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Abstract: In this study, a two-dimensional computational domain featuring gas and solid phases is
computationally studied for Geldart-B-type particles. In addition to the baseline case of a uniform
gas-phase injection velocity, three different inlet velocity profiles were simulated, and their effects on
the fluidized bed hydrodynamics and bubble dynamics have been studied. An in-house computer
program was developed to track the bubbles and determine the temporal evolution of their size and
position prior to their breakup. This program also provides information on the location of bubble
coalescence and breakup. The gas-solid interactions were simulated using a Two-Fluid Model (TFM)
with Gidaspow’s drag model. The results reveal that the bed hydrodynamics feature a counter-
rotating vortex pair for the solid phase, and bubble dynamics, such as coalescence and breakup, can
be correlated with the vortices’ outer periphery and the local gradients in the vorticity.

Keywords: fluidized beds; two-fluid model (TFM); bubble dynamics

1. Introduction

Gas-solid fluidized beds have varied applications in the chemical, pharmaceutical, and
food industries. For instance, fluidized beds find applications in fluidized catalytic cracking
(FCC) in the chemical industry, wet granulation in the pharmaceutical industry, and food-
processing techniques, such as fluidized bed freezing, drying, and fermentation [1–3].
They have gained traction in the clean energy sector as well especially in the biomass
energy industry [4,5]. Fluidized beds are also implemented in concentrated solar power
plants (CSP plants), where the solar thermal energy is transferred to particles inside a
solar receiver which stores thermal energy. In order to enhance the heat transfer from
the particles, gas-solid fluidization techniques have been implemented in the past [6,7].
Fluidization techniques are also employed in particle-to-supercritical carbon dioxide (sCO2)
heat exchangers in CSP plants to enhance the heat transfer between the moving packed
bed of particles and the serpentine arrangement of circular tubes carrying sCO2 [8].

Fluidization results in enhanced mixing between the two phases through complex
bubble dynamics and gas-solid motion in its vicinity. The gas-solid mixing strongly depends
on the size of the formed bubbles as well as their coalescence and/or breakup characteristics.
The bubble dynamics depends on the particle size distribution, fluidization conditions, and
geometry of the fluidized bed. For a superficial gas velocity which is slightly above the
minimum fluidization velocity for the bed, Geldart B particles (150–1000 microns) exhibit
bubbling [9]. These bubbles effectively mix the particles and enable better heat and mass
transport. However, the initial fluidization regimes just above the minimum fluidization
velocity display either a slugging motion of large bubbles or smaller bubbles coalescing to
form larger bubbles as they find their way to the top of the bed. These large bubbles are
detrimental to the desired mixing effects of fluidization, which is a phenomenon observed
in [10–13]. The wake of a bubble enhances mixing as it generates small-scale vortices in the
trailing regions of its path [14]. In a study by Askarishahi et al. [15], two counter-rotating
vortex pairs (CRVPs) were found to be generated with one pair at the bottom and the other
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at the top. The size of the lower CRVP was reduced while that of the upper pair elongated
axially (in the direction of the bulk motion of the fluid phase) with an increase in the
fluidization velocity. With an increasing aspect ratio of the bed, the hydrodynamics in the
lower bed remained largely unaffected; however, the upper bed vortices elongated axially.

Over the past few decades, several methods have been explored to mitigate the
generation of large-scale bubbles, with a common approach involving the introduction of
solid structures inside the bed, which results in the breakup of large bubbles into smaller
bubbles [10,16]. For instance, Köksal and Vural [17] implemented a double-plate distributor
at the bed inlet, which led to a pulsating flow. The frequency of the motion of plates resulted
in a certain inlet air pulsation frequency, and this flow conditioning resulted in a decrease
in bubble size. Kleijn van Willigen et al. [11] implemented a body-force augmentation
technique by applying an electric field to control the size of the bubbles. The general trend
observed in the literature is that bubbles coalesce toward the top of the bed [18].

Wang et al. [19] proposed a bubble coalescence and breakup model which could
predict their frequency of occurrence along with the bubble size distribution in the bed.
An investigation conducted by Wang et al. [20] agreed with the proposed correlation in
which the dynamics of coalescence and breakup were studied by implementing three-
dimensional bubble-tracking techniques to characterize the frequency of the occurrence
of these unique phenomena particular to fluidized beds. It was observed that when the
frequencies of bubble coalescence and breakup matched, an equilibrium time-averaged
bubble diameter was achieved. In a similar attempt focused on the understanding of bubble
dynamics, Choi et al. [21] proposed a correlation between the bubble size distribution and
the frequency of coalescence and breakup; Wytrwat et al. [22] proposed a correlation
between bubble holdup, velocity, and vertical bubble length. It was found that the shape of
the bubbles had a strong correlation with the superficial gas velocity. A critical review by
Karimipour and Pugsley [23] provides a list of correlations which relates the inlet velocity
with the bubble size distribution, coalescence, and breakup frequencies.

