
Citation: Jiang, W.; Huang, R.; Yang,

Q.; Ding, Z. Three-Dimensional

Long-Wave Instability of an

Evaporation/Condensation Film.

Fluids 2024, 9, 143. https://doi.org/

10.3390/fluids9060143

Academic Editors: Zhao Tian and

Chien-An Chen

Received: 19 May 2024

Revised: 5 June 2024

Accepted: 10 June 2024

Published: 14 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Three-Dimensional Long-Wave Instability of an
Evaporation/Condensation Film
Weiyang Jiang 1 , Ruiqi Huang 1, Qiang Yang 2,*,† and Zijing Ding 1,3,*,†

1 School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
y.jiang@hit.edu.cn (W.J.)

2 State Key Laboratory of Aerodynamics, Mianyang 621000, China
3 Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
* Correspondence: qiang.yang@skla.cardc.cn (Q.Y.); z.ding@hit.edu.cn (Z.D.)
† These authors contributed equally to this work.

Abstract: This paper explores the stability and dynamics of a three-dimensional evaporating/condensing
film while falling down a heated/cooled incline. Instead of using the Hertz–Knudsen–Langmuir
relation, a more comprehensive phase-change boundary condition is employed. A nonlinear differen-
tial equation is derived based on the Benny-type equation, which takes into account gravity, energy
transport, vapor recoil, effective pressure, and evaporation. The impact of effective pressure and
vapor recoil on instability is studied using a linear stability analysis. The results show that spanwise
perturbations can amplify the destabilizing effects of vapor recoil, leading to instability. Energy
transport along the interface has almost no effect on the stability of the system, but it does influence
the linear wave speed. Nonlinear evolution demonstrates that, in contrast to the vapor recoil effect,
effective pressure can improve stability and delay film rupture. The self-similar solution demon-
strates that the minimal film thickness decreases as (tr − t)1/2 and (tr − t)1/3 under the dominance
of evaporation and vapor recoil, respectively.

Keywords: stability analysis; evaporation; condensation; vapor recoil; falling liquid films

1. Introduction

The evaporation/condensation of liquid films is ubiquitous in nature and technolog-
ical systems with numerous applications, such as ice formation on aircraft wings, liquid
films in mammalian lungs, heat exchanger design, and seawater desalination cooling sys-
tems [1–4]. As there exists a complex interaction of mechanisms, including vapor recoil,
thermocapillarity, and van der Waals forces, several studies have revealed the importance
of these factors’ effects on the stability of films [5–8]. A detailed review of long-scale models
for evaporative thin films has been examined by Oron et al. [9], as well as by Craster and
Matar [10] and Chattopadhyay et al. [11].

A number of theoretical studies targeted at describing these films and their potential to
destabilize have been conducted to examine the issue of flat thin-film stability. The earliest
stability studies focused on non-evaporating films falling down an inclined plane [12–14].
Yih [15,16] and Benjamin [17] demonstrated linear stability analyses of the falling thin-film
model. Their findings suggested that this basic state is unstable in long-wavelength per-
turbations. Based on their works, Benney [18] derived an evolution equation for the film
thickness, known as the Benny equation, and expanded the analysis of falling films into the
nonlinear regime. After that, Williams and Davis [19] created a nonlinear stability model
for which they carried out a numerical analysis for a finite perturbation. Comparing to the
linear model, the results of their nonlinear model showed that the time to rupture was short-
ened and the needed perturbation wavelength was changed to one with a smaller value.
These conclusions are supported by Sharma and Ruckenstein [20], who added Marangoni
effects, and the stability of the film was found to be improved by the nonlinear effects
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associated with Marangoni motion. In recent studies, the understanding of interfacial
phenomena at the microscopic level has been greatly enhanced by advanced experimental
techniques. For instance, high-energy X-ray reflectivity measurements have provided sig-
nificant insights into the hydrophobic gap at the water–octadecyl-trichlorosilane interface,
showing the existence of a molecular-scale density deficit at the interface [21]. Similarly, in-
vestigations into the capillary wave dynamics of thin liquid polymer films have elucidated
the behavior of liquid surfaces at nanometric thicknesses, contributing to our knowledge of
surface tension and molecular interactions in confined systems [22].

In the context of liquid films, the Marangoni effect can play an important role in
determining stability and flow behavior. Davis [6] examined Marangoni effects on thin-film
stability, which mostly focused on thermocapillary effects. This analysis showed that
hydrodynamic instabilities, which appear as 2D and 3D surface waves, are powered by
heat gradients. The investigation of evaporating and condensing thin liquid films on a hot
inclined plane by Bankhoff [23] demonstrated the impact of phase shift on thin-film stability.
The findings of the study found that evaporation from the surface has a destabilizing effect,
while condensation has the opposite influence, which was recently proved by [24]. Thus,
thermocapillarity potentially becomes one of the most researched phenomena in fluid
mechanics, which leads to variations in surface tension and can amplify the runaway effect
as warmer liquid from the depression is dragged towards the cooler areas of the interface.

Sreenivasan and Lin [25] used the linear theory to study the onset of surface tension-
driven stationary circulation in a thin-film flow down a heated incline. Their results were
supported by Kelly et al. [26], who investigated the impact of a temperature-dependent
surface tension with long-wavelength disturbances. While many studies have adopted a
uniform heated plane [27–29], Scheid et al. [30] were more concerned with the instabilities
of thin-film flow over a localized heater to determine the influence of the temperature
from the inclined plane. Similarly, Gambaryan-Roisman [31] investigated how the non-
uniformity of substrate thermal conductivity affected the hydrodynamics and heat transport
in thin liquid films while taking surface tension, thermocapillarity, and evaporation into
account. Recently, a two-dimensional flow of a thin film over a uniformly heated/cooled
slippery inclined substrate was analyzed by Ding et al. [32] to capture the Marangoni effect.
They employed a weighted-residual model and a Benney-type model for comparison, and
they discovered that the weighted-residual model was more logical than the Benney-type
model. To express a thin liquid film flow on a non-uniformly heated, slippery inclined
plane, Ref. [33] developed a mathematical model within the framework of the long-wave
approximation method.

