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Abstract: This study explores the dynamics of turbulent flow around a sphere at a Reynolds number
of Re = 103 using large-eddy simulation, focusing on the intricate connection between vortices and
strain within the recirculation bubble of the wake. Employing a relatively new subgrid-scale modeling
approach based on scale adaptivity, this research implements a functional relation to compute ksgs

that encompasses both vortex-stretching and strain rate mechanisms essential for the energy cascade
process. The effectiveness of this approach is analyzed in the wake of the sphere, particularly in
the recirculation bubble, at the specified Reynolds number. It is also evaluated in comparison with
two different subgrid-scale models through detailed analysis of the coherent structures within the
recirculation bubble. These models—scale-adaptive, k-Equation, and dynamic k-Equation—are
assessed for their ability to capture the complex flow dynamics near the wake. The findings indicate
that while all models proficiently simulate key turbulent wake features such as vortex formation
and kinetic energy distribution, they exhibit unique strengths and limitations in depicting specific
flow characteristics. The scale-adaptive model shows a good ability to dynamically adjust to local
flow conditions, thereby enhancing the representation of turbulent structures and eddy viscosity.
Similarly, the dKE model exhibits advantages in energy dissipation and vortex dynamics due to its
capability to adjust coefficients dynamically based on local conditions. The comparative analysis
and statistical evaluation of vortex stretching and strain across models deepen the understanding
of turbulence asymmetries and intensities, providing crucial insights for advancing aerodynamic
design and analysis in various engineering fields and laying the groundwork for further sophisticated
turbulence modeling explorations.

Keywords: recirculation bubble; turbulent wake; scale-adaptive SGS model; vortex-stretching;
large-eddy simulation (LES)

1. Introduction

Turbulent fluid flow consists of coherent structures and random fluctuations [1]. One
of the main problems in simulating turbulent flow past a bluff body is how to capture
the near-wake region behind a solid body appropriately [2,3]. The solid body causes a
significant disturbance in the flow regime, generating a viscous layer, flow separation,
and intermittency in its vicinity [4]. The flow separation in the near-wake region leads to
a recirculation bubble suppressing the turbulent flow with a substantial straining effect,
causing a negative mean velocity profile in this region. This effect, along with the intermit-
tency in the turbulent flow field, requires a numerical approach to properly capture the
dynamic nature of the bluff body flows. In a large-eddy simulation (LES) of turbulent flow
around bluff bodies like a sphere, understanding the interplay between vortices and strain
is critical for an effective approximation of the flow, particularly in the vicinity of the bluff
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body (i.e., the recirculation bubble). Vortex stretching, which represents the vortices in the
flow field, is a pivotal mechanism that influences the energy cascade from larger to smaller
scales [5–8] and is known to impact enstrophy production in the flow, which intrinsically
reflects the strength of the vorticity field. Positive vortex stretching is typically associated
with an increase in enstrophy and can contribute to a decrease in strain, aligning with the
understanding that turbulence enhances mixing and disorder within the flow [9]. Strain
self-amplification, on the other hand, plays a significant role in sustaining and increasing
strain within turbulent flows, denoting the process where the strain field intensifies itself,
which can be a consistent feature in the cascade process of turbulence energy [9].

In the wake of a bluff body, especially in the recirculation bubble, strain self-amplification
tends to increase the straining effect [4]. A subgrid-scale (SGS) modeling approach in LES,
which merely considers strain self-amplification, leads to a rise in eddy viscosity in this
region. Paradoxically, this area experiences turbulence suppression, creating an expectation
of reduced eddy viscosity. This dichotomy emphasizes the need for a nuanced approach
to model eddy viscosity that not only captures the effects of strain, but also accounts for
vortex-stretching phenomena. Therefore, an approach is required to adapt or adjust the
length scale to local flow characteristics in space and time. In SGS modeling, it is shown that
eddy viscosity is aligned with characteristic turbulence kinetic energy and can be written as
νsgs = ck∆

√
ksgs. An intriguing idea could be to utilize a technique to update eddy viscosity

spatially and temporally for an LES of turbulent flow. Some dynamic variants of SGS models
update the eddy viscosity in accordance to the local properties of fluid flow by dynamically
adapting the constant coefficient. To this end, this group of SGS models solves a transport
equation to update the turbulent kinetic energy ksgs accordingly [10–12]. These models have
shown efficacy in adjusting eddy viscosity in response to the local dynamics of the flow [13],
offering a more comprehensive representation of the complex interactions within turbulent
wakes [14]. A relatively new approach was recently proposed to approximate eddy viscosity
dynamically [15,16] through employing a functional relation for ksgs. A key feature of the
scale-adaptive SGS model is to consider both the “strain tensor” and the “rotation tensor”,
which allows dynamical adaption of the energy dissipation rate (ε∆) as the characteristic
length- and time-scale varies in a highly intermittent turbulent flow field. This model has
already been meticulously tested for the atmospheric boundary layer [15,17] and discussed
statistically for a synthetic turbulent flow field [16].

The dynamic transport equation SGS model solves a transport equation for ksgs and
dynamically adjusts model coefficients using procedures like the Germano identity [11].
The dynamic adjustment is more explicitly calculated through the solution of an additional
partial differential equation. However, the scale-adaptive SGS model adjusts the eddy
viscosity merely using a functional relation that incorporates both strain and vorticity
tensors to link the subgrid-scale turbulent kinetic energy to local flow properties directly
through a predefined functional relationship. The transport-equation-based SGS models
are relatively more sensitive to mesh quality because they rely on solving an extra PDE
for ksgs [18,19]. Although the dynamic variants of these SGS models mitigate some of this
sensitivity by dynamically adjusting model coefficients based on local flow properties, it
still depends on mesh resolution for accurate local adjustments. In contrast, a functional
relation-based SGS model such as a SA model is less dependent on mesh quality [20].
This model dynamically adjusts the eddy viscosity using local flow characteristics without
solving an additional equation, making it relatively independent of mesh resolutions to
some extent.