Bubble dynamics in fluidized beds has also been studied by a combined DEM-CFD
approach, for instance, by Zhou et al. [24]. DEM-CFD is a computationally expensive
approach where the flow interaction with each particle is captured along with the particle-
particle and particle-wall interactions. Typically, particle sizes greater than 500 microns
(Geldart B particles) have been simulated through the DEM-CFD approach [25–27]. Another
approach which is less computationally expensive involves the modeling of the two phases
(solid and gas) as an interpenetrating continuum, where drag models are used to capture the
gas-solid interactions; this method is commonly known as a Two-Fluid Model (TFM) [28].
The Syamlal-O’brien model [29] and the Gidaspow drag model [30] are the ones which are
commonly implemented in TFM studies.

To accurately predict the gas-solid dynamics in a fluidized bed through TFM modeling,
several different input parameters are required, such as the solid-solid coefficient of restitu-
tion [31,32], solid-wall specularity coefficient [33–35], and, finally, particle diameter [36,37].
Furthermore, an appropriate selection of a gas-solid drag model is required to accurately
capture the interphase drag forces. The Gidaspow drag model and Syamlal-O’Brien drag
models are some of the earliest models which have been proven to have accurate predictive
capabilities in several investigations [38–43]. In an investigation by Jung et al. [44], a flu-
idized bed was experimentally analyzed to obtain the granular temperature, solid velocity
field, and bed height. The same research group performed a numerical study in which the
TFM results were validated with the experimental data [9]. Two codes, namely, MFix and
IIT, were used in the study to compare their predictive abilities.

In bubbling fluidized beds, the mixing of bed elements is achieved through agitation
as the bubbles find their way through the bed in the direction of a favorable net pressure
gradient. In order to achieve the desired bed mixing results, it is imperative to understand
the fundamental bubble dynamics in fluidized beds through probing into the fluidized bed
domain, visualization, and analysis of the gas-solid flow field. With respect to a balance
between numerical prediction accuracy and computational cost, the TFM is a preferred
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choice for modeling the gas-solid flow in fluidized beds. This modeling approach, in
particular, is well suited for capturing the bubbles in bubbling fluidized beds [9]. As
mentioned earlier, one of the methods used to enhance the mixing of fluidized beds is
through the introduction of obstacles such as pins (or cylinders) inside the bed, which
results in the reduction in bubble size, thus affecting the mixing characteristics. The
introduction of obstacles also provides control over the resultant heat transfer, as they
can be strategically arranged to achieve the desired performance of the fluidized beds.
However, it has been found that such structures when placed in the fluidized bed have a low
lifetime, as they are subjected to a volatile environment which includes bubble formation
and their breakup, resulting in the random motion of solid particles and leading to erosion
over time. Furthermore, the introduction of obstacles results in a net reduction in the
available volume for packing the solid medium in the total fluidized bed volume [10,16,17].
The objective to achieve the desired mixing results in fluidized beds with the economical
usage of fluidized gas requires the development of cost-effective solutions which have
long lifetimes. The present study is motivated by this aim, where we propose inlet flow
conditioning to achieve the desired fluidization properties. Different inlet velocity profiles
can be achieved by installing variable porosity mesh at the entrance of the fluidized beds,
which under the action of uniform plenum supply pressure would result in specific inlet
velocity profiles. This approach has its engineering relevance, as it is an easy modification to
the existing fluidized beds, while at the same time, it provides flow control options and has
a superior lifetime. To this end, it is imperative to understand the fluidized bed behavior
in response to different inlet velocity profiles, such that the fundamental understanding
can be leveraged to provide design recommendations for superior mixing properties of
fluidized beds.

There have been a few studies which were focused on understanding the effects of the
superficial gas velocity magnitude and bed aspect ratio of the fluidization characteristics.
These characteristics have been studied through the statistical analysis of bubble velocity
and size distributions [23]; however, the fundamental understanding of the complex bubble
dynamics is still limited, more so, from the perspective of bubble control. This study is
focused on understanding the effects of different inlet velocity profiles on fluidization
properties through a novel bubble tracking and analysis method for TFM-based modeling.

