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Abstract: Libration and precession are different body forces that are ubiquitous in many rapidly
rotating systems, particularly in geophysical and astrophysical flows. Libration is a modulation of
the background rotation magnitude, whereas precession is a modulation of the background rotation
direction. Assessing the consequences of these body forces in large-scale flows is challenging. The
Ekman number, the ratio of the rotation time scale to the viscous time scale quantifying the rotation
speed, is extremely small, leading to extremely thin and intense shear layers in the flows even when
the amplitudes of the body forces are very small. We consider the consequences of libration and
precession numerically in a geometrically simple container, a cube, which lends itself to very efficient,
accurate, and robust numerical treatment, with the axis of rotation passing through opposite vertices,
so that all walls of the cube are at oblique angles to the rotation axis. This results in the geometric
focusing of inertial wavebeams reflecting off the walls, whereby the energy density of the wavebeams
increases along with the magnitude of their wavevector. The nature of this focusing depends on the
forcing frequency but not on the body force. In the inviscid setting, wavebeams form infinitesimally
thin vortex sheets, and their energy density becomes unbounded upon focusing. We present linear
inviscid ray tracing to set the scene for the focusing of wavebeams and then consider viscous problems
at an Ekman number that is typical of current state-of-the-art laboratory experiments. We begin by
considering the linear responses, which are comprised of focusing viscous shear layers, of which
their details are mostly captured via ray tracing, and particular solutions accounting for the body
forces. These have complicated spatio-temporal structures, which differ for libration and precession.
Increasing the forcing amplitude from zero introduces nonlinear interactions, enhances the focusing
effects via vortex tilting and stretching when the shear layers reflect at the walls, and also introduces
temporal superharmonics and a mean flow. When the magnitude of the mean flow is within a
few percent of the magnitude of the instantaneous flow, instabilities breaking the spatio-temporal
symmetries set in. These are localized in the oscillatory boundary layers where the reflections are
concentrated and introduce broadband dynamics in the boundary layers, with additional inertial
wavebeams emitted into the interior. The details again depend on the specifics of the body forces.

Keywords: rapid rotation; libration; precession

1. Introduction

Precession and libration are two forcing mechanisms that play fundamental roles
in driving inertial oscillations in rapidly rotating bodies, such as in the liquid cores of
planets and other astrophysical bodies [1]. Their rapid rotation, characterized by an Ekman
number of order 10−15 corresponding to the ratio of their rotation and viscous time scales,
makes the theoretical study of these inertial oscillations very challenging. These types
of flows are studied using laboratory experiments in simple enclosed geometries, but
typically at Ekman numbers of order 10−5 and subjected to precession or libration at
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forcing amplitudes that are relatively large, characterized by a Rossby number of order
10−2, close to the critical value for the onset of instabilities. In axisymmetric containers,
libration and precession result in fundamentally different primary response flows: at low
forcing amplitudes, the primary response to libration is axisymmetric, whereas the flow
due to precession is three-dimensional with azimuthal wavenumber one. On the other
hand, for a very fast mean rotation subjected to vanishingly small forcing amplitudes,
the linear inviscid theory of inertial oscillations is independent of the form of the forcing.
How do the different symmetries associated with precession and libration impact the
nature of instabilities as the forcing amplitudes are increased? We are unaware of any direct
head-to-head comparisons between instabilities due to precession and libration. The review
articles [1,2] provide overviews of flows driven by libration and precession, as well as other
forcing mechanisms, but no direct comparison. Part of the problem with such a comparison
is that the libration of axisymmetric containers drives a response flow via viscous torques
on the boundaries, and a relatively large forcing amplitude is typically required to drive
instabilities, whereas precession has pressure torques also contributing to the driving and
so smaller amplitudes lead to stronger responses.