As volatile processes significantly impact the thermal response of the system in actual
circumstances, the Hertz–Knudsen–Langmuir relation was adopted by some researchers to
describe the phase-change occurrence at the liquid–vapor interface [5,7,34–39]. This rela-
tionship is predicated on the idea that mass momentum and energy transfer are unrelated to
evaporation and only affect the states of the liquid and vapor phases [40]. Burelbach et al. [5]
provided a thorough explanation of how the pertinent equations were derived. As a result
of the assumption that the ratios between the densities, viscosities, and thermal conductivi-
ties of gases and liquids are very tiny, there is significant simplification and the creation
of so-called one-sided models [5]. Instead of applying the traditional Hertz–Knudsen–
Langmuir relation, Shklyaev and Fried [41] revisited this problem and imposed the more
general equations that Fried et al. [42,43] proposed for expressing the balance of configura-
tional momentum at the liquid–vapor interface. They developed a nonlinear evolution
equation determining film thickness, and two new terms were added to their model. One
was known as the effective pressure accounting for the vapor recoil, p − E2D−1 J2, and the
other was the energy transmission within the liquid–vapor interface, N(−∇s((u · t)t)).
The two terms were stabilized according to the results of a linear stability analysis.

Therefore, in order to discuss the behavior of an evaporation or condensation film
under general boundary conditions in three dimensions, we draw on the research conducted
by Shklyaev and Fried [41]. We aim to specifically look into how the stability of a system
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is impacted by spanwise perturbations, effective pressure, evaporation, and vapor recoil.
The structure of this paper as follows. Utilizing the long-wave assumption, we develop
the mathematical model in Section 2. The linear stability theory is employed to reveal the
influences of effective pressure and energy transport along the interface on the stability
of the system in Section 3. In Section 4, we investigate the nonlinear evolution of the
evaporation/condensation film. A conclusion is made in Section 5.

2. Mathematical Formulation

We examine the behavior of a three-dimensional incompressible fluid. It falls down
along an inclined plane which is either heated or cooled, as depicted in Figure 1. The angle
of inclination is denoted by ϑ. The physical properties of the fluid are characterized by its
density, kinematic viscosity, and thermal conductivity, denoted by (ρ, ν, κ) for the liquid
phase and (ρv, νv, κv) for the vapor phase. We assume that the physical properties of the
vapor phase are significantly smaller than those of the liquid phase, which can be expressed
mathematically as

ρv

ρ
≪ 1,

νv

ν
≪ 1,

κv

κ
≪ 1. (1)

The dynamics of the liquid film are governed by the continuity equation, the momen-
tum equation, and the energy equation, which can be written as

∇ · u = 0, (2)

ρ[
∂u
∂t

+ (u · ∇)u] = −∇p + µ∇2u + ρg, (3)

∂T
∂t

+ (u · ∇)T = kth∇2T, (4)

where u = (u, v, w) is the velocity field and ∇ = (∂x, ∂y, ∂z) is the Hamilton operator. ρ is
the fluid density, p is the pressure, µ is the dynamic viscosity of fluid, g = (g cos ϑ, 0, g sin ϑ)
is the gravitational acceleration, and t is time. The temperature and the thermal diffusivity
are denoted by T and kth, respectively. These equations form the basis of numerical
simulations and enable us to study the behavior of the liquid film under various conditions.

x

y
z

liquid

vapor

g

Figure 1. Schematic of the system.

Here, we consider no slip, no penetration, and a constant temperature condition at the
solid wall z = 0, which can be written as follows:

u = 0, T = T0. (5)
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At the liquid–vapor phase interface z = h(x, y, t), several conditions need to be
satisfied, including mass flux conservation, stress balance, energy balance, and kinetic
conditions. The mass flux conservation can be expressed as

J = ρ(u − ui) · n = ρv(uv − ui) · n, (6)

where ui represents the velocity at the interface, uv is the velocity of the vapor, and n is the
unit normal vector to the interface.

For the purposes of this study, we assume that the surface tension σ is linearly de-
pendent on the temperature T. Specifically, we use the following expression to model the
temperature dependence of the surface tension:

σ = ψs − ηs(T − Ts), (7)

where ψs and ηs are constants of the interfacial free-energy and entropy densities arising
from T = Ts; Ts represents the saturation temperature where the liquid and vapor phases
are in thermodynamic equilibrium.

The stress balance of the interface conditions is

Σ · n +
J2

ρv
· n = ∇sσ − σ(∇s · n)n, (8)

where Σ = −pI + µ[∇u + (∇u)T ] is the stress tensor, I is the identity tensor, ∇s =
∇− n(n · ∇) is the surface gradient operator, and J2/ρv is the vapor recoil term, which
describes the contribution of the momentum of the evaporating or condensing vapor to the
overall momentum balance of the liquid–vapor interface. When the liquid is evaporating,
it releases molecules of vapor into the surrounding gas. These vapor molecules have a
certain momentum due to their thermal motion, and this momentum can cause a recoil
effect on the liquid–vapor interface. Similarly, when vapor condenses back into the liquid,
the momentum of the vapor molecules can cause a recoil effect on the interface in the
opposite direction.

The energy balance at the liquid–vapor interface is expressed as

Tsηs(Kui · n −∇s · ((ui · t)t)) = κ∇T · n + ρL(u − ui) · n, (9)

where K = −∇ · n is the curvature of the interface, L is the latent heat of phase change, and
t is the unit tangent vector on the interface. The left-hand side of the equation represents
the energy flux at the interface due to interfacial shear and convection. Note that the term
Ku · n is much smaller than the term ∇s · ((ui · t)t) in the assumption of the long-wave
model; thus, this term can be neglected in this paper [41]. On the right-hand side, the
term κ∇T · n represents the heat flux as conduction across the interface, while the term
ρL(u − ui) · n denotes the energy released or absorbed since phase change at the interface.