The following sections provide details of the mathematical modeling, computational
domain, flow conditions, and bubble tracking methodology, which is followed by results
and their discussion.

2. Mathematical Modeling
2.1. Governing Equations

The fluidization process has been studied via a Two-Fluid Model (TFM) following the
Eulerian-Eulerian approach, where the granular phase is modeled as a fluid. The gas and
solid phases are modeled as an interpenetrating continuum. The flow governing equations
are presented below [40,45]:

We used the following continuity equations:

∂

∂t
(
ρgαg

)
+∇.

(
αgρg

→
vg

)
= 0 (1)

∂

∂t
(ρsαs) +∇.

(
αsρs

→
vs

)
= 0 (2)

In the above equations, α represents the volume fraction, the subscripts ‘g’, ‘s’ , rep-
resent the gas and solid phases, respectively, ρ represents the density,

→
v represents the

velocity, and ‘t’ represents time.
In addition, we used the following momentum equations:

∂

∂t

(
αgρg

→
vg

)
+∇.

(
αgρg

→
vg

→
vg

)
= −αg∇p +∇.τg + αgρg

→
g + Kgs

(→
vs −

→
vg

)
(3)
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∂

∂t

(
αsρs

→
vs

)
+∇.

(
αsρs

→
vs

→
vs

)
= −αs∇p −∇ps +∇.τs + αsρs

→
g + Kgs

(→
vg −

→
vs

)
(4)

In the above equations, ‘p’ represents pressure, τ represents shear stress tensor,
→
g rep-

resents acceleration due to gravity, and Kgs represents the drag coefficient (discussed later).
The shear stress tensors are given as the following:

τg = αgµg

(
∇→

vg +∇→
vg

T
)
− 2

3

(
αgµg.

(
∇.

→
vg

)
I
)

(5)

τs = αsµs

(
∇→

vs +∇→
vs

T
)
− αs

(
λs −

2
3

µs

)(
∇.

→
vs

)
I (6)

In the above equations, µ is the dynamic viscosity, and λ is the bulk viscosity.
We also used the following granular temperature equation:

3
2

(
∂

∂t
(αsρsθs) +∇.

(
αsρs

→
vsθs

))
=

(
−ps I + τs

)
: ∇→

vs +∇.(kθs∇θs)− γθs + ϕgs (7)

In the above equation, θs is the granular temperature, γθs is the collisional dissipation
of energy, and ϕgs is the energy exchange between the gas and solid.

In Equation (5), ps, µs and λs can be determined as functions of the granular tempera-
ture, radial distribution function, solid volume fraction, and the thermo-physical properties
of the solid phase. These relationships are comprehensively reviewed in [45]. Granular
temperature θs is not the same as the conventional temperature term. θs arises from the
kinetic theory of granular flows just as temperature does from the kinetic theory of gases.
This quantity measures the average rate of change in velocities of the granular phase at a
fixed point in time. Granular temperature is the quantification of random oscillations of
particles. Mathematically, it is the average of three variances in three dimensions of the
instantaneous velocities of the particles [44].

Since the gas-solid flow is modeled considering the solid phase as a continuum, the
individual solid particles were not resolved and tracked. Further, the solid-solid interaction
was modeled through the granular shear and bulk viscosity. This is a complex process,
as the solid phase, in reality, is arranged in a discrete manner. Hence, an estimation of
the net shear experienced by particles based on their local distribution is required. This
phenomenon is captured through statistical methods by formulating a radial distribution
function, which is the probability of finding other particle(s) in radially outboard directions
in reference to a fixed particle. In the present study, the radial distribution function
formulated by Ahmadi and Ma [46] was implemented.

In gas-solid flows, two types of flow regimes can be observed when attempting to
close the momentum equations. These are plastic flow and viscous flow. In gas-solid flows,
the solids collide with one another and exchange momentum. In plastic flows, momentum
transfer due to friction dominates, while in viscous flow, the momentum transfer due to
collisions dominates. More details are provided in [45]. Since the inlet flow velocity used
in the present study was only slightly higher than the minimum fluidization velocity, the
frictional stresses were ignored and only solid-phase pressure was used as the flow was
viscous, where momentum transfer is dominated by collisions compared to friction. For the
viscous stresses (momentum transfer via collisions), the formulation given by Lun et al. [47]
was implemented.