A rapidly rotating cube is a simple geometry for which both precession and libration
exert a significant pressure torque. The effects of libration and precession have been studied
separately for a cube oriented relative to the rotation axis with all walls either parallel or
orthogonal to the mean rotation axis [3,4]. This orientation allows for a partial separation
of variables in the linear inviscid limit and the existence of intrinsic container modes with a
discrete but dense spectrum [5]. The intrinsic modes that are resonantly excited by very
small amplitude forcing are those with symmetries that are consistent with the spatio-
temporal symmetries of the forcing, which are different for libration and precession [3,4].
When viscosity is accounted for, the linear problem becomes ambiguous; if the forcing is
ignored, then the intrinsic modes are viscously damped, and solid-body rotation occurs.
On the other hand, if the forcing is taken into account, then beams are emitted from edges
and vertices, with a continuous spectrum in the inertial range. At forcing frequencies
corresponding to resonances with low-order intrinsic modes, both beams and the resonated
mode are present [6] and interact nonlinearly [3].

Here, we consider a non-axisymmetric container consisting of a cube with mean
rotation along an axis through its center and two opposite vertices, called the north and
south polar vertices. As with the orientation of the cube with walls orthogonal or parallel to
the mean rotation, both libration and precession drive response flows via a combination of
both viscous and pressure torques. In the present case, the primary responses are dominated
by shear layers emitted into the interior from some edges and vertices (which ones emit
depends on the forcing frequency), and in the context of linear inviscid theory, these
responses are independent of the nature of the forcing [7]. Furthermore, the obliqueness
between the wall normals and the rotation axis leads to the focusing of these shear layers
upon reflection [8], whereby the thickness of the shear layer decreases whilst its energy
and enstrophy densities increase. Following successive reflections, the shear layers tend
to converge to the edges and vertices of the cube to form so-called point attractors [7,9],
much as in the wedge and conical flows considered in [10,11]. Greenspan [10] noted that
there is no linear inviscid mechanism that allows the wavebeams that focus onto the point
attractor to return to the interior except total reflection from an intense singularity at the
focusing vertex. So what actually happens in a real flow subjected to either precession or
libration for small but finite Ekman and Rossby numbers? This is addressed here using
direct numerical simulations (DNSs) of the three-dimensional Navier–Stokes equations,
solved using a high-accuracy spectral code that is optimized for the cube geometry.

2. Governing Equations, the Numerics to Solve Them, and Their Symmetries
2.1. Governing Equations

A cube of side length L, filled with an incompressible fluid of kinematic viscosity
ν, rotates at a mean angular velocity Ω0 about an axis passing through its center and
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two diagonally opposite vertices. The system is non-dimensionalized using the length
scale L and time scale 1/Ω0, and is described in terms of a non-dimensional Cartesian
coordinate system x = (x, y, z) ∈ [−0.5, 0.5]3 that is fixed in the cube, with the origin at its
center. The non-dimensional mean rotation axis is

Ω0 = (1, 1, 1)/
√

3. (1)

The ratio of the rotation time, 1/Ω0, and the viscous time, L2/ν, produces the Ekman
number:

E =
ν

Ω0L2 . (2)

Two types of parametric forcing, libration and precession, are considered. Schematics of
the two set-ups are shown in Figure 1.

(a) Ω0 +Ωl

y

x
z

(b) Ωp

Ω0
y

x

z

ϑ

Figure 1. Schematics of (a) the librating cube and (b) the precessing cube.

For librational forcing, the mean rotation axis Ω0 is harmonically modulated by the
librational angular velocity vector in the same direction, given by

Ωl(t) = Ro cos(2ωt) Ω0, (3)

where 2ω is the libration frequency with a corresponding libration period τ = π/ω, the
Rossby number

Ro = δϑ Ωl/Ω0, (4)

is the libration forcing amplitude, and δϑ is the libration angular displacement.
For precessional forcing, the mean rotation axis Ω0 rotates with non-dimensional

angular velocity Ωp/Ω0 about another axis that is tilted by an angle ϑ. The non-dimensional
precession angular velocity can be expressed as

Ωp(t) = Po P Θ(t), (5)

where
Po = Ωp/Ω0 (6)

is the Poincaré number, and the matrix

P =




√
1/6 −

√
1/2

√
1/3√

1/6
√

1/2
√

1/3
−
√

2/3 0
√

1/3


 (7)

rotates the standard unit vectors in the x, y, and z directions of the rotating frame into
an orthogonal frame, consisting of the mean rotation axis Ω0 (the last column of P) and
two vectors orthogonal to Ω0, and

Θ(t) =




sin(ϑ) cos(t)
sin(ϑ) sin(t)

cos(ϑ)


. (8)
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While Ωl has variable magnitude but fixed direction Ω0, Ωp has fixed magnitude
|Po| but variable direction. The component Po cos(ϑ)Ω0 of Ωp parallel to Ω0 alters the
solid-body rotation of the cube. The component of Ωp orthogonal to Ω0 has modulus
|Po| sin(ϑ), providing a non-dimensional measure of the precessional forcing amplitude.