The extensive research into bluff body dynamics, through both experimental [13,21–26]
and computational studies [15–17,27–34] underscores the understanding of the coherent
motions dynamic behavior inside the recirculation zone moving downstream in the wake
of the bluff body [1,9,35]. Recirculation bubbles are critical phenomena in fluid dynamics,
characterized by their ability to influence the aerodynamic and hydrodynamic performance
of various structures significantly. In aerodynamics, recirculation bubbles are pivotal in
determining the drag and lift characteristics of vehicles [36–39]. Ahmed et al. [36] demon-
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strated how varying rear slant angles on a generic vehicle body affects the development
and behavior of wake flows, which are closely associated with recirculation bubbles. These
bubbles often dictate the pressure distribution around the body, impacting overall aerody-
namic efficiency. Similarly, in aerospace engineering, the effects of recirculation bubbles
on aerofoil performance are explored, particularly at low Reynolds numbers [40,41]. Col-
lectively, these studies illustrate the diverse implications of recirculation bubbles across
various engineering fields [42–48] and emphasize the importance of understanding co-
herent motions and turbulent characteristics within the recirculation bubble and in the
wake of a bluff body. Large-scale and coherent structures, prominently forming in the
massively separated flows over wing surfaces, critically impact phenomena like the flutter
of large, flexible wind turbines [49,50]. Understanding the wake behind a bluff body such
as a sphere can therefore be essential for assessing the aerodynamic and hydrodynamic
behaviors of bluff bodies in contexts ranging from wind turbine performance to the de-
sign of underwater robotics and the impact of extreme weather on structures [15,32,51,52].
Previous studies have examined bluff bodies in steady flows, noting significant changes
with variations in Reynolds numbers and flow angles. Yet, in-depth explorations of ac-
celerated wakes and their complex aerodynamics have been primarily confined to simple
flows past isothermal or heated cylinders [33,34,53–55]. Moreover, it is established that the
coherent structures in the wake of a sphere differ significantly from those behind other
bluff bodies such as circular cylinders, presenting unique challenges and opportunities
for detailed flow analysis [56,57]. The literature indicates that various approaches have
been considered to capture the unsteadiness of the aerodynamic load on a static sphere,
providing reliable correlations to calculate fluid forces and field fluctuations [13,27,58] as
well as quantitative measurement of high-order metrics [23,28,59]. These efforts and their
collective scientific results can enable us to continue our journey toward improving our
understanding, especially of how different length scales and time scales are generated and
interact in a turbulent flow [60].

Considering that the cornerstone of turbulence modeling is the assumption of the
energy cascade by coherent larger motions and the smaller random fluctuations [61,62],
the current research attempts to contribute further to understanding of the role of vortex
stretching and strain self-amplification in the recirculation zone of turbulent flow past a
sphere at Re = 103. At this Reynolds number, the recirculation bubble consists of the
shear layer and the shedding mechanisms dominated by a transition from laminar to
turbulent flow [30,33], which provides a flow field that, in the presence of axisymmetric
geometry, dismisses the complexity of high Reynolds regimes. The reason behind choosing
a sphere is that it is an ideal geometry for studying flow past a solid body and recirculation
bubble due to its simplicity, symmetry, and well-documented behavior. The axisymmetric
shape of the sphere simplifies modeling and analysis, allowing for a clear examination
of fundamental flow phenomena such as vortex shedding and wake formation, focusing
on the recirculation region. Additionally, the sphere’s relevance to practical applications
and its versatility across different Reynolds numbers make it a valuable subject for both
experimental and computational fluid dynamics studies. Therefore, this research aims to
contribute to understanding the coherent structures in the recirculation zone of a sphere
and as they move outside the recirculation zone into highly intermittent turbulent regions.

The paper is organized as follows. In Section 2, a brief mathematical background
of LES and the different subgrid-scale models are discussed. Section 3 is divided into
three subsections: Section 3.1 presents a mesh sensitivity analysis and then compares the
selected mesh resolution with available data in the literature; Sections 3.2 and 3.3 discuss
the results of the scale-adaptive SGS model in detail, where the resolved Reynolds stress,
coherent structures, pressure coefficient, Q-criteria, energy spectra, and some statistical
analysis of the subgrid-scale parameters are illustrated among three different SGS modeling
approaches, which are discussed in the next section.
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2. Large-Eddy Simulation Framework

We initiate our exploration by presenting the numerical simulation framework for
turbulent flow, focusing on the governing equations that model incompressible fluid flows.
In LES, the intricate spatial and temporal evolution of fluid flow is encapsulated through
the filtered Navier–Stokes equations as

∂ūi
∂xi

= 0, (1)

∂ui
∂t

+
∂uiuj

∂xj
=− 1

ρ

∂p
∂xi

+ ν
∂

∂xj

(∂ui
∂xj

+
∂uj

∂xi

)
−

∂τij

∂xj
+ ϕ(x)Pi,

(2)

where · denotes the filtered quantities, ui represents the ith component of velocity, and p
denotes pressure. ρ and ν are fluid density and the kinematic viscosity, respectively. The
direct-forcing immersed boundary method, utilized for simulating the sphere, introduces
an additional term, ϕ(x)Pi, in the momentum equation. In this context, ϕ(x) serves as
a phase indicator, with zero representing fluid and one representing solid. The term Pi,
defined as νλui +

√
λu2

i , symbolizes the feedback force exerted by the immersed solid body,
encapsulating both frictional drag, νλui, and pressure drag,

√
λu2

i . The coefficient λ here
represents the resistance factor [63]. This approach, meanwhile, uses no body-fitted mesh
for the sphere, allowing for a more flexible computational approach in representing solid
objects within the flow field.

In Equation (2), τij = uiuj − ūiūj is the subgrid-scale stress. A key challenge in LES
involves developing a model that effectively approximates the subgrid-scale stress τij,
thereby ensuring adequate dissipation to represent the energy transfer from larger to
smaller eddies. To address this, the classical Smagorinsky SGS model employs an eddy
viscosity approach for this approximation [64]. The model asserts that the SGS stress can
be represented as

τij −
1
3

τkk ≈ τM,d
ij =− 2(Cs∆)2|S|S ij,

S ij =
∂ui
∂xj

+
∂uj

∂xi
, |S| =

√
2S ijS ij,

(3)

where superscripts M and d stand for the model and the deviatoric or traceless part of the
tensor, respectively. Moreover, Cs and ∆ are the Smagorinsky coefficient and the grid filter
size, respectively.