2.1.1. Drag Models

The solid-solid interaction was modeled in MFix, following the methodology pre-
scribed by Syamlal et al. [45]. As mentioned earlier, several gas-solid drag models have
been developed in the past, among which the Syamlal-O’Brien and Gidaspow models are
widely used [29,30]. The drag models are constructed to yield the drag coefficient, Kgs,
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which is included in the momentum conservation equations. The Syamlal-O’Brien drag
model is given as the following:

Kgs =
3
4

αsαgρg

v2
r,sds

Cd

(
Res

vr,s

)∣∣∣→vs −
→
vg

∣∣∣ (8)

where vr,s is the terminal velocity and is given by

vr,s = 0.5
(

A − 0.06Res +

√
(0.06Res)

2 + 0.12Res(2B − A) + A2
)

(9)

where
A = α4.14

g

and
B = 0.8α2.65

g

for αg ≤ 0.85 and B = 0.8α2.65
g for αg > 0.85

The Gidaspow model is given as

Kgs = 150
α2

sµg

α2
gd2

s
+ 1.75

αsρg

∣∣∣→vs −
→
vg

∣∣∣
αgds

For αg ≤ 0.8 (10)

Kgs =
3
4

Cd

αsρg

∣∣∣→vs −
→
vg

∣∣∣
ds

α−2.65
g For αg > 0.8 (11)

where
Cd =

24
Re

[
1 + 0.15(Res)

0.687
]
; Res ≤ 1000 (12a)

and
Cd = 0.44; Res > 1000. (12b)

where

Res =
αgρgds

∣∣∣→vs −
→
vg

∣∣∣
µg

(13)

2.1.2. Gas Turbulence Modeling

In MFiX, the gas turbulence is modeled as a combination of the gas viscosity and
the eddy viscosity, which is the Boussinesq hypothesis [48] for turbulent flows. In MFiX,
eddy viscosity was set to zero by default, implying that the stress tensors were purely a
function of the gas molecular viscosity. In the present study, turbulence was not modeled
as it is established that in gas-solid flows (and for conditions similar to those studied
here), a dense regime of the solid phase exists, and the contribution of gas turbulence is
negligible [9]. In an investigation by Loha et al. [40], the effect of turbulence modeling was
studied in contrast with the laminar flow model, where no appreciable differences were
found between the two modeling approaches.

3. Numerical Considerations

The computations were carried out in a 2D domain of size 15.5 cm (width) and 40 cm
(height). The domain was discretized with quad elements with 31 divisions along the width
(resulting in 32 cells) and 82 divisions (resulting in 83 cells) along the height of the bed. The
discretized computational domain is shown in Figure 1. The recommendations on the grid
size for the two-fluid model simulation as prescribed in [9,40,49] is adopted in this study,
where the size of one cell was ~10 times the particle diameter.
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Figure 1. Discretized computational domain (the axes show the number of cells, 32 (in width) ×
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shown is the initial bed height in reference to the total height of the bed.

The continuity and momentum residuals were set to 0.001 with the temporal discretiza-
tion scheme of Implicit Euler and spatial discretization of MFiX-Superbee. The linear solver
was of the bi-conjugate gradient stabilization type. The maximum time-step size was 0.01 s,
and the minimum time-step size was 1 × 10−6 s. For the momentum formulation, the entire
framework of equations and methods listed so far belongs to the class of Model A [50].
The simulations were conducted for a physical time of 40 s. Each of the simulations took
nearly two hours to complete, and the simulations were conducted via the Dell Precision
7865 Tower, which has an AMD Ryzen Threadripper PRO 5945WX processor, 12 cores,
32 GB RAM.

4. Gas and Solid Properties, Initial Conditions, and Boundary Conditions

Air was modeled as an incompressible fluid. The solid phase was modeled as a
granular phase and treated as a continuum along with the gas phase. The particle diameter
was 530 microns, and the density of particles was 2500 kg/m3. The particle-particle
coefficient of restitution was set to 0.99. These properties are summarized in Table 1. In
addition to these parameters, the body force due to earth’s surface gravity (9.81 m/s2)
was modeled.

Table 1. Properties of the fluid medium.

Property Value

Air viscosity 1.5 × 10−5 Pa.s
Air density 1.2 kg/m3

Solid-Wall-e 1
Solid-Solid-e 0.99

Particle diameter 530 microns
Particle density 2500 kg/m3

Operating pressure 101,325 Pa
Gravity 9.81 m/s2

Particle-particle mean shear Granular temperature-based
Particle-particle bulk mean shear Granular temperature based
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To facilitate the convergence during the initial physical times, the initial shock to
the entrance region of the bed had to be reduced. To this end, the initial bed height
was set to 20 cm with a void fraction of 0.6. A no-slip wall boundary condition was
applied for the gas phase. For the solid phase, the boundary treatment was based on the
formulation provided by Johnson and Jackson [51] with a specularity coefficient of 0.6.
The coefficient of restitution for the wall-particle pair was set as unity. For the baseline
case, a constant velocity (0.587 m/s) inlet boundary condition was applied at the inlet,
with a void fraction of unity, implying that only air entered the computational domain.
The outlet boundary was set as Neumann boundary type with a fixed atmospheric
pressure of 101,325 Pa.

The effect of the inlet velocity profile on the hydrodynamics of the fluidized bed
is studied via a comprehensive scientific procedure in this paper. Firstly, the TFM is
extensively validated with prior benchmark experimental studies. Second, a novel bubble
identification and tracking algorithm was developed and validated with experimental data.
The numerical solutions were then studied in conjunction with the bubble dynamics to
understand the fundamental relationship between the fluidized bed hydrodynamics and
the location of bubbles and their size distribution. The mixing characteristics of the fluidized
bed for different inlet velocity profiles were studied through the above approach. The
primary hypothesis behind this investigation is that the fluidized bed mixing characteristics
can be controlled by conditioning the inlet gas velocity, as the resultant solid and gas phase
motion in the fluidized bed as well as near-wall hydrodynamics will be affected by the inlet
conditions. Further, through the prior knowledge of the relationship between the bubble
dynamics and the localized mixing, the above-mentioned approach is adopted to test the
hypothesis through a comprehensively validated numerical model.

For the other inlet velocity profiles investigated in this study, the profiles were entered
via a subroutine written in FORTRAN and compiled in MFiX. In this study, four different
velocity profiles were studied, as shown in Figure 2. For all profiles, the average velocity
(u0) was kept the same (0.587 m/s). The four velocity profiles are also summarized in
Table 2.
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Table 2. Test matrix.

Configuration Test Condition

Baseline 0.587 m/s uniform inlet velocity
Parabolic Refer Figure 2 for velocity profile

Trapezoidal 1 Refer Figure 2 for velocity profile
Trapezoidal 2 Refer Figure 2 for velocity profile

5. Bubble Tracking Methodology

The present study is focused on understanding the fluidized bed properties through
analyzing the bubble dynamics by tracking the void fraction results as predicted by the
TFM. The post-processing of the predicted results on the gas-solid dynamics involved a
bubble tracking approach, which was implemented through the development of an in-
house computer program. The solid volume fraction contours were generated at different
time steps during the course of physical run time, and these contours were exported
from MFiX to a separate folder in jpeg format. The exported images were in grayscale
mode where the solid phase was represented by pixels with higher intensity, and gas
was represented by those with lower intensity (first row of Figure 3). Upon the visual
examination of individual images of the solid-volume fraction in the grayscale mode
with trial and error, a threshold value of 0.8 was considered appropriate to mark a clear
difference between the gas and solid phases in the fluidized bed. The grayscale images
exported from MFiX were then imported in MATLAB R2022.a for further processing
based on the above criterion to facilitate the bubble dynamics study. In order to obtain a
well-defined bubble geometry which had clear borders such that an exact coordinate of
its centroid could be determined, the threshold criteria of 0.8-pixel intensity was applied
uniformly across all the solid-volume fraction images exported in the grayscale format
(second row of Figure 3). The next step in this process is illustrated for a sample bubble
inscribed in a red box as shown in the first row of Figure 3. An in-built function in
MATLAB R2022.a was used to identify the boundaries of a region marked by a change
from 0 to 1 or 1 to 0. The region boundary information as obtained from the above step
in pixel notation was then converted to physical length scales to account for the physical
area corresponding to a pixel and its location in the 2D computational domain. Once
the bubble boundary information was stored, the information on the location of the
corresponding centroids of different bubbles was stored for a given binary scale image.
Figure 3 shows the evolution of bubbles going from left to right, and this evolution is
effectively captured by the above bubble tracking methodology, as illustrated in the
third row of Figure 3.

The stored information on bubble boundaries and centroids was then used for tracking
individual bubbles and to study crucial phenomena of coalescence and breakup.

To facilitate a continuous evolution of bubbles, the physical time step size of 0.01 s was
used, which ensured that the shift in the location of centroid ( ∆x, ∆y) of a given bubble was
small, aiding in the accurate tracking of bubbles in both space and time. This information
was used to determine the average bubble size. The next phase of bubble tracking involved
a frame-by-frame sweep where the above information was tracked to identify the locations
of bubble coalescence and breakup. The bubble coalescence and split locations were also
monitored and stored. The algorithm for the bubble dynamics study is shown through a
flowchart in Figure 4.
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6. Results and Discussion

This section presents the validation of the computational model, which is followed by
results and discussion on the gas-solid interactions where fluidized bed hydrodynamics
is presented along with the bubble dynamics study. The interphase Nusselt number as
derived from the time-averaged flow-field is also presented.

6.1. Validation of the TFM Predictions with Experiments

The prediction results on granular temperature and axial velocity have been compared
with the experimental results from Jung et al. [44], where the authors in [44] conducted
fluidization experiments on a thin rectangular bed which was made from an optically
clear material. A uniform fluidization was achieved through a gas distributor upstream
of the inlet to the fluidized bed. The experiments were conducted on glass spheres with
an average particle diameter of 530 µm. The instantaneous velocity of the particles was
determined by capturing the images using a CCD camera. The particle streaks captured by
the camera were used to determine the streamwise and spanwise components of the flow
velocity. A detailed description of the experimental setup can be found in [44].

As part of the validation studies, the drag models proposed by Syamlal-O’Brien
and Gidaspow were used to compare the respective predictions through the TFM with
experimental data. For comparisons, important hydrodynamic properties of the fluidized
bed such as the bed height, time-averaged axial velocity of the solid phase, and granular
temperature were considered. The inlet profile for validation studies was set to 0.587 m/s
acting uniformly across the inlet. The presented results were averaged over time, where
data over 10–40 s of physical time were considered. The initial physical times were omitted
from the time averaging. During the initial physical time (0–5 s), a symmetric fluidization
pattern was observed, which was due to the initialization of the hydrodynamic variables,
resulting in symmetric patterns in volume fraction distribution. Post the initial timeframe
which featured symmetric flow behavior, the effects of the hydrodynamic disturbances
started to mark their presence in the fluidized bed. The time-averaging choice of the
10–40 s timeframe was made such that the typical characteristics of the disturbed fluidized
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bed can be captured. A comparison of the time-averaged axial velocity profiles with the
experimental profiles is shown in Figure 5. Both the drag models agreed well with the
experimental data on the axial velocity profile sampled at a bed height of 0.14 m. The
second comparison was based on the granular temperature as shown in Figure 5. In this
case as well, both the drag models agreed well with the experiments with the Gidaspow
model being relatively closer to the measurements.
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plotted at bed height 0.14 m, validation with Jung et al. [9].

Apart from the line variation of flow quantities, the model validation study includes
a localized comparison of the time-averaged solid-phase volume fraction superimposed
by the solid-phase velocity vectors, which is shown in Figure 6. The Gidaspow model
showed a better agreement in terms of the fluidized bed height comparison with the
experimental measurements. An axially stretched large counter-rotating vortex pair (CRVP)
was observed from the solid-phase velocity vectors in both Gidaspow and Syamlal-O’Brien
drag model-based predictions as well as in the results in Jung et al. [9]. This CRVP resulted
in a predominantly vertically downward movement of particles along the walls and an
upwash of solid particles in the vicinity of the bed centerline along the bed height.
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Further, the grayscale images obtained from the solid-phase volume fraction predic-
tions using Syamlal-O’Brien and Gidaspow models are compared at two different physical
time instances with the experimental data (Figure 7). It can be observed that both drag
models were able to capture the intricate features of the larger bubble observed in the exper-
iments. In summary, the validation study reveals that both drag models, Syamlal-O’Brien
and Gidaspow, have good predictive capabilities for the simulated condition in reference
to the available experimental data. In this study, we have used Gidaspow’s drag model to
study the inlet velocity profiles’ effect on the fluidized bed hydrodynamics.
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6.2. Effects of Inlet Velocity Profile on the Bed Hydrodynamics

In reference to the uniform inlet velocity boundary condition, three different velocity
profiles have been studied, as shown in Figure 2. The average velocity for all the velocity
profiles was kept the same as the magnitude for the uniform inlet velocity case. The time-
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averaged axial velocity variation with the span of the fluidized bed at 0.14 m height, for the
four different inlet velocity profiles, is shown in Figure 8.
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Figure 8. Effect of different gas-phase inlet velocity profiles on the solid-phase axial velocity at bed
height of 0.14 m.

For the parabolic inlet velocity profile for the gas phase, the solid-phase axial velocity
observed at a bed height of 0.14 m was also similar to a parabolic shape, with a velocity
peak occurring near the bed centerline, with a peak velocity magnitude of 20 cm/s. After
comparing the trapezoidal velocity profiles with the uniform inlet velocity profile, it is
observed that the trapezoidal profile resulted in an even closer agreement with the experi-
ments by Jung et al. [44]. The fluidized bed characteristics corresponding to different inlet
velocity profiles are shown through the time-averaged solid volume fraction superimposed
by solid-phase velocity vectors (also time-averaged) in Figure 9.
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The trapezoidal inlet velocity profiles resulted in a CRVP, which was stretched axially
in the direction of favorable net pressure gradient. The shape of the individual vortices
in the CRVP was more well defined in the trapezoidal 2 profile, where its shape can be
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characterized as rectangular (following the bed domain). Note that for the trapezoidal
2 profile, it may appear that a smaller CRVP exists near the bed inlet; however, upon closer
examination, it can be observed that smaller vortices are a part of the larger vortices on
either side of the bed centerline (in the axial direction). As a result of large-scale CRVP
occupying almost the entirety of the bed height, the solid volume fraction was found to be
concentrated near the walls for the trapezoidal inlet velocity profiles (1 and 2).

For the parabolic inlet velocity profile, a well-defined oval-shaped CRVP was observed
based on the solid-phase velocity vectors. This resulted in a strong upwash of the particles in
the vicinity of the channel centerline, which eventually led to an even higher concentration
of the solid phase near the walls, especially in the corners near the bed inlet. Upon
comparing the three inlet velocity profiles, the trapezoidal 1 profile resulted in the most
uniform distribution of the solid phase in the bed domain.

6.3. Effects of Inlet Velocity Profile on the Bubble Dynamics

The effects of inlet velocity profile on the bubble dynamics were studied following
the methodology described in Section 5. Figures 10–13 show the locations of bubble
coalescence and breakup (splitting) superimposed on the solid-phase vorticity and solid-
phase velocity vectors.
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The bubble coalescence and breakup locations were found to be at the periphery of high
vorticity zones or at the edges of the vortices toward the bed centerline. As shown earlier, a
large CRVP for the solid phase was observed for all velocity profiles. The bubble coalescence
and breakup incidences were higher in number in the vicinity of the two interacting vortices
near the bed axial centerline or in the regions with high local gradient in the vorticity values.
It is noteworthy that most bubble dynamics occurred away from the wall.

For the two trapezoidal inlet profiles, due to their axially stretched nature of vortices, a
small high vorticity region was observed near the entrance. This behavior was not observed
for the parabolic inlet profile, which resulted in an oval-shaped CRVP for the solid phase,
and as a result, the vorticity magnitudes were localized in an oval shape. Most of the
bubble dynamics (coalescence or breakup) were observed in between these vortices or in
the regions of high local gradient in vorticity magnitudes. Near-wall bubbles were nearly
nonexistent for the parabolic inlet velocity profile.

The bubble split locations were more spread out in reference to the coalescence loca-
tions for the parabolic inlet velocity profile, with more activity toward the entrance region,
when compared to the other three velocity profiles. This is attributed toward the high
velocity gradient near the channel centerline for the parabolic inlet profile, which resulted
in increased flow disturbance when gas interacted with the solid phase.

As noted earlier, the effect of inlet velocity profile on the bubble dynamics was studied
here to gain fundamental knowledge about the bubble dynamics (coalescence and breakup)



Fluids 2024, 9, 149 16 of 21

in relation to the gas-solid flow behavior, which was found to be well represented by
the solid-phase volume fraction, solid-phase velocity magnitude and velocity vectors,
and vorticity magnitudes. For all inlet velocity profiles, it was observed that bubble
coalescence/breakup locations can be expected along the periphery of the CRVPs. For
fluidized bed designers, it is recommended that TFM simulations can be used to determine
the CRVP(s) to locate the highest possibility of bubble coalescence and breakup.

Apart from the coalescence and breakup locations, the bubble properties are also repre-
sented by its size and the size distribution in context with the local position in the fluidized
bed. The time-averaged bubble size distribution is shown in Figure 14. The bubble size was
normalized by the product of initial bed height and bed width. For all inlet velocity profiles,
the bubbles grew in size as the flow moved upwards in the direction of the favorable pressure
gradient. The largest bubble size was observed in the vicinity of the channel centerline in the
flow direction. The bubble size was largest for the trapezoidal 1 profile, while the parabolic
inlet velocity profile resulted in the smallest bubble size. Note that the occurrence of the
largest bubbles was localized in the region where bubble coalescence and breakup incidences
were not observed. This observation further strengthens the bubble dynamics approach as it
accurately captures critical bubble phenomena.
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6.4. Interphase Heat Transfer Characteristics

Interphase heat/mass transfer characteristics of fluidized beds are important to un-
derstand as it determines their effective performance, such as in fluidized bed dryers [3].
The locally resolved gas-solid flow field can be used with established correlations to obtain
local heat transfer characteristics within a fluidized bed. The interphase heat transfer
relationship in Nusselt number form (Equation (14)) provided by Gunn et al. [52] has been
used in this study.

Nu =
(
7 − 10ϵg + 5ϵg

2)(1 + 0.7Re0.2
s Pr(1/3)

)
+
(
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Figure 15 presents the local Nusselt number distribution for the four configurations,
which are superimposed with time-averaged solid-phase velocity vectors. The regions
corresponding to local vortices had a lower interphase heat transfer, which is expected.
The configuration of trapezoidal profile 1 has the highest near-wall interphase heat transfer,
which makes it suitable for applications where heat is supplied through the walls. Further,
in some fluidized bed applications, the uniformity in the interphase heat transfer within the
bed volume is desirable, for example, in case of fluidized bed dryers, to achieve uniformity
in grain drying. To this end, the trapezoidal profiles had more uniform interphase heat
transfer statistically compared to the baseline and parabolic inlet velocity profiles.
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7. Conclusions and Future Recommendations

A 2D bubbling fluidized bed filled with Geldart B particles was simulated and ana-
lyzed by conducting TFM simulations using an open-source code MFiX. The predictions
were validated using the experimental data presented in Jung et al. [9]. The validated
TFM model was used to study the effects of three different velocity profiles in addition to
the uniform inlet velocity profile on the bed hydrodynamics and bubble dynamics. The
following observations on fluidized bed hydrodynamics were made:
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(i) The time-averaged flow field reveals the presence of CRVP in the fluidized bed for all
the velocity profiles. The vortex shapes were dependent on the inlet velocity profiles.

(ii) The trapezoidal velocity profiles and the uniform velocity profile had similar axial
velocity distribution at a bed height of 0.14 m, while the parabolic inlet velocity
profile exhibited a marked difference in the axial velocity signature, where a peak was
observed near the centerline of the bed in the axial direction.

(iii) The solid-phase volume fraction was high near the walls for all the inlet velocity
profiles, and the bed height was found to be insensitive toward the difference in inlet
velocity profiles. This indicates that the bed height is simply a function of the average
inlet velocity.

Regarding the bubble dynamics study, the following main observations were made:

(i) The bubble coalescence and breakup phenomena were found to take place in between
the region of two adjacent vortices. Bubble dynamics in the vicinity of the walls
was nonexistent.

(ii) The number of bubble coalescence and splitting incidences followed similar patterns
and were found to be nearly the same in number, indicating that bubble sizes reached
an equilibrium state, which was a phenomenon also observed by Wang et al. [20].

(iii) The bubble coalescence and breakup dynamics incidences were related to the lo-
cal change in the vorticity magnitudes in the vicinity of the axial centerline of the
fluidized bed.

(iv) The average bubble size was found to be largest for the case of trapezoidal profile 1,
while the parabolic velocity profile had the smallest bubble size. The larger bubble
sizes were observed in the vicinity of the bed top.

The inlet velocity profile resulted in distinct interphase heat transfer characteristics,
where trapezoidal inlet velocity profiles resulted in more uniform interphase heat transfer
distribution, and trapezoidal velocity profile 1 resulted in the highest near-wall interphase
heat transfer. The inlet flow conditioning can be an effective flow control method in
fluidized beds.
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Nomenclature

Cd Drag coefficient
Cp Specific heat capacity
d Diameter
e Restitution coefficient
g Gravitational acceleration
go,ss Radial distribution function
h Interphase heat transfer coefficient
Hd Heterogeneity index
I Unit tensor
k Thermal conductivity
K Drag coefficient
Nu Nusselt number
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p Pressure
Pr Prandtl number
Re Reynold’s number
t Time
T Temperature
v Velocity magnitude
→
v Velocity vector
Subscripts
a Axial
g Gas phase (Air)
p Particle
r Radial
s Solid phase
w Wall
Greek letters
α Volume fraction
γθs Collisional energy dissipation term
λ Bulk viscosity
µ Dynamic viscosity
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