In order to describe the phase-change phenomenon, we utilize the equation proposed
by Fried et al. [43]:

1
ρ

βs J = ρL(T/Ts − 1) + (p − J2/ρv)−
1
2

ρ|u|2, (10)

where βs is a modulus associated with the kinetics of attachment and detachment at the
interface [41,43]. The term (p − J2/ρv)− 1

2 ρ|u|2 on the right-hand side of Equation (10)
is defined as the effective pressure term. The kinetic energy term 1

2 ρ|u|2 is much smaller
than the other two terms, and is therefore negligible [41]. Wayner took a different approach
and discussed the influence of pressure on the evaporating meniscus, where he did not
consider the vapor recoil’s influence on the mass flux [44]. However, in the present work
we consider the vapor recoil effect and use the model as described in Equation (10).
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2.1. Nondimensionalization

We start by introducing the following scales: the initial mean thickness of the film,

h0, ν
h0

, h2
0

ν , ρν2

h2
0

, T0 − Ts,
κ(T0−Ts)

Lh0
as the length, velocity, time, pressure, temperature, and

mass flux scales, respectively. Using these scales, we can nondimensionalize the system of
Equations (2)–(10). The resulting nondimensional governing equations are

∇ · u = 0, (11)

∂u
∂t

+ (u · ∇)u = −∇p +∇2u + Ge3, (12)

Pr[
∂θ

∂t
+ (u · ∇)θ] = ∇2θ, (13)

where G =
gh3

0
ν2 , e3 represents the direction of gravity, the Prandtl number is denoted as

Pr = κ
ν , G sin ϑ is defined as the Reynolds number, and θ is the dimensionless temperature.

The dimensionless boundary condition at solid wall z = 0 is

u = v = w = 0, θ = 1. (14)

At the liquid–vapor interface, the boundary conditions can be written as

(u − ui) · n = D(uv − ui) · n = EJ, (15)

N(−∇s((u · t)t))− (∇θ · n + J) = 0, (16)

Σ · n · n + E2D−1 J2 = KS(1 − Cθ), (17)

Σ · n · t + Ma · Pr−1(t · ∇)θ = 0. (18)

where D = ρv
ρ is the density ratio; E = kth△T

ρνL is the evaporation number. S = ψsh0
ρν2 is

the dimensionless surface tension. C = ηs△T
ψs

is the Crispation number, N = Tsνηs
kth△Th0

,

which accounts for the thermal diffusion along the interface, and Ma = ηs△Th0
ρνκ is the

Marangoni number.
Thus, recall that the dimensionless phase-change condition at the interface becomes

A1 J = θ + A2(p − E2D−1 J2), (19)

where A1 = kth βsTs
ρ2L2h0

; A2 = Tsν2

L△Th2
0
. A1 characterizes how far the system is from thermody-

namic equilibrium, and A2 expresses the magnitude of the effective pressure.
The dimensionless form of the kinematic condition of the moving interface is

EJ =
w − ht − uhx − vhy

(1 + hx + hy)1/2 . (20)

where ht, hx, and hy are the partial derivations of liquid film thickness h.
In this paper, A2, N, and E2D−1 are the three important dimensionless parameters

that we will focus on to study the influences of the effective pressure, the interfacial energy
transport, and the vapor recoil effect on the dynamics of the film.

2.2. Long-Wave Model

The long-wave model is a common simplification used to study the dynamics of thin
liquid films in which the characteristic length scales of the system are much larger than
the mean film thickness. In this model, the governing equations are derived by assuming
that the perturbations in the film thickness, velocity, and temperature vary slowly in the
streamwise and spanwise directions.



Fluids 2024, 9, 143 6 of 21

To derive the long-wave model for our system, we introduce the small parameter
ϵ = h0/l, where l is the characteristic length scale of the system. In this paper, we fix
ϵ = 0.2, which means that the characteristic length l is much larger than the mean film
thickness h0, and this is a typical assumption for thin liquid films. Based on the long-wave
assumption, we make the following transformation:

(∂t, ∂x, ∂y) = ϵ(∂t̃, ∂x̃, ∂ỹ) ∂xx = ϵ2∂x̃x̃, (21)

For ease of writing, we will omit the wave number symbol in the following statements.
We use the perturbation method to study each physical quantity of the system, assum-

ing that the solution of the parameter follows a power law with respect to ϵ. We expand
the variables in powers of ϵ as shown below:

u = u0 + ϵu1 + ..., (22)

v = v0 + ϵv1 + ..., (23)

w = ϵw0 + ϵ2w1 + ..., (24)

p = p0 + ϵp1 + ..., (25)

θ = θ0 + ϵθ1 + ... (26)

J = J0 + ϵJ1 + ..., (27)

Substituting Equations (22)–(27) into governing Equations (11)–(13) together with
using boundary conditions (14)–(20), we can derive a set of long-wave equations that
describe the dynamics of the liquid film with the leading order and first order in term ϵ.
These equations involve the dimensionless parameters A1, A2, N, E, and S, which were
defined in the previous section.

The leading orders of the system are

u0,x + v0,y + w0,z = 0, (28)

G sin ϑ + uzz = 0, (29)

v0,zz = 0, (30)

p0,z + G cos ϑ = 0, (31)

θ0,zz = 0. (32)

With the velocity and temperature boundary conditions at z = 0,

u0 = v0 = w0 = 0, θ0 = 1, (33)

and at z = h(x, y, t),
p0 = E2D−1 J2

0 − S̄(hxx + hyy), (34)

u0,z = v0,z = 0, (35)

N̄(u0,x + v0,y) + J0 + θ0,z = 0, (36)

θ0 = A1 J0 − A2(p0 − E2D−1 J2
0 ), (37)

ĒJ0 = −ht − u0hx − v0hy + w0. (38)

It is easy to obtain the solution of the following parameters:

u0 = G sin ϑ(hz − z2

2
), v0 = 0, w0 =

−G sin ϑhxz2

2
, (39)

p0 = G cos ϑ(h − z) + E2D−1 J2
0 − S̄(hxx + hyy), (40)
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θ0 = 1 +
[
A1 J0 + A2S̄(hxx + hyy)− 1

] z
h

, (41)

J0 =
−GN̄ sin ϑh2hx + 1 − A2S̄(hxx + hyy)

A1 + h
. (42)

The first orders of the system are

u1,x + v1,y + w1,z = 0, (43)

u0,t + u0u0,x + w0u0,z = −p0,x + u1,zz = 0; (44)

v1,zz = p0,y, (45)

w0,t + p1,z = w0,zz, (46)

Pr(θ0,t + u0θ0,x + w0θ0,z) = θ1,zz. (47)

And the first-order boundary conditions at z = 0 are

u1 = v1 = w1 = 0, θ1 = 0, (48)

At the liquid–vapor interface, the first-order boundary conditions are

−p1 + 2(−u0,zhx − v0,zhy + w0,z) = 0, (49)

u1,z + MaPr−1(θ0,x + hxθ1,z) = 0, (50)

θ1 = A1 J1 − A2 p1 (51)

ĒJ1 = −h1,t − u0h1,x + w1 (52)

Integrating twice with respect to u1,zz in Equation (44), while incorporating boundary
conditions Equations (50) and (48), yields

u1 =
[

G cos ϑhx + E2D−1(J0
2)x − S̄(hxxx + hxyy)

]
(

z2

2
− hz)

+
1
6

G2sin2ϑhhx(
z4

4
− h3z)− G sin ϑ

2
(

z3

3
− h2z)(ĒJ0 + G sin ϑh2hx)

− MaPr−1

[
A1 − A1N̄G sin ϑh2hx + A2S̄h(hxx + hyy)

A1 + h

]
x

z,

(53)

We can also obtain that the velocity component in the y direction is

v1 =
[

G cos ϑhy + E2D−1(J0
2)y − S̄(hxxy + hyyy)

]
(

z2

2
− hz)

+MaPr−1

[
h + A1N̄G sin ϑh2hx − A2S̄h(hxx + hyy)

A1 + h

]
y

z,
(54)

Note that to investigate the effects of these parameters we rescale the parameters as
(Ē, N̄, S̄) = (ϵ−1E, ϵN, ϵ2S), which is shown in the above equations. The term ϵ2C was
neglected due to its much smaller magnitude compared to the unity.

With the rescaling parameters, the integral form of kinematic condition Equation (20)
can be written as

ht + ∂x

∫ h

0
udz + ∂y

∫ h

0
vdz + ĒJ = 0, (55)

Substituting the velocity into the kinematic equation, we obtain the evolution equation
of the film thickness h(x, y, t):

ht + Q + ϵ(R + ĒJ1) + O(ϵ2) = 0. (56)
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where
Q = Gh2hx sin ϑ + ĒJ0, (57)

R =

{
−h3ϕ1

3
− 3

40
G2sin2ϑh6hx +

5G sin ϑ

24
h4Q +

h2

2
MaPr−1

(
h + Fh
A1 + h

)
x

}
x

+

{
−h3ϕ2

3
+

MaPr−1

2
h2
(

h + Fh
A1 + h

)
y

}
y

,
(58)

and J1 = H1 + H2 + H3 + H4, with

H1 =
Pr h3

3(A1 + h)3

{
(A1 + h)

[
−A1N̄G sin ϑ(hQ)x + A2S̄(Qxx + Qyy)

]
+ (1 + F)Q

}
, (59)

H2 =
Pr

A1 + h

{
−3h5

20
G sin ϑ

(
F + 1

A1 + h

)
x
+

h4hxG sin ϑ

8
F + 1

A1 + h

}
− 2A2G sin ϑhhx

A1 + h
, (60)

H3 =
N̄h

A1 + h

{
ϕ1h2

2
+

1
8

G2sin2ϑh5hx −
h3G sin ϑ

3
Q − MaPr−1

(
h + Fh
A1 + h

)
x
h
}

x
, (61)

H4 =
N̄h

A1 + h

{
ϕ2h2

2
− MaPr−1

(
h + Fh
A1 + h

)
y
h

}
y

, (62)

where

J0 =
−GN̄ sin ϑh2hx + 1 − A2S̄(hxx + hyy)

A1 + h
, (63)

ϕ1 = G cos ϑhx + E2D−1(J0
2)x − S̄(hxxx + hxyy), (64)

ϕ2 = G cos ϑhy + E2D−1(J0
2)y − S̄(hxxy + hyyy), (65)

F = A1N̄G sin ϑhhx − A2S̄(hxx + hyy). (66)

The equation presented in Equation (56) is the same as the one given by Shklyaev and
Fried [41] when ∂y = 0 and β = 0. Additionally, it is identical to the equation presented by
Burelbach et al. [5] when A2 = N = 0.

The values of (A1, A2, N̄, Ē, S̄) were originally proposed by Shklyaev and Fried and
Wei et al. [41,45] for water, sodium and 1,2-Ethanediol. In this paper, we assume that the film
thickness is macroscopic at about h0 ∼ 0.01 mm and that the system is primarily governed by
hydrodynamic effects and heat transfer rather than intermolecular interactions. Thus, the
Van der Waals force can be neglected, together with ρ ≈ 103 kg m−3, ηs ≈ 10−4 N m−1K−1,
βs ≈ 106 kg m−2s−1, ∆T ≈ (10−3∼1) K, Ψs ≈ (0.01∼0.1) Nm−1, Ts ≈ (102∼103) K,
kth ≈ (1∼10) Wm−1 K−1, L ≈ (105∼106) J kg−1, and ν ≈ (10−7∼10−6) m2s−1, where
the evaporation and vapor recoil effects are the dominant factors. The value ranges of
dimensionless parameters in this paper are as follows: A1 ranges from [0] to [0.1], A2 is
in the range [0, 0.1], S̄ is in the range [0.1, 2], N̄ is in the range [0, 0.06], Ma is in the range
[0, 0.5], the Prandtl number is fixed at Pr = 1, and the inclined angle is fixed at ϑ = π/4.
The evaporation number E is in the range of [−0.15, 0.15]. When E is positive, the system
is evaporating. When E = 0, it is a nonvolatile film; otherwise, it is condensing. We
discovered that the thermocapillary effect destabilizes the system.

3. Linear Stability Analysis

First, we conduct a linear stability analysis of the system. We consider a small per-
turbation of the base state of the system by using normal mode analysis. Specifically, the
perturbation is expressed as h = h0(τ) + ĥ exp[i(αx + βy) + λt], where α and β represent
the streamwise and spanwise wavenumbers, respectively. λ = λr + iλi is the complex
growth rate; the real part represents the effective growth rate, which characterizes the rate
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where the perturbation either grows or decays in time; and the imaginary part is related to
the wavespeed.

The base state of the system was investigated through the resolution of Equation (56),
which is expressed as follows:

h = −A1 +
√
(A1 + 1)2 − 2Ēτ + O(ϵ), (67)

It should be noted that τ is a parameter that is used to define the base state of the
system, which can change with time. The value of τ is usually chosen to be a specific value,
while the value of t changes continuously as times progresses, and it is used to track the
evolution of perturbation over time. Furthermore, Equation (67) demonstrates that an
evaporating film will desiccate within a definite time frame of τ = 2A1+1

2Ē .
For the leading-order problem, the dispersion relationship was obtained:

λ = −iαG sin ϑ(h2
0 −

ĒN̄
A1 + h0

) +
Ē

(A1 + h0)2 − A2ĒS̄
A1 + h0

(α2 + β2) + O(ϵ). (68)

We also tested the first-order dispersion relationship, and the growth rate is expressed
in by ϵ; the detailed expression is shown in Appendix A.

The contour plot in Figure 2 illustrates the variation in the first-order real growth
rate with respect to the base-state time τ. It can be observed that the effective growth
rate exhibits a saddle shape. As time progresses, the system experiences a sharp increase
in growth rate, causing it to become highly unstable. This is attributed to the significant
reduction in the liquid film thickness resulting from film evaporation within a limited
time. The stability study following film rupture will not be further detailed since it has no
practical relevance. In the subsequent analysis, we examine the scenario at the base-state
time τ = 0, i.e., h0 = 1.

lr

Figure 2. Contour graph of effective growth rate with flow wave number α and time τ. The other
parameters are β = 0, N̄ = 0, S̄ = 1, Ē = 0.1, G = 5, E2D−1 = 1.

We first start the analysis by ignoring the spanwise influence, i.e., β = 0. The impact
of parameter A1, which represents the distance of the system from thermodynamic equi-
librium, is demonstrated in Figure 3a. It can be inferred that parameter A1 plays a crucial
role in determining the stability of the liquid film, where the real growth rate decreases as
A1 increases. Another important stability parameter, effective pressure A2, is depicted in
Figure 3b. Both the growth rate and the critical wave number decrease with the increasing
effective pressure, which is consistent with the analytical findings in Equation (68). How-
ever, at small wave numbers (i.e., α ≪ 1), stability is barely affected by effective pressure
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A2, since A2 is proportional to the wave number in Equation (68). Extensive research has
been conducted in previous studies regarding the Marangoni effect [32]. As shown in
Figure 3c, it can be observed that within the given range of values, the destabilizing impact
of the Marangoni effect is minimal. Thus, we will proceed with setting Ma = 0 for the
forthcoming studies.

a

l
(a)

a

(b)

l

α

λ

Figure 3. The real growth rate λr versus the wavenumber α for (a) A2 = 0, Ma = 0; (b) A1 = 0.1, Ma = 0;
(c) A1 = 0.1, A2 = 0. The other parameters are β = 0, N̄ = 0, S̄ = 1, Ē = 0.1, G = 5, E2D−1 = 1.

The influences of spanwise perturbation are illustrated in Figure 4a. We observe
that spanwise perturbations always play a stabilizing role in the absence of gravity and
evaporation (solid lines), as the maximum effective growth rate consistently decreases with
an increase in β. In fact, spanwise perturbations are typically considered stabilizing in linear
stability analysis of a falling liquid film. This is because spanwise perturbations introduce
cross-stream vorticity, which interacts with the streamwise vorticity generated by the
primary instability to produce three-dimensional flow structures. These three-dimensional
structures can enhance the stabilizing effect of viscosity and delay the onset of the primary
instability. However, in the presence of film evaporation, as demonstrated by the dashed
lines in Figure 4a, this stabilizing effect of spanwise perturbations does not hold true. Since
the evaporation effect causes the film to become thinner, making it more susceptible to
destabilizing mechanisms such as vapor recoil, the φ2 term in Equation (A7) can explain
this phenomenon. Therefore, the stabilizing effect of spanwise perturbations is diminished
in the presence of evaporation.

b

l

a=1
a=2

(a)

−1

−2

−3

a

l

(b)

Figure 4. (a) The real growth rate λr versus the wavenumber β for G = 0; solid lines: Ē = 0,
E2D−1 = 0 and dashed lines: Ē = 0.1, E2D−1 = 3. (b) The real growth rate λr versus the wavenumber
α for G = 5, Ē = 0.1, E2D−1 = 1, β = 0. The other parameters are S̄ = 1, A2 = 0, A1 = 0.1.

In the present work, surface energy transport has a negligible effect on stability, as
shown in Figure 4b, as the parameter N̄ exists in the first-order part of the effective growth
rate λr. However, the influence of energy transport on wave speed cannot be discounted,
and Figure 5 provides insight into this effect. For an evaporating film (E > 0), an increment
in energy transport leads to an increase in wave speed, as shown in Figure 5a. In the case of
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a condensing film, N̄ rises when the wave speed increases at a small wave number, while
it decreases at a large wave number, with the critical wave number being α ≈ 0.9. These
results suggest that surface energy transport may not have a significant impact on the
stability of the film, but it can affect the wave speed and, hence, the dynamics of the system.
Thus, it is important to consider these factors when studying the behavior of evaporating
or condensing films.

(a) (b)

Figure 5. The wave speed c versus wave number α. (a) Evaporating film E = 0.1. (b) Condensing
film E = −0.1. The other parameters are A2 = 0.1, A1 = 0.1, β = 0, S̄ = 1, N̄ = 0, G = 5, E2D−1 = 1.

Figure 6 illustrates the destabilizing effects of vapor recoil and gravity on the system.
Note that when G < 0, it represents an inverted liquid film. As observed in Figure 6a,
increasing the vapor recoil effect can result in a higher maximum growth rate, whereas this
instability can be mitigated by increasing the effective pressure coefficient A2. Moreover,
the maximum real growth rate is relatively small under microgravity conditions. When
the gravity increases, the maximum effective growth rate also increases. Under the same
conditions, the inverted liquid film appears to be more unstable, as demonstrated by
Figure 6b. It is noteworthy that a larger vapor recoil term leads to a larger maximum
growth rate, indicating its destabilizing effect on the system. These findings show that both
vapor recoil and gravity are critical factors affecting the stability of the system.

l
m
ax

(a)

E2D−1

A!=0.00

A!=0.05
A!=0.10

(b)

l
m

ax

G

E2D−1=1

E2D−1=2
E2D−1=3

−10   -8   -6    -4    -2    0     2    4     6     8    10

Figure 6. (a) The max real growth rate λr versus the vapor recoil effect, G = 5. (b) The max real growth
rate λr versus gravity, A2 = 0. The other parameters are A1 = 0.1, α = 1, β = 0, S̄ = 1, N̄ = 0, Ē = 0.1.
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4. Nonlinear Evolution

This section aims to provide insights into the nonlinear dynamical evolution of a
uniform interface subjected to small finite disturbances. To perturb the interface, we
introduce a harmonic wave:

h(x, y, 0) = 1 + 0.1 cos(αx) cos(βy). (69)

Equation (56) subjected to periodic boundary conditions was solved numerically by
using the Fourier spectral method. We assume that the solution of h(x, y, t) can be expanded
by the Fourier series:

h(x, y, t) = ∑
n,m

ĥn,m exp(iknx + ikmy), (70)

where ĥn,m(t) are the time-dependent Fourier coefficients. kn = 2nπ
Lx

and km = 2mπ
Ly

are the
wave numbers in the x and y directions, respectively, where Lx and Ly are the lengths of the
computational domain in the x and y directions. We chose the number of Fourier modes in
the x direction to be Nx = 64 and those in the y direction to be Ny = 32. Thus, there exist a
total of N = 2048 Fourier modes, which is sufficient to ensure numerical accuracy.

To investigate the influence of evaporation and the vapor recoil effect, we first consider
the quasi-equilibrium case where A1 = 0, which means the temperature is equal to its
saturation value. We then focus specifically on the impact of evaporation and vapor recoil,
by setting G = A2 = 0. With these assumptions, the evolution equation (Equation (56)) can
be simplified as

ht +
E
h
+ ϵ

{
2
3

E2D−1(hxx + hyy) +
S̄
3

[
h3(hxxx + hxyy)

]
x
+

S̄
3

[
h3(hxxy + hyyy)

]
y

}
= 0. (71)

The spatiotemporal evolution in both 2D and 3D simulations revealed that an increase
in the evaporation number and vapor recoil could accelerate the breakdown of the film,
as shown in Figure 7a,c. Specifically, when evaporation is the dominant factor (Figure 7a),
the system exhibits greater stability in the 3D cases. On the other hand, when vapor recoil
is the determining element (Figure 7c), the system becomes more unstable in 3D, which
is matched with the predictions of linear stability theory. The results indicate that the 3D
disturbances exacerbate the vapor recoil effect.

To gain a better understanding of the breakup process, we utilize a self-similar solution
to extract the underlying scaling law:

h = ∆tζ F(ξ), ∆t = tr − t, ξ =
z − zr

(tr − t)γ
, (72)

where tr is the breakup time and zr is the breakup location. The order of each term in
Equation (71) yields

ht ∼ ∆tζ−1 h−1 ∼ ∆t−ζ hxx + hyy ∼ ∆tζ−2γ[
h3(hxxx + hxyy)

]
x
+

[
h3(hxxy + hyyy)

]
y
∼ ∆t4ζ−4γ (73)

When the evaporation plays an important role, balancing the terms ht, h−1, and[
h3(hxxx + hxyy)

]
x +

[
h3(hxxy + hyyy)

]
y gives

ζ = 1/2, γ = 5/8. (74)

This means the minimal film thickness reduces to (tr − t)1/2, which is demonstrated
in Figure 7b. When the vapor recoil effect is the dominant fact, balancing the terms of ht,
hxx + hyy, and

[
h3(hxxx + hxyy)

]
x +

[
h3(hxxy + hyyy)

]
y gives

ζ = 1/3, γ = 1/2. (75)
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This indicates that the film will break down within a finite time, and the minimum
thickness will thin as (tr − t)1/3. The contribution under evaporation has a higher order,
(tr − t)−1/3, than that under the vapor recoil effect, which gives (tr − t)−2/3. This implies
that the scaling governing the breakdown process is not affected by the vapor recoil effect,
and it is in line with the conclusion obtained by Wei and Duan [45].

E=0.05

E=0.10

E=0.15

(a)
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E=0.15

(b)
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Figure 7. The relationship between film thickness and time. The solid lines represent the results
obtained in 3D, while the dashed lines represent the results obtained in 2D. (a,b) E2D−1 = 0,
(c,d) Ē = 0.1. The other parameters are A1 = 0, A2 = 0, S̄ = 0.1, N̄ = 0, G = 0.

Figure 8 illustrates the behavior of a nonvolatile film (E = 0) in zero gravity. The
film’s initial state is a uniform thickness of h0 = 1, but it will be perturbed with a random
amplitude of 0.1. Over time, the film surface becomes gradually stabilized, with the peaks
and valleys decreasing in amplitude. Eventually, the film will reach a fully stable state
where the surface is once again flat with h = 1. Since there are no external forces that could
cause the film to become unstable in the absence of gravity and evaporation, this behavior
is expected. Instead, any initial perturbations are simply damped out over time, leading to
a fully stable state.

To study the impact of evaporation on a liquid film, we set the evaporation number
to a fixed value of Ē = 0.1. Figure 9 demonstrates the gradual thinning of the film due to
evaporation, with partial drying occurring around t = 5.4 s. Additionally, the amplitude
of the liquid film’s vibration steadily increases over time, indicating that the evaporation
process significantly reduces the stability of the system.



Fluids 2024, 9, 143 14 of 21

(a) (b)

(c) (d)

Figure 8. The evolution of the nonvolatile film (Ē = 0) at different times. The depth of the
color represents the magnitude of the temperature. The parameters are α = 1, A1 = 0.1, A2 =

0, S̄ = 1, N̄ = 0, G = 0, E2D−1 = 0. The consecutive snapshots correspond to (a) t = 0.97,
(b) t = 2.07 s, (c) t = 4.19 s, (d) t = 15 s. The minimum and maximum of the interface are
(0.9204, 1.0747), (0.9402, 1.0557), (0.9664, 1.0320), (0.9982, 1.002), respectively.

Figure 10a presents the influence of the effective pressure, which illustrates that the
film develops slower for larger values of A2. This result is constant with the linear stability
analysis that the system is stabilized as A2 increases. However, when gravity is increased,
the breakup time is delayed, which is contradicted by the prediction of the linear stability
analysis. This different performance can be attributed to the nonlinear interactions between
gravity and surface tension. As the film thickness decreases due to evaporation, the surface
tension forces become more dominant, resulting in a more pronounced curvature of the free
surface. This can amplify the effect of gravity and stabilize the film, which fails to achieve
linear capture in the linear stability analysis. The delay in breakup time for larger gravity
is consistent with the physical intuition that flow can enhance stability. The influence of
energy transport on liquid film evolution is still small, especially in the case of microgravity,
but overall, energy transport still has a small stabilizing effect, as shown in Figure 10b.

As shown in Figure 11, we investigate the evolution of a condensing film with E = −0.1
while fixing the gravity at G = 5, which makes the film flow down in the x direction with
a constant velocity. Moreover, at t = 2.5 s, we notice that the film thickness decreases
as A2 increases. Figure 12 supports the conclusion by showing how the amplitude of
film thickness reduces with an increase in A2, proving that the effect pressure acts as a
stabilizing factor.

In many practical situations, such as inkjet printing, the liquid is often deposited under
a substrate, and the system is controlled by the Rayleigh–Taylor instability mechanism.
Therefore, we investigated the performance of an inverted film as shown in Figure 13. It
was observed that the film initially moves along the incline due to the force of gravity.
At a certain point, a droplet appears on the film’s surface, which grows rapidly over a
short period of time. The formation and growth of the droplet can be attributed to the
destabilizing effect of gravity on the inverted film. Due to gravity, the thickness of the
film varies along the incline, leading to non-uniform flow and the formation of a droplet.



Fluids 2024, 9, 143 15 of 21

The layer thins as the droplet grows, causing an increase in the curvature of the droplet’s
interface and accelerating its growth.

(a) (b)

(c) (d)

Figure 9. The evolution of the evaporation film (Ē = 0.1) at different times. The depth of the
color represents the magnitude of the temperature. The parameters are α = 1, A1 = 0.1, A2 = 0,
S̄ = 1, N̄ = 0, G = 0, E2D−1 = 0. The consecutive snapshots correspond to (a) t = 0.97 s,
(b) t = 4.00 s, (c) t = 5.01 s, (d) t = 5.40 s. The minimum and maximum of the interface are
(0.8170, 0.9915), (0.4297, 0.6277), (0.1815, 0.4671), (0, 0.3933), respectively.

A�=0.00
A�=0.05
A�=0.10

(a)

t

N=0.00
N=0.03
N=0.06

t

(b)

Figure 10. Minimum thickness hmin versus time t. Solid lines for G = 5, dashed lines for G = 0.
(a) N̄ = 0; (b) A2 = 0. The other parameters are A1 = 0.1, β = 1, S̄ = 1, Ē = 0.1, E2D−1 = 2.
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(a) (b)

(c) (d)

Figure 11. The evolution of the condensing film (Ē = −0.1) at t = 2.5 s. The depth of the color
represents the magnitude of the temperature. The parameters are α = 1, β = 1, A1 = 0.1,
S̄ = 1, N̄ = 0, G = 5, E2D−1 = 3. The consecutive snapshots correspond to (a) A2 = 0,
(b) A2 = 0.05, (c) A2 = 0.07, (d) A2 = 0.1. The minimum and maximum of the interface are
(0.8982, 1.7802), (0.9999, 1.5284), (1.0289, 1.4723), (1.0616, 1.4132), respectively.

Figure 12. The amplitude of film thickness hmax − hmin versus time t. The parameters are α = 1,
β = 1, A1 = 0.1, S̄ = 1, N̄ = 0, G = 5, E2D−1 = 3.
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(a) (b)

(c) (d)

Figure 13. The evolution of inverted liquid film. The depth of the color represents the mag-
nitude of the temperature. The parameters are Ē = 0, α = 1, β = 1, A1 = 0.1, A2 = 0,
S̄ = 1, N̄ = 0, G = −10, E2D−1 = 0. The consecutive snapshots correspond to (a) t = 0.10 s,
(b) t = 0.15 s, (c) t = 0.20 s, (d) t = 0.21 s. The minimum and maximum of the interface are
(0.8885, 1.1559), (0.8828, 1.2467), (0.8766, 1.7191), (0.7022, 2.4151), respectively.

5. Conclusions

This study set out to study a three-dimensional evaporating/condensing liquid film
with a nonlinear evolution equation under the consideration of the balance of the configura-
tional momentum at the liquid–vapor interface. We considered effect pressure, vapor recoil,
and gravity especially and discussed the impact of complex interactions on both linear
stability and fully nonlinear dynamics with a long-wave model. Two terms were introduced
in our model. One was the effective pressure, p − E2D−1 J2, accounting for vapor recoil,
E2D−1 J2, and the other was the energy transport along the interface, −N∇s · us (us is the
tangential component velocity at the liquid–vapor interface). The dimensionless parameter
N accounts for the magnitude of the energy flux along the interface. The effect of the
effective pressure and vapor recoil of the system on instability was studied using linear
stability. The results indicate that the system is always stabilized by the effective pressure,
whereas the vapour recoil effect acts to destabilize the system. Additionally, in this paper
spanwise perturbation was considered as a stabilizing term in a three-dimensional non-
volatile film. However, the results demonstrate that vapour recoil reduces the stabilizing
effect of spanwise perturbations in the presence of evaporation. For the influence of energy
transport, while it had a very minor effect on the stability of the system, evaporation along
the interface had an impact on the linear wave speed.

The nonlinear evolution of the nonvolatile, evaporating and condensing film falling
down an inclined plane was examined using a Fourier spectral method, taking into account
the influences of evaporation number, effective pressure, and vapor recoil. The nonlinear
dynamics of the system reveal that effective pressure can enhance stability, thus delaying
the rupture of an evaporating film. The study of the self-similar solution reveals that
the minimal film thickness reduces as (tr − t)1/2 and (tr − t)1/3 under the dominance of
evaporation and vapor recoil, respectively. The behavior of nonvolatile films under zero
gravity was also discussed, showing signs of stabilization over time and reaching a fully
stable state where the film surface is flat again.
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Nomenclature

ρ (ρv) Liquid (vapor) phase density
ν (νv) Liquid (vapor) phase kinematic viscosity
κ (κv) Liquid (vapor) phase thermal conductivity
u, v, w Velocity in x, y, z component, respectively
ui (uv) Interface (vapor) velocity
t, τ Time
p Pressure
µ Liquid dynamic viscosity
g Acceleration of gravity
kth Thermal diffusivity
∇ Hamilton operator
∇s Surface gradient operator
ϑ Slope angle
h Liquid film thickness
n Unit normal vector
t Unit tangent vector
ϵ Aspect ratio
λ = λr + iλi Complex growth rate
α, β Streamwise and spanwise wavenumbers
σ Surface tension
ψs Interfacial free-energy
ηs Entropy densities
Σ Stress tensor
I Identity tensor
βs Interface modulus
θ Dimensionless temperature
A1 Thermodynamic equilibrium parameter
A2 Effective pressure coefficient
C Crispation number
D Density ratio
E Evaporation number
G Dimensionless gravity
J Mass flux conservation
K Mean curvature
L Latent heat
Ma Marangoni number
N Energy flux coefficient
T, T0, Ts Temperature, the wall temperature, the saturation temperature
Pr Prandtl number
S Dimensionless surface tension
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Appendix A. The First-Order Growth Rate

Here, we provide the detailed expression of the first-order complex growth rate:

λ = −Q− ϵ(R+H1 +H2 +H3 +H4) + O(ϵ2) (A1)

with

Q = iαG sin ϑ(h2
0 −

ĒN̄
A1 + h0

)− Ē
(A1 + h0)2 + (α2 + β2)

A2ĒS̄
A1 + h0

; (A2)

R = −iα

{
3iα
40

G2 sin ϑ2h6
0 −

5
24

G sin ϑ(h4
0Q+ 4h0Q̄) +

h3
0 φ1

3
−

iαT h2
0

2
MaPr−1

}

+iβ(
−h3

0 φ2

3
+

h2
0

2
MaPr−1iβT )

(A3)

H1 =
Prh3

0
3(A1 + h0)3

{
(A1 + h0)(−A1N̄G sin ϑ(iαQ̄+ iαQh0)− α2 A2S̄Q) +Q+FQ̄

}
+Q̄(

Pr
(A1 + h0)3 −

Prh3
0

(A1 + h0)4 )

(A4)

H2 =
Pr

A1 + h0

{
3iα
20

G sin ϑh5
0(

−1
(A1 + h0)2 +

F
A1 + h0

)−
iαG sin ϑh4

0
8(A1 + h0)

}
− 2iαA2G sin ϑh0

A1 + h0
; (A5)

H3 =
iαN̄h0

A1 + h0

{
φ1h2

0
2

+
G2 sin2 ϑh5

0iα
8

− G sin ϑ

3
(h3

0Q+ 3h2
0Q̄)− iαMaPr−1T

}
; (A6)

H4 =
iβN̄h0

A1 + h0
(

φ2h2
0

2
− iβMaPr−1h0T ) (A7)

where

Q̄ =
Ē

A1 + h0
; (A8)

F = iαA1N̄G sin ϑh0 + A2S̄(α2 + β2) (A9)

T =
−h0

(A1 + h0)2 +
Fh0 + 1
A1 + h0

; (A10)

φ1 = iαG cos ϑ + iS̄(α3 + αβ2) + 2iαE2D−1
{

−1
(A1 + h0)3 − F

A1(A1 + h0)2 +
(α2 + β2)A2S̄
A1(A1 + h0)

}
(A11)

φ2 = iβG cos ϑ + iS̄(α2β + β3) + 2iβE2D−1
{

−1
(A1 + h0)3 − F

A1(A1 + h0)2 +
(α2 + β2)A2S̄
A1(A1 + h0)

}
(A12)
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