2.1. Transport Equation-Based SGS Models

A primary assumption is that it is reasonable to dynamically adjust the energy flux of the
SGS motions throughout the entire space–time domain [11]. Following Smagorinsky [64], the
eddy viscosity should be prescribed in a way that the appropriate energy flux −τijSij; therefore,

τM,d
ij = 2ντSij, (4)

and it is possible to assume that eddy-viscosity ντ is aligned with a characteristic turbulence
kinetic energy ksgs; hence, it can be written as

ντ = ck∆
√

ksgs, (5)

where ck∆ represents a characteristic length scale. In the classical Smagorinsky model,
ksgs = 2∆2SijSij and ck = 0.182.

In an attempt to implement local adaptivity and backscatter into Smagorinsky-type
SGS models, a dynamic equation for ksgs is proposed [10] as
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∂ksgs

∂t
+ ūj

∂ksgs

∂xj
=

∂

∂xj
(ντ

∂ksgs

∂xj
)− τijS̄ij −

cϵ

∆
k3/2

sgs , (6)

where ck = 0.1 and cϵ = 0.93 are typically considered fixed coefficients for various
applications. Here, the calculation of the turbulent kinetic energy ksgs aims to reach a
balance between the energy dissipation and production in the energy cascade process,
ε ≡ cϵ/∆k3/2

sgs = τijSij. By solving this equation, this transport equation-based SGS model
(hereafter the k-Eqn model) dynamically determines the local distribution of turbulent
kinetic energy, allowing for the eddy viscosity ντ to be adjusted based on the local energy
levels. Moreover, the steady-state form of Equation (6) leads to the classical Smagorinsky
SGS model.

From the classical point of view, turbulent energy is predominantly modeled as
cascading from larger scales to smaller ones. However, in reality, energy can also transfer
from smaller to larger scales—a phenomenon known as backscatter [9]. Solving Equation (6)
in an LES framework can ensure capturing backscatter for situations where local conditions
lead to a reverse energy cascade.

There is another variation of the k-Eqn model in which the Germano identity [11]
is employed to update ck and cϵ dynamically [13]. The dynamic adjustment of these
coefficients based on local flow characteristics allows for this model (hereafter the dKE
model) to adapt to variations in flow conditions, such as near walls or regions of flow
separation, without manual intervention or recalibration of model constants.

2.2. A Scale-Adaptive SGS Model

Based on the scale-similarity hypothesis [65], the subfilter-scale stress, τM,d
ij , is equiva-

lent to resolved stresses τL
ij = ūiūj − ūiūj which accounts for scales between ∆les and α∆les.

Alam [15] shows that the energy flux associated with the Leonard stress τL
ij reads as

ΠL = −Sijτ
L
ij = ck∆2

[
−SijSikSki +

1
4

ωiωjSij

]
. (7)

A negative skewness of strain, SijSikSki, along with a positive value of vorticity stretching,
ωiωjSij, increases the second invariant of the velocity gradient tensor Qg while decreasing
the third invariant of the velocity gradient tensor Rg. Therefore, it is thus evident that the
stretching of vorticity extracts energy as large-scale strain is enhanced [15].

Based on dimensional reasoning [16,66], a functional relation is formulated that maps
the space of velocity gradient tensor to the space of turbulence kinetic energy. Thus, the
turbulent kinetic energy ksgs can be obtained through the following expression:

ksgs =
∆2( 1

2SijωjSijωk +
1
6 (GijGij)

2)3

[(SijSij)5/2 + ( 1
2SijωjSijωk +

1
6 (GijGij)2)5/4]2

. (8)

Several similar investigations support the mathematical justification of Equation (8) [67–69].
For clarity, we write down the scale adaptive form of the subgrid-scale stress:

τij −
1
3

τkkδij = ck∆
√

ksgsSij, (9)

where ksgs is instantaneously learned from the available velocity data. Parameter ck can be
estimated from DNS data of homogeneous isotropic turbulence [16]. The modeled stress is
adapted dynamically as the strain is adjusted and vortex tubes are stretched.

3. Results and Discussion
3.1. Mesh Sensitivity Analysis

We consider turbulent flow past a sphere at Re = 103. For this, a computational do-
main is considered with dimensions of x ∈ [−6D, 26D], y ∈ [−4D, 4D], and z ∈ [−4D, 4D]
and the immersed boundary of the sphere is located at (x, y, z) = (0, 0, 0) (see Figure 1). For
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the discretization of this computational domain, a Cartesian structured uniform mesh is
employed, and a mesh sensitivity analysis is performed to choose a proper mesh resolution.
At the inlet of this domain, a uniform velocity field (u/U, v/U, w/U) = (1, 0, 0) is consid-
ered. However, a pressure-based boundary condition is used for its outlet. Moreover, all the
numerical data in this section and the following ones are obtained at tU/D = 1000, which
equals over 100 vortex-shedding cycles. It is worth mentioning that we use an in-house
developed code for the scale-adaptive SGS model and direct-forcing immersed boundary
with OpenFOAM solvers to run our simulations.

Figure 1. A zoomed—in view of the computational domain with the time—averaged streamwise
velocity profile at different locations in the near wake of the sphere. The black arrow shows the
direction of fluid flow.

In this section, a mesh sensitivity analysis is presented using four different mesh
resolutions. For all mesh configurations, we use a second-order finite volume discretization
of the governing flow equations, and the time step is adjusted to ensure that the maximum
Courant number remains below Cmax ≤ 1.25. A numerical verification of the selected mesh
resolution is also demonstrated in comparison with the data published in the literature. For
this comparison, quantities such as time-averaged streamwise velocity and its fluctuation,
the pressure coefficient, and the skin friction on the boundary of the sphere are considered.
To select a proper mesh resolution for the LES of turbulent flow in this paper, different mesh
resolutions are considered, as shown in Table 1. To run the mesh sensitivity using scale-
adaptive LES at Re = 103, mean streamwise velocity and its fluctuation are considered
to be compared. Moreover, Figure 1 shows how the mean streamwise velocity profile is
affected by the no-slip boundary condition on the spherical region in this domain. As
shown in this figure, the mean streamwise velocity is zero on the grid points occupied by
the immersed solid body (i.e., the sphere).

Table 1. Detail of different mesh resolutions used for mesh sensitivity analysis.

NCVs Nx × Ny × Nz ∆x = ∆y = ∆z

mesh 1 442,368 192 × 48 × 48 0.08333

mesh 2 1,048,576 256 × 64 × 64 0.06250

mesh 3 2,048,000 320 × 80 × 80 0.05000

mesh 4 8,388,608 512 × 128 × 128 0.03125

Using the mentioned computational setup above, the mean streamwise velocity ⟨ūx⟩
and its corresponding resolved Reynolds stress ⟨u′

rms⟩/U ⟨u′
rms⟩ are obtained (see Figure 2)

for the different mesh resolutions mentioned in Table 1. In this paper, ū is the streamwise
component of the filtered velocity (see Equation (2)) and u

′
rms is the root mean square of

resolved Reynolds stress in the streamwise direction. Also, ⟨·⟩ is defined as a time-averaged
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quantity which is averaged over total simulation time (i.e., tU/D = 1000). Mesh 1 has the
lowest computational cost among the other meshes; however, it lacks acceptable accuracy
in comparison with Mesh 4 as the finest resolution in this analysis. As presented in Figure 2,
Mesh 3 maintains very close numerical results to Mesh 4 with relatively low grid resolution.
In this mesh sensitivity analysis, our focus is on the near-wake area, especially on the
recirculation bubble zone which is defined as the streamwise distance from the rear end of
the sphere to the location in the flow field where the mean streamwise velocity changes
sign. The dotted line in Figure 2 shows where the sign of the velocity changes. In this
region, Mesh 3 obviously has a fairly good agreement with Mesh 4, which is the finest grid
resolution with about 8.4 million grid points.

(a) (b)

Figure 2. (a) Time—averaged streamwise velocity and (b) its corresponding resolved Reynolds stress
⟨u′

rms⟩/U along the x—direction for different mesh resolutions.

Now that Mesh 3 has shown acceptable results in our mesh sensitivity analysis,
let us see the numerical accuracy of this mesh resolution in comparison with available
data. To achieve this, the mean streamwise velocity and the resolved Reynolds stress are
compared with published data in Figure 3. In Figure 3a, the mean streamwise velocity
is compared with the experimental data from Wu and Faeth [24], the DNS result from
Rodriguez et al. [33], and the LES result of Tomboulides and Orszag [27], as well as the
result of the vortex-penalization (VP) method published by Mimeau et al. [31]. The mean
streamwise velocity obtained by the present result using Mesh 3 shows good agreement
with the DNS and experimental data, especially in the recirculation bubble zone. The
DNS result is reported to be obtained by a mesh with a 9.6 × 106 grid point [33]. Figure 3b
presents the fluctuation of the mean streamwise velocity for scale-adaptive LES using
Mesh 3 in comparison with experimental data, DNS, and LES results. The present result
shows good agreement with DNS and LES in the literature. However, all numerical results
have a noticeable discrepancy with the experimental data, which can be caused due to
integration time, mesh properties, and/or numerical schemes.

The pressure coefficient (Cp) on the surface of the sphere is calculated using

Cp =
p − p∞

p0 − p∞
, (10)

where p and p∞ are the instantaneous pressure at each cell center and the free-stream
pressure (or the inlet pressure), respectively. Also, p0 is the stagnation pressure, which
is measured at the very front point of the sphere where the fluid comes to rest. In the
absence of a body-fitted mesh and utilizing the direct-forcing immersed boundary method
to represent the sphere within the computational domain, the calculation of the pressure
coefficient (Cp) is performed using the cells that contain the sphere boundary. The pressure
at each cell center (p) within these boundary cells is used to approximate the pressure on
the sphere surface. In Figure 4a, Cp is shown in comparison with DNS and experimental
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data at Re = 103 in the literature. This figure shows that scale-adaptive LES is in agreement
with the published data.

(a) (b)

Figure 3. (a) Time—averaged streamwise velocity ⟨ū⟩/U and (b) its corresponding resolved Reynolds
stress ⟨u′

rms⟩/U along the x—direction compared to Exp [24], DNS [33], LES [27], and VP [31].

(a) (b)

Figure 4. (a) The pressure coefficient on the surface of the sphere compared to experiment [22] and
DNS [33] at Re = 103. (b) The skin—friction coefficient on the surface of the sphere at Re = 103 in
comparison with DNS result at Re = 103 [33] and another DNS result at Re = 5 × 103 [70].

In addition to the pressure coefficient, let us consider the skin friction coefficient on
the surface of the sphere, which is defined as follows:

C f =
τw

ρU2Re0.5 , (11)

where τw, ρ, and U are the skin shear stress on the surface of the sphere, the density of
free stream fluid, and the free stream velocity, respectively. Figure 4b compares the skin
friction coefficient obtained by the scale-adaptive LES at Re = 103 with two DNS results,
one obtained at Re = 103 [33], and another obtained at Re = 5 × 103 [70]. The current
method agrees with both DNS results, as demonstrated in this figure. Although the current
method is simulated at Re = 103, it is still possible to compare it to DNS results with a
higher Reynolds number since Schlichting [71] showed that dramatic changes in Reynolds
numbers have a slight impact on the variation of the skin friction coefficient. allowing for
us to compare it on different Reynolds numbers, as shown in Figure 4b.

Considering that a non-body-fitted mesh is utilized for representing the sphere in the
computational field, it is also critical to check the value of the viscous length or viscous
sublayer thickness, δν = ν/uτ , where uτ is friction velocity and ν is kinematic viscosity.
This is necessary to determine whether the resolution of the mesh near-wall is fine enough
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to resolve the flow. Given that the kinematic viscosity is ν = 10−3 and the friction velocity
is about uτ = 0.15, the viscous length is about 6× 10−3. Since δν is less than the mesh size ∆,
it presents a challenge for accurately resolving the near-wall region using non-body-fitted
meshes. However, the current scale-adaptive-based framework shows good agreement for
pressure coefficient and skin friction coefficient despite the mesh size being larger than the
viscous length.

3.2. Dynamic Behavior of Flow in the Wake

To study the dynamic behavior of turbulent flow in the wake of the sphere, we consider
utilizing a visualization technique. To this end, we use the Q-criterion method [72], which
identifies vortices as flow regions with the positive second invariant of the velocity gradient
tensor. This method focuses on the characteristics of the velocity gradient tensor, Gij, which
can be decomposed into its symmetric part, S (strain tensor), and its skew-symmetric part,
Ω (the rotation or vorticity tensor). The Q-criterion defines a vortex as a region in the flow
where the norm of the rotation tensor exceeds that of the strain tensor.

Q =
1
2
(∥ Ω ∥2 − ∥ S ∥2) (12)

Here, ∥Ω∥2 represents the square of the magnitude of vorticity, indicating local rotation,
and ∥S∥2 is the magnitude of the strain rate, indicating deformation of the fluid elements. A
positive Q indicates a dominance of rotation over strain, which is characteristic of a vortex.

The λ2 criterion [73] is another method for identifying vortex cores. It is based on the
eigenvalues, λ1, λ2, and λ3, of the symmetric part of the tensor S2 + Ω2. The eigenvalues
are ordered such that λ1 ≥ λ2 ≥ λ3. Regions where λ2 is negative are identified as vortical.
Unlike the Q-criterion, which considers the overall balance between rotation and strain, the
λ2 method focuses specifically on the plane of maximum shear, providing a more localized
view of vorticity. Therefore, the Q-criterion method seems to be more suitable in our case
since we are looking for the excess of vorticity in a global sense in the flow field.

Figure 5 illustrates the development of vortical structures in the wake of the sphere at
Re = 103 from tU/D = 510 to tU/D = 540. This series effectively captures the dynamic
and complex process of vortex formation and shedding in turbulent flow. The first frame
(see Figure 5a) shows an initial instability directly behind the sphere, where small vortical
structures begin to form. This is likely the onset of flow separation, where the boundary
layer detaches from the surface of the sphere, leading to the formation of a recirculation
zone directly behind it. As these instabilities grow (see Figure 5b), they elongate and start
to coil, breaking down into more complex structures. This breakdown is indicative of the
transition from laminar to turbulent flow characteristics within the wake. The structures
then evolve into clearer vortex-shedding patterns (see Figure 5c), where distinct vortices
are shed alternately from either side of the wake. This pattern is reminiscent of the von
Kármán vortex street, commonly observed in bluff body flows. In Figure 5c–f, the vortices
move downstream and continue to interact and merge, growing in size and complexity.
The interaction among these vortices within the wake is a key feature of turbulent flow,
contributing to the mixing and dispersion of such flows. Eventually, the vortices break
down further and dissipate as they move farther from the sphere (see Figure 5g). In
this sequence, the recirculation bubble is implied by the initial formation and subsequent
motion of vortices. It forms due to the separation of the boundary layer and is sustained by
the ongoing shedding of vortices. Some of the instabilities observed, particularly associated
with the recirculation bubble, may indicate Kelvin–Helmholtz instability which occurs due
to velocity shears within the fluid. Moreover, the turbulence energy is dissipated through
the interaction and breakdown of these vortices. Vortices trapped in the recirculation zone
contribute to the turbulence intensity before they are eventually shed downstream.
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(a) tU/D = 510

(b) tU/D = 515

(c) tU/D = 520

(d) tU/D = 525

(e) tU/D = 530

(f) tU/D = 535

(g) tU/D = 540

Figure 5. Instantaneous vortical structures in the wake of the sphere at Re = 103. In this illustration,
time advances from tU/D = 510 (a) to tU/D = 540 (g).

Table 2 provides a comprehensive comparison of flow characteristic parameters to
benchmark the current LES approach with the published approaches in the literature.
The drag coefficient (C̄d) is a dimensionless number that quantifies the drag resistance
of an object in a fluid environment. It is influenced by the shape of the body, surface
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roughness, and Reynolds number. Differences in C̄d values across methods underscore
variations in computational models or experimental setups. However, the current study
shows a good agreement with DNS [33] at the same Re = 103. The drag coefficient and
the characteristics of the recirculation bubble are interrelated. A larger recirculation bubble
generally increases the wake size and drag on the body [74]. The separation angle (θsp)
indicates where the flow separates from the sphere’s surface, leading to wake formation. It
is crucial to understand how the sphere alters the flow field. The provided angles suggest
slight variances in flow behavior as captured by different methods. The recirculation
bubble length (L/D), which is normalized by the diameter of the sphere, shows how long
the reversed flow persists behind the sphere before recovering from attaching back or
dissipating. This parameter is vital for understanding wake stability and vortex formation.
For a flow past a sphere at Re = 103, experimental data [24] suggest that the recirculation
bubble length is about 2.02. The current study, along with other LES and DNS studies,
shows a good agreement in this regard. The Strouhal number St = f D/U, where f is
the vortex-shedding frequency, D is the sphere’s diameter, and U is the velocity of the
free stream. It is significant in vortex shedding studies and relates the vortex-shedding
frequency to the sphere diameter and flow velocity. It is indicative of oscillatory flow
patterns, which are crucial for predicting dynamic loads on structures in the flow. The
Strouhal numbers are relatively consistent, supporting the reliability of the vortex shedding
frequency measurements across different methodologies.

Table 2. Flow characteristic parameters compared to the data in the literature.

Method Re C̄d θsp L/D St

Present 103 0.471 101.9 2.284 0.207
VP [31] 103 0.485 - 1.991 -
LES [28] 3.7 × 103 0.355 90.0 2.622 0.210
DNS [33] 103 0.466 101.4 2.285 0.200
LES [27] 103 - 102.0 1.700 0.195
Exp [24] 9.6 × 102 - - 2.020 -

Overall, the present study’s results are closely aligned with the DNS [33], suggesting
that the simulation setup effectively captures the complex dynamics of turbulent flow
around a sphere. The slight variations in C̄d and θsp among different methods highlight
the sensitivity of these parameters to the nuances of each experimental and computational
approach. Notably, the LES by Yun et al. [28] at a higher Re shows a lower C̄d and a reduced
separation angle, possibly indicating a shift toward a more streamlined flow as Re increases.
The variation in L/D values across different studies underscores the influence of flow
dynamics and modeling or experimental techniques on the extent of the recirculation zone.

In Table 3, the second-order statistics calculated by scale-adaptive LES are compared
to the available DNS [29] and LES [75] results in the literature at Re = 3.7 × 103 and
Re = 104, respectively. The maximum value of streamwise turbulent intensity u′

xu′
x/U2,

crosswise turbulent intensity u′
yu′

y/U2, and Reynolds shear stress u′
xu′

y/U2 are presented
in this table. This comparison demonstrates the dynamic behavior of the flow in the wake
of the sphere for different approaches. The main goal of the comparison in this table is
to observe where the maximum values of turbulent intensity components and Reynolds
shear stress are located. Instead of focusing on the value itself, it is more important to see
how the trend is changing, especially for y/D. This table demonstrates that the location of
the maximum streamwise turbulent intensity diverts from the centerline as the Reynolds
number increases. On the other hand, the location of the maximum Reynolds shear stress
is moving closer to the centerline.
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Table 3. Second-order statistics obtained by the current method compared to DNS and LES data in
the literature.

Re Value x/D y/D

Max . of streamwise turbulent intensity (u′
xu′

x/U2)

Present 103 0.057 1.851 0.382
DNS [29] 3.7 × 103 0.055 2.606 0.423
LES [75] 104 0.063 1.780 0.46

Max. of crosswise turbulent intensity (u′
yu′

y/U2)

Present 103 0.041 2.501 0.0
DNS [29] 3.7 × 103 0.069 3.090 0.0
LES [75] 104 - - -

Max. of Reynolds shear stress (u′
xu′

y/U2)

Present 103 −0.024 2.189 0.410
DNS [29] 3.7 × 103 −0.029 2.565 0.392
LES [75] 104 −0.039 2.040 0.390

3.3. Evaluation of Scale-Adaptive SGS Model

In this section, we delve into a comparative analysis of three aforementioned SGS
models in Section 2—scale-adaptive (SA), transport equation with constant coefficients
(k-Eqn), and transport equation with dynamically calculated coefficients (dKE)—with a
particular focus on the turbulent flow behavior within the near-wake region, specifically the
recirculation bubble. The k-Eqn model updates the turbulent kinematic energy by solving
the momentum equation at each time step, employing fixed coefficients that do not adapt
to varying flow conditions across different regions of the flow field. This is modified in the
dynamic k-Eqn (dKE) model, which enhances the model prediction of energy dissipation
through dynamically calculating the coefficients in Equation (6), thereby allowing for
dynamic adjustments of dissipation rate and energy backscatter based on local flow. These
two models and the SA model were evaluated using the same computational setup and
mesh resolutions described in Section 3.1. This evaluation provides a focused discussion
on model efficacy in capturing the complex turbulence characteristics and dynamics within
the recirculation bubble.

Figure 6 illustrates the streamlines and coherent structures in the recirculation zones
behind a sphere for three SGS models. Such a visualization clarifies the sensitivity of SGS
models in predicting the wake behind a sphere. The similarity between streamlines shown
in Figure 6a,e suggests that the vortex-stretching principle of the scale-adaptive model
accounts for the localized dynamics captured by the dKE model. In other words, the SA
model dynamically adjusts the eddy viscosity by learning the local flow conditions through
the Helmholtz vortex theorem. According to Equation (6), the energy backscatter influences
the eddy viscosity predicted by the k-Eqn model through the flux −τijSij term. In contrast,
the dKE model dynamically adjusts the eddy viscosity to account for the energy backscatter.

Figure 7 illustrates a comparative analysis of the streamwise component of mean
velocity across these SGS models. In Figure 7a, the mean velocity ⟨ux⟩/U is plotted
along the streamwise which shows how velocity profiles from all models converge near
x/D = 2.284, a point likely signifying the end of the recirculation bubble where flow
reattachment begins. This region is characterized by a negative velocity, indicating reverse
flow within the bubble. The k-Eqn model predicts a smaller recirculation length relative to
the dKE and SA models. This difference can be attributed to the dynamic nature of these
models. Both the dKE and SA models incorporate a dynamic approach that allows for them
to update the eddy viscosity based on the local properties of the flow. In contrast, the KE
model uses fixed coefficients that do not adjust to local flow variations. The consideration
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of the rotational part of the velocity gradient field in the calculation of SGS models can
significantly influence the prediction of the recirculation bubble length. Incorporating this
component allows for a more detailed representation of the swirling motions and vortex
structures that are prevalent in turbulent flows. Figure 7b presents crosswise velocity
profiles at different locations: x/D = 1.6 (within the recirculation bubble), x/D = 3.0, and
x/D = 5.0, demonstrating how the flow transitions from reverse to forward as it moves
downstream. At x/D = 1.6, the profiles clearly show negative velocities indicative of the
recirculation zone, while at further downstream positions (x/D = 3.0 and x/D = 5.0),
the velocities are positive, reflecting flow recovery and stabilization. The close alignment
of velocity profiles from different models at x/D = 5.0 suggests a convergence in model
predictions as the flow evolves away from the sphere, highlighting the models’ capabilities
in capturing the essential dynamics of turbulent wake flows.

Figure 8 compares the pressure coefficient Cp (see Equation (10)) distributions on the
surface of a sphere as modeled by SGS models. The coefficients are plotted against angular
position θ, revealing a high Cp at the front stagnation point (θ = 0◦) with a sharp decrease
towards the rear, indicative of typical flow separation and pressure drop around bluff
bodies. While all models show similar trends, there are notable differences towards the
wake region (θ = 120◦–180◦), where SA shows lesser pressure recovery compared to dKE,
suggesting variations in how these models handle wake dynamics and turbulence.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Streamlines (a,c,e) and coherent structures (b,d,f) in the recirculation zone illustrated in the
wake of the sphere for (a,b) SA, (c,d) k-Eqn, and (e,f) dKE. Blue and red shadings show low- and
high-vorticity zones, respectively.
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(a) (b)

Figure 7. The streamwise component of the mean velocity for scale-adaptive, k-Eqn, and dKE SGS
models: (a) in the streamwise direction, (b) at three different locations in the wake of the sphere.

Figure 8. Pressure coefficient Cp on the boundary of the sphere compared for different SGS models.

In Figure 9, the streamwise, crosswise, and shear components of the resolved Reynolds
stress are shown at different locations in the wake of the sphere. These Reynolds stress
components represent turbulent fluctuations in the flow and are crucial for understanding
the momentum exchange. Inside the recirculation bubble x/D = 1.6, we observe that the
SA model exhibits relatively symmetrical profiles compared to k-Eqn and dKE models. This
behavior in k-Eqn and dKE can be related to their mesh sensitivity, especially in the near-
wake region. The dependence of Reynolds stress behavior on flow regime is highlighted
in the literature [76]. It is already shown in the literature that as the flow transitions from
laminar to turbulent regimes, the Reynolds stress profiles change correspondingly [77].
Nagata et al. [78] thoroughly investigated different flow regimes at Re = 103 and concluded
that the position of the separation point moves from downstream to upstream as Reynolds
number increases under incompressible flows of Re ≤ 103, and the flow regime changes
from fully attached flow to planar–symmetric wake flows. Therefore, it is expected to
predict a symmetrical profile in the immediate wake of the sphere, considering that its
geometry is simply symmetrical. As the flow progresses downstream, the streamwise
component of the resolved Reynolds stress for k-Eqn and dKE remains asymmetrical,
while SA keeps the same trend. However, at x/D = 3.0, the profiles for the crosswise
component diverge slightly, with the SA model predicting a marginally higher peak in
Reynolds stress. Further downstream at x/D = 5.0, the discrepancies among the models
become more apparent, especially in the streamwise component. The plots shown in
Figure 9 indicate that the vortex-stretching principle of the SA model predicts Reynolds
stresses with an equivalent accuracy compared to the dynamic models. However, we
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observe that turbulence prediction is quite sensitive to the choice of methods, including
vortex-stretching in SGS modeling, which highlights a novel framework that helps avoid
ad hoc parameter adjustment.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Streamwise (a–c), crosswise (d–f), and shear (g–i) components of the resolved Reynolds
stress at different locations in the wake of the sphere.

In principal, diagonal components measure the resolved turbulent kinetic energy kres

and predicting higher values (as observed in Figure 9) can be interpreted as a higher accu-
racy. This can be properly investigated for further details through metric ksgs/(kres + ksgs),
where kres = 0.5 × (u′

xu′
x + u′

yu′
y + u′

zu′
z). Pope [35] suggests that a value of this metric

that is less than 0.2 indicates that the energy spectrum is sufficiently resolved. In order to
highlight the role of coherent vortices in subgrid-scale turbulence production, Table 4 and
Figure 10 summarize the statistical data and the probability density of the metric. The mean
value of this metric is the lowest for the SA model, indicating that the energy spectrum is
sufficiently resolved by the SA model compared to other models in the same computational
setup. Standard deviation (STD) is also the lowest for SA, implying less variability in
the metric for this model, whereas the k-Eqn model has the highest STD, indicating more
fluctuation probably due to utilizing globally fixed coefficients.

Table 4. Metric ksgs/(kres + ksgs) statistical data for different SGS models.

Statistic SA k-Eqn dKE

Mean 0.1074 0.3714 0.2044
Median 0.0076 0.2454 0.0411
STD 0.0767 0.3472 0.2937
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Plots in Figure 10 highlight distinct behaviors of the metric across these models. For
the SA model, the probability density is highly concentrated near zero, indicating that
most of the values are very small, suggesting that subgrid-scale turbulence is minimal
compared to the resolved turbulence and that the model was able to capture the turbulence
properly. In contrast, the k-Eqn model shows a more dispersed distribution, with a notable
peak towards higher values close to one, implying significant contributions from subgrid-
scale turbulence. The dKE model displays a distribution pattern similar to the SA model
but with slightly greater spread, suggesting relatively moderate subgrid-scale turbulence
contributions. These visualizations corroborate the statistical data presented in Table 4,
where the k-Eqn model exhibits the highest mean and variability in the metric, while the SA
model has the lowest. It is worth mentioning that the data used for Table 4 and Figure 10
correspond to the same snapshot of the flow where their coherent structures are shown
in Figure 6.

(a) (b)

(c)

Figure 10. Probability density of metric ksgs/(kres + ksgs) compared between SA (a), k-Eqn (b), and
dKE (c).

An energy spectra analysis to identify the main frequency corresponding to the large-
scale vortex shedding is performed using the Fourier transform of the instantaneous
velocity field. Figure 11 shows the energy spectra for the streamwise component of the
instantaneous velocity field sampled at different stations in the near-wake region. The first
probe for sampling is located at the axisymmetric shear layer at x/D = 1.0 and y/D = 0.5
near the rear of the sphere in the recirculation bubble zone. The second one is located at
x/D = 5.0 and y/D = 0.5, where the transition to turbulence is expected to occur. The
energy spectra are calculated using the time series of the instantaneous streamwise velocity
over a period of 1000 tU/D and are illustrated in the normalized frequency format in
Figure 11. At both locations, energy spectra curves show good agreement with k−5/3 for
all SGS models. The peak detected at x/D = 5.0 and y/D = 0.5 is not present in the
near-wake region, which can be related to the existence of the recirculation bubble zone.
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For all three SGS models, one can notice that the instantaneous streamwise velocity
displays different frequency contributions depending on the location of sampling the shear
layer and in the wake. Indeed, the spectra of velocity for three SGS models located at
x/D = 5.0 and y/D = 0.5 exhibit a dominant peak. In this figure, the −5/3 Kolmogorov’s
law is presented as well, which is more visible in the spectra at x/D = 5.0 and y/D = 0.5.

(a) x/D = 1.0, y/D = 0.5 (b) x/D = 5.0, y/D = 0.5

Figure 11. Energy spectra of the instantaneous streamwise velocity at different locations in the wake
of the sphere: a comparison for different SGS models.