The non-dimensional Navier–Stokes equations in the cube reference frame are

∂u
∂t

+ (u · ∇)u + 2Ω × u +∇q − E∇2u = −dΩ

dt
× x, ∇ · u = 0 , (9)

with no-slip boundary conditions u = 0, where

Ω(t) =

{
Ω0 + Ωl(t) for libration,
Ω0 + Ωp(t) for precession.

(10)

In both cases, the centrifugal force Ω × (Ω × x) is a gradient field with potential that is
absorbed into the pressure q.

For sufficiently small forcing amplitudes, the response is a synchronous flow with a
velocity magnitude that is proportional to the forcing amplitude. It is then convenient to
rescale the velocity by a factor α that is commensurate with the forcing amplitude [12]. In
letting u = αv and q = αp, (9) becomes

∂v
∂t

+ α(v · ∇)v + 2Ω × v +∇p − E∇2v = f , ∇ · v = 0, (11)

with no-slip boundary conditions v = 0, and the forcing amplitude

α =

{
Ro for libration,
|Po| sin(ϑ) for precession,

(12)

and the Euler force

f =





2ω sin(2ωt)Ω0 × x for libration,

Po
|Po| P




sin(t)
− cos(t)

0


× x for precession,

(13)

is independent of α.
In order to compare libration and precession response flows, the forcing amplitudes

and frequencies need to be matched. For libration, the forcing amplitude and frequency
can be set independently by selecting values for Ro and ω. For precession, this is not
so straightforward. For given Ro and ω, we shall determine Po and ϑ by matching the
amplitudes, |Po| sin ϑ = Ro, and matching the ratio of the non-dimensional forcing angular
frequency to the non-dimensional mean angular velocity of the cube in the mean rotation
axis direction, 1/[1 + Po cos(ϑ)] = 2ω. This leads to

Po =
1 − 2ω

2ω

√
1 +

[
2ω Ro
1 − 2ω

]2
and ϑ = arctan

(
2ω Ro

|1 − 2ω|

)
. (14)

2.2. Numerics

The governing Equation (11) is solved using a spectral spatial discretization scheme
together with a third-order temporal scheme. At each time-step, a third-order backward
difference formula with a third-order extrapolation scheme (BDF3-EX3) is used to advance
the velocity components. The body forces and the viscous terms are treated implicitly,
while the nonlinear terms and the pressure gradient are treated explicitly, resulting in
an elliptic system of equations. The pressure is updated by solving a Poisson equation.
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The elliptic and Poisson systems of equations are discretized in space using Legendre
polynomials of degree ℓ in each of the three directions for the velocity and degree (ℓ− 2)
for the pressure. The Legendre polynomials are combined into base functions for the
velocity that enforce the no-slip boundary conditions, while the lower-degree polynomials
for the pressure guarantee the well-posedness of the resulting discrete problems. The details
of the numerical method are described in [13].

All the results to be presented are for a fixed Ekman number E = 10−5. This is small
enough to be in a fast-rotation regime dominated by inertial oscillations, and is typical
of currently accessible laboratory experiments. It would correspond to a cube of side
length L = 22 cm, filled with water at room temperature with a kinematic viscosity of
ν = 0.01 cm2/s, rotating at Ω0 = 2 rad/s. We consider three forcing half frequencies,
ω = 0.70, ω =

√
1/3, and ω = 0.24, that display qualitatively different response behaviors.

The spatial and temporal resolutions used depend on E, Ro, and ω. In keeping
E = 10−5, the polynomial degree used is ℓ = 100 for Ro < Roc ∼ 10−2, where Roc is the
critical Ro for instability, and ℓ = 150 for Ro > Roc, for the three values of ω considered.
The number of time steps per forcing period, Nt, also varies with ω. For ω = 0.24, Nt = 400
for Ro < Roc and Nt = 1600 for Ro > Roc, while for ω =

√
1/3 and ω = 0.70, Nt = 200 for

Ro < Roc and Nt = 800 for Ro > Roc.
To assess the spatio-temporal characteristics of the flows, we use the enstrophy density

ω2 = |∇× v|2 and, for global measures, the enstrophy and the kinetic energy

E(v) =
∫

V
ω2 dx and K = 0.5

∫

V
v2 dx. (15)

2.3. Symmetries

The librationally forced system (11) is invariant to a discrete rotation of angle 2π/3
about the rotation axis Ω0,

R0 : [v, p](x, t) 7→ [Jv, p](Jx, t), (16)

where

J =




0 0 1
1 0 0
0 1 0


, (17)

and a reflection through the origin,

C : [v, p](x, t) 7→ [−v, p](−x, t). (18)

The centrosymmetry C generates a cyclic group Z2 consisting of {I , C}, and the rotation
R0 generates a cyclic group Z3 consisting of {I ,R0,R2

0}, where I is the identity, and
C2 = R3

0 = I . Since CR0 = R0C, the symmetry group of the system is Z2 × Z3. As the
system is periodically forced with period τ, it is invariant to the time translation symmetry:

Tτ : [v, p](x, t) 7→ [v, p](x, t + τ). (19)

The precessionally forced system is invariant to C but not R0. Instead, it is invariant
to the spatio-temporal symmetry

Tτ/3R0 : [v, p](x, t) 7→ [Jv, p](Jx, t + τ/3), (20)

corresponding to the composition of R0 with a time shift of a third of a period. The symme-
try (20) of the Navier–Stokes system (11) results from the property of the rotation vector Ωp

Ωp(t + 2π/3) = PoPΘ(t + π/3) = PoPQΘ(t) = PoJPΘ(t) = JΩp(t) (21)
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with P given by (7) and

Q =



−1/2 −

√
3/2 0√

3/2 −1/2 0
0 0 1


. (22)

While J represents a rotation of angle 2π/3 around Ω0, Q represents a rotation of angle
2π/3 around (0, 0, 1), with J3 = Q3 = I, the identity matrix. The relation PQ = JP used
in (21) reflects the similarity between J and Q via the transition matrix P between the
orthonormal frame associated with the axis of rotation and that associated with the (x, y, z)
coordinate system.

3. Linear Responses to Librational and Precessional Forcings

In this section, we consider the primary responses for vanishingly small forcing
amplitudes α. Formally setting α = 0 in (11) results in the forced linear system

∂v
∂t

+ 2γ Ω0 × v +∇p − E∇2v = f , ∇ · v = 0, (23)

with

γ =

{
1 for libration,
1 + Po for precession.

(24)

For libration, setting α = 0 corresponds to setting Ro = 0, and for precession, this corre-
sponds to setting ϑ = 0. The boundary conditions remain no-slip, v = 0. The solutions
of this linear system are the superpositions of the solutions to the homogeneous system,
with f = 0, plus a particular solution accounting for f . This forced response is a syn-
chronous non-inertial wave for which the left-hand-side of (23) does not vanish.

The linear system (23) is solved numerically as an initial valued problem using the
same numerics, described in Section 2.2, used for the nonlinear system (11). However,
before presenting these results, it is instructive to first consider linear inviscid ray tracing.

3.1. Linear Inviscid Ray Tracing

Applying (∂t − E∇2)∇×∇× to (23) eliminates both the pressure gradient and the
(scaled) Euler force f , resulting in the homogeneous equation

(∂t − E∇2)2∇2v + 4γ2(Ω0 · ∇)2v = 0. (25)

In the idealized inviscid setting, with E = 0, non-trivial solutions of (25) include plane
wave solutions v = aeiφ + c.c, with c.c. denoting complex conjugate. Here, a ̸= 0, phase
φ = k · x − 2γσt, and wavevector k = |k|k̂, provided that the dispersion relation

σ = ±Ω0 · k̂ = cos(β) (26)

holds, where 0 < β < π/2 is the Euclidean angle between ±Ω0 and the wavevector k.
The dispersion relation (26) is independent of the factor γ and, hence, of the type of forcing.
Also, system (25), with E = 0, has additional symmetries compared to linear system (23)
forced by either libration or precession, particularly time-reversal symmetry t → −t, since
it does not have the viscous term or the Euler force term.

Not all plane wave solutions of (25) satisfy (23) with f = 0 and E = 0. For those that
do, the complex vector a and real wavevector k must also satisfy

σa + iΩ0 × a = p′k, a · k = 0, (27)

with p = 2σp′eiφ + c.c. Relations (27) lead to the constraint a = ±ia × k̂, i.e., that
the wave be circularly polarized, v = a′ sin(φ) + b′ cos(φ), with a′ = i(a − a∗) and
b′ = a + a∗ = ±a′ × k̂ representing the imaginary and real parts of 2a∗, respectively [14]
(compare with Appendix A). Without loss of generality, the direction a′ can be taken
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to be that of the wave group velocity that controls the propagation of energy,
∂σ/∂kT = ±[Ω0 − (Ω0 · k̂)k̂]/|k|, since both are orthogonal to the wavevector k. This
direction forms an angle (π/2 − β) with ±Ω0 and can be followed via ray tracing.

The Vertex and Edge Beam Analysis (VEBA) described in [7] is an ensemble of ray
tracings that follow a′, with the sites and directions of the emitted inertial rays informed by
geometric and viscous considerations. For small-amplitude libration or precession, viscous
interactions between the oscillatory boundary layers on adjoining walls lead to inertial
wavebeams being emitted into the cube from vertices and/or edges. In general, a vertex
may emit along a double cone of directions with its apex at the emission point forming
a conical sheet. However, a point on an edge may only emit in at most four directions
because of continuity requirements with beams emitted from neighboring points. Here,
the direction of emission is selected, as in [15], using a tangentiality condition with conical
sheets emitted from the endpoints of the edge, if any, rather than enforcing the time-reversal
symmetry of (23) with E = 0 and f = 0 pointwise, as was originally performed in [14]. This
results in slightly different sections, with the current approach better matching the DNS.
Which vertices and/or edges emit depends on the forcing frequency. For the harmonic
forcing f from (13), only those inertial waves that are resonated come into play, and σ = ω
in the phase φ of v and p.

For the present configuration, the inviscid linear theory shows that beams are emitted
from the polar vertices for 0 < ω <

√
2/3 and from the tropical vertices for

√
1/3 < ω < 1,

while beams are emitted from polar edges for 0 < ω <
√

1/3 and from tropical edges for√
1/3 < ω < 1. The ω-limits of these regimes correspond to

√
1/3, which is the cosine of

the angle between the rotation axis and the edges, and to
√

2/3, which is the cosine of the
angle between the rotation axis and the walls. Appendix A describes how the direction a′

of a beam emitted from a polar edge is determined in the regime ω <
√

1/3.
Following a sequence of wall reflections, the emitted beams focus onto tropical edges

or vertices for 0 < ω <
√

1/3 and onto polar edges or vertices for
√

1/3 < ω < 1 [4].
At exactly ω =

√
1/3, all beams emitted from edges are trapped in the walls [16]. In the

intermediate regime
√

1/3 < ω <
√

2/3, the poles each emit all but three beams into
the interior of the cube. At ω =

√
1/3, these beams critically reflect on the walls, with

themselves becoming trapped.
Figure 2 shows the intersections of wavebeams predicted via VEBA with the surface of

the cube viewed from the top, a meridional plane viewed from the side, and the equatorial
plane viewed from the top, for three representative values of ω: 0.70,

√
1/3, and 0.24.

The meridional view contains the rotation axis, pointing upward in the page, and the
north and south poles corresponding to the top and bottom vertices. Both the surface and
equatorial views have the rotation axis pointing out of the page, with the north pole in the
middle of the image. The color represents the enstrophy density of a circularly polarized
wave, which increases upon each reflection. The initial density is arbitrary and set to 10,
corresponding to a light blue color in both surface and interior colorbar scales. All beams
eventually focus toward tropical edges for ω <

√
1/3 and polar edges or vertices for

ω >
√

1/3, where the enstrophy density becomes large, corresponding to saturated red
locations in the views.

All rays and their reflections propagate along straight lines. The collection of rays from
edges form planar sheets, and those from vertices they form conic sheets. The intersection
of the conic sheets (and their reflections) with any plane are conic sections. In the meridional
and equatorial planes, the cross-sections of beams emitted from edges form straight lines,
while beams emanating from vertices form curves that are not straight, unless the viewing
plane contains both the emission point and the axis of rotation, as, for example, in the
meridional plane for ω = 0.24 and ω =

√
1/3. In such cases, it is easy to mistake the beams

emitted from the pole, which are entirely contained in the plane, at an angle (π/2− β) with
the axis of rotation determined by the dispersion relation (26) (with σ = ω), for the trace of
planar sheets emitted from polar edges, which are further away from the rotation axis.
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(a) surface (b) meridional (c) equatorial

ω
=
0
.7
0

ω
=
√ 1

/3
ω
=
0
.2
4

100 103 106

surface ω2

100 102 104

interior ω2

Figure 2. Intersections of wavebeams on (a) the cube surface (rotation axis pointing out of the page),
(b) in the meridional plane (rotation axis vertical in the page), and (c) in the equatorial plane (rotation
axis pointing out of the page), for ω as indicated, as determined using the vertex and edge beam
analysis VEBA in the E = α = 0 linear inviscid setting. The colors from blue to red indicate the
increase in the wavebeam enstrophy density due to the focusing on the successive wall reflections.
See [14] for illustrations of trajectories of selected beams from vertices and edges (albeit with a slightly
different direction of emission, as discussed in Section 3.1).

3.2. Viscous Linear Responses

We now return to the forced linear viscous system (23) for values of ω used to obtain
the VEBA results shown in Figure 2, for both libration and precession at E = 10−5. Figure 3
shows snapshots of the enstrophy density ω2 on the cube surface and in the meridional and
equatorial planes for the forced linear response flows. The flows are symmetric synchronous
limit cycles, but nevertheless, their spatio-temporal structures are far from trivial. Several
features are well captured by VEBA. These include the shear layers coming from the
equatorial region and focusing toward the poles for ω = 0.70, from the poles toward the
equatorial region for ω = 0.24, and ω2 being concentrated in the boundary layers for
ω =

√
1/3 for either type of forcing. Supplementary Video S1 animates these states over

one forcing period and reveals additional features that are not present in the VEBA results,
consisting of the oscillatory boundary layers, large-scale oscillations in the interior, and,
for ω = 0.24, bands of high ω2 propagating into the interior from the equatorial region.
The usual approximations used to study oscillatory boundary layers break down when
the system is subjected to rapid background rotation (E ≪ 1) and the forcing frequency
is less than twice the background rotation (ω < 1) [17]. The situation is even worse when
inertial wavebeams reflect on the boundaries, further invalidating the boundary layer
approximation that gradients tangential to the boundary are negligible.

For libration, the interior oscillations are akin to standing waves. For precession,
the oscillations are akin to prograde rotating waves; these are not rotating waves as their
spatial structure changes throughout the period, primarily due to the non-axisymmetric
geometry of the cube. For libration, all faces of the cube are the same at any instant in time
modulo a spatial rotation, whereas for precession, each of the faces are multiples of τ/6
apart in phase, rather than τ/3-associated with the spatio-temporal symmetry (20) due to
ω2 being a squared quantity. This is consistent with the internal oscillations; for libration,
the boundary layer waves are all in phase, whereas for precession, they are also multiples
of τ/6 apart in phase.
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Libration Precession

ω
=
0
.7
0

ω
=
√ 1/

3
ω
=
0
.2
4

100 103 106

surface ω2

100 102 104

interior ω2

Figure 3. Snapshot of ω2 on the surface and in the meridional and equatorial planes at E = 10−5 and
Ro = 0 for both libration and precession at ω as indicated. Supplementary Video S1 animates these
states over one forcing period.

For Ro = 0, the system is linear with zero mean flow:

v =
1
τ

∫ t∗+τ

t∗
v dt = 0, (28)

where t∗ is some time after the initial transients have damped out sufficiently. For
the E = 10−5 considered here, this time corresponds to a few hundred forcing periods,
for which the strobed kinetic energy varies by less than one part in a million. The enstrophy
density of the mean flow is also zero, |∇× v|2 = 0, but the time average of the enstro-
phy density, |∇× v|2, is not zero and is shown in Figure 4. For temporally harmonic v,
|∇× v|2 is the variance of vorticity and is largest where the oscillations in the enstrophy
density are largest.

Viscous effects include more than the viscous broadening of the wavebeams considered
in VEBA into smooth thick shear layers. The additional viscous effects are best illustrated
for ω = 0.24, where the focusing of wavebeams toward tropical edges stops short of
reaching these edges, contrary to VEBA predictions. This occurs due to viscous effects
acting on the wavevector k, of which its magnitude increases with each reflection due
to focusing. When k2 reaches a certain threshold (which may be expected to depend on
E), the focusing is viciously arrested. Moreover, Video S1 shows that additional waves
in the regions where focusing no longer takes place radiate in from the tropical edges.
These waves are seen in the equatorial plane emerging from the six “corners” as high-
ω2 bands. The meridional plane shows these bands to be essentially invariant in the
direction of the rotation axis, and their footprints are evident as the surface ω2 bands.
The structures of these bands are similar for both libration and precession, albeit more
localized for precession. For ω = 0.70, the arrested focusing toward the poles due to viscous
effects is blurry, and there are radiating structures propagating into the poles. The surface
ω2 shows a superposition of the footprints of where the wavebeams reflect on the walls,
a surface wave associated with the viscous oscillatory boundary layer, and, particularly
for the ω = 0.24 cases, the footprints of the bands radiating out from the equatorial
region. All of these—the interior oscillations, the boundary waves, and the axially invariant
bands—correspond to the particular solution to (23).
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Figure 4. Time-averaged enstrophy density, |∇× v|2, on the surface and in the meridional and
equatorial planes at E = 10−5 and Ro = 0 for both libration and precession at ω as indicated.

4. Primary Viscous Nonlinear Responses

Figure 5 shows the same quantities as Figure 3, but for Ro = 0.01. This value of
Ro is quite close to Roc, where the symmetric periodic states lose stability. The most
striking differences between the cases for the two Ro are for the responses at ω = 0.70
and ω =

√
1/3, which have additional structures aligned parallel to the rotation axis.

These are localized near the axis in the meridional plane, but their cross-sections in the
equatorial plane show them to have six spokes extending to the walls. Three of the spokes
emerge from the three north tropical edges and the other three from the three south
tropical edges. Apart from these features, the images at Ro = 0 and Ro = 0.01 are very
similar. Supplementary Video S2 also animates these states over one forcing period. It
shows that these new features remain stationary in space, even for the precession cases,
and only weakly interact with the internal oscillations and the emitted shear layers that
undergo focusing. The new features are due to the mean shear that comes about via the
quadratic nonlinearity in the Navier–Stokes equations at the larger Ro. The surface ω2 in
Figures 3 and 5 and in the animations of Videos S1 and S2 show virtually no difference
between Ro = 0 and Ro = 0.01, indicating that any mean ω2 on the surface is overwhelmed
by the large instantaneous ω2. Figure 6 shows the time-averaged enstrophy density,
|∇× v|2, for the nonlinear flows at Ro = 0.01. They are very similar to those for the linear
Ro = 0 flows shown in Figure 4, differing primarily in the aforementioned mean shears.
These nonlinear flows have v ̸= 0.

The mean shears come about due to nonlinear interactions at the walls where the shear
layers reflect and focus. In a related flow with a cuboid rapidly rotating in an orientation
with some walls oblique to the rotation axis and subjected to libration, Wu et al. [9] showed
that vortex stretching and tilting (inherently 3D nonlinear processes) were most active where
the shear layers of the inertial attractor reflect on the wall, leading to the local enhancement
of ