scholar]
- Santos, R.D.; Alves, L.S.; Cerulus, N.; Theofilis, V. On Two-Dimensional Steady-States of Supersonic Flows over Compression Ramps and their Global Linear Instability. In Proceedings of the AIAA Scitech Forum, San Diego, CA, USA, 7–11 January 2019; pp. 2019–2321. [Google Scholar]
- Burtsev, A.; Quintanilha, H.R.D.; Theofilis, V.; Santos, R.D.; Alves, L.S. Linear Instability Mechanisms of Supersonic Flow Past Blunt Bodies. In Proceedings of the AIAA Scitech Forum, Virtual, 11–15 and 19–21 January 2021. AIAA 2021-0050. [Google Scholar]
- Santos, R.D.; Alves, L.S.; Cerulus, N.; Quintanilha, H.; Theofilis, V. Accurate Two Dimensional Steady-State for the Supersonic Flow over a Compression Corner. In Proceedings of the 33th ICAS Congress, Stockholm, Sweden, 4–9 September 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assis, J.C.; Santos, R.D.; Schuabb, M.S.; Falcão, C.E.G.; Freitas, R.B.; Alves, L.S.d.B. Convergence towards High-Speed Steady States Using High-Order Accurate Shock-Capturing Schemes. Fluids 2024, 9, 133. https://doi.org/10.3390/fluids9060133
Assis JC, Santos RD, Schuabb MS, Falcão CEG, Freitas RB, Alves LSdB. Convergence towards High-Speed Steady States Using High-Order Accurate Shock-Capturing Schemes. Fluids. 2024; 9(6):133. https://doi.org/10.3390/fluids9060133
Chicago/Turabian StyleAssis, Juan C., Ricardo D. Santos, Mateus S. Schuabb, Carlos E. G. Falcão, Rômulo B. Freitas, and Leonardo S. de B. Alves. 2024. "Convergence towards High-Speed Steady States Using High-Order Accurate Shock-Capturing Schemes" Fluids 9, no. 6: 133. https://doi.org/10.3390/fluids9060133
APA StyleAssis, J. C., Santos, R. D., Schuabb, M. S., Falcão, C. E. G., Freitas, R. B., & Alves, L. S. d. B. (2024). Convergence towards High-Speed Steady States Using High-Order Accurate Shock-Capturing Schemes. Fluids, 9(6), 133. https://doi.org/10.3390/fluids9060133