Let us now discuss the subgrid-scale statistics and the interaction of the main driving
mechanism in the energy cascade for this turbulent flow past a sphere by studying the
probability distribution of the instantaneous velocity field and its derivatives. One of the
significant results that we expect here is that the probability distribution of vortex stretching
and strain skewness is not Gaussian Davidson [1]. This is important since the positive
mean value of the vortex stretching comes from the fact that the strain field is strongly
negatively skewed [15].

The data presented in Table 5 highlight the skewness and kurtosis for vortex stretching
and strain skewness metrics, providing insights into the turbulence characteristics captured
by the SA, k-Eqn, and dKE models. Notably, the skewness values indicate the asymmetry
of the turbulence fields, whereas the kurtosis values, much higher than three (which would
indicate a normal distribution), suggest a significant presence of extreme events in the flow.
A positive (or negative) value of skewness can be interpreted as the existence of a longer tail
on the right (or left) of the probability distribution. The kurtosis of a probability distribution
measures the level of intermittency of a random variable. In this table, the level of inter-
mittency of ωiωjSij and SijSjkSki for SA and dKE are relatively close due to dynamically
updating the eddy viscosity to the local variations in the computational domain.

Table 5. Skewness and kurtosis of vortex stretching ωiωjSij and strain skewness SijSjkSki.

ωiωjSij SijSjkSki
Skewness Kurtosis Skewness Kurtosis

SA 23 588 −23 633

K-Eqn 22 552 −22 591

dKE 23 598 −23 643

Figure 12 provides a visualization of the turbulence characteristics captured by three
different SGS models through the joint probability distribution functions (JPDFs) of the
second Qg and the third Rg invariants of the velocity gradient tensor Gij, alongside their
respective probability density of Rg. The JPDF of these parameters measures the subgrid-
scale dynamics, and the teardrop shape of such a distribution is crucial for understanding
the significance of the proposed scale-adaptive model. These plots are instrumental in com-
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paring how each model simulates the turbulent flow behavior, particularly focusing on the
anisotropy and intensity of the vortical structures within the near-wake region, including
the recirculation bubble. The JPDFs display the frequency of specific Qg and Rg values,
presenting typical teardrop shapes which are indicative of intense vortex dynamics [67].
The SA model demonstrates a narrower distribution focusing on higher Qg values, sug-
gesting a capture of more intense vortex stretching. In contrast, the k-Eqn and dKE models
show a broader spread, indicating a wider range of turbulence scales and more dynamic
interactions. The probability density of Rg further outlines the symmetry and skewness in
the distribution of its values.

(a) (b)

(c) (d)

(e) (f)

Figure 12. Joint probability distribution function of Qg and Rg for a comparison between SA (a),
k-Eqn (c), and dKE (e). The probability density of RG for a comparison between SA (b), k-Eqn (d),
and dKE (f).
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Figure 13 showcases the variations in how the three SGS models, namely SA, k-Eqn,
and dKE, depict turbulence dynamics. The plots are structured to compare the interactions
of vortical structures and strain effects within the turbulent flow. Figure 13a,c,e illustrate
the JPDFs of ωiSijuj, which relate to the intensity of vortex stretching. Figure 13b,d,f, on
the other hand, displays the JPDFs of Qg and Rg, offering insights into the distribution of
velocity gradient tensor invariants across different flow conditions. These visualizations
are indicative of each model’s sensitivity to capturing the complexities of flow separation
and reattachment in turbulent regimes, particularly in the wake of bluff bodies where such
dynamics are critical for accurate predictions of flow behavior.

(a) (b)

(c) (d)

(e) (f)

Figure 13. Joint probability distribution function of ωiSijωj and SijSjkSki, as well as that of Qs and
Rs for a comparison between SA (a,b), k-Eqn (c,d), and dKE (e,f).
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4. Conclusions

This study focused on the dynamics of flow in the recirculation bubble in the wake
of a sphere at Re = 103, emphasizing the critical role of vortex stretching and strain self-
amplification. The dynamic behavior of flow past a sphere at Re = 103 was simulated using
LES with a relatively new SGS modeling approach based on scale-similarity introduced by
Leonard [65]. This approach implements a functional relation to obtain ksgs involving both
vortex-stretching and strain rate mechanisms in the energy cascade process. The main idea
of using a functional relation to obtain ksgs with lesser mesh sensitivity was benchmarked
against previous studies focusing on the coherent structures in the recirculation bubble.
Through the use of three SGS models—scale-adaptive (SA), k-Equation (k-Eqn), and dy-
namic k-Equation (dKE)—the research examined how these models represent the complex
dynamics of turbulence in the near-wake region. These models were evaluated in terms
of their capability to capture complex flow characteristics, especially in the recirculation
bubble, which is crucial for understanding the aerodynamic properties of bluff bodies. The
results demonstrated that all three models effectively simulated the key features of turbu-
lent wakes, such as the formation and behavior of vortices. The dKE model, which solves
a transport equation for (ksgs) and dynamically adjusts the model coefficients, showed
relatively similar to the SA model rather than the k-Eqn model, which keeps the model
coefficients constant. One of the drawbacks of the transport equation-based models is that
they are calculated through the solution of an additional PDE, making it sensitive to mesh
quality. Although the dynamic adjustment of the dKE model helps mitigate some of this
sensitivity, accurate local adjustments still depend on mesh resolution, especially in the
recirculation bubble, as shown in the resolved Reynolds stress components. The probabil-
ity density of metric ksgs/(kres + ksgs) revealed that the SA model has a high concentration
of values near zero, indicating minimal subgrid-scale turbulence compared to resolved
turbulence. The dKE model showed relatively moderate subgrid-scale turbulence contribu-
tions, while the k-Eqn model showed a more dispersed distribution, suggesting significant
subgrid-scale contributions. The statistical analysis of vortex stretching and strain across
the models provided deeper insight into turbulence intensities and asymmetries in the flow.
These insights are crucial for advancing the understanding of turbulence behavior, which
is essential for aerodynamic design and analysis in various engineering applications. This
study sets a foundation for future explorations into more sophisticated turbulence models,
enhancing the accuracy and reliability of turbulence simulations in complex flow scenarios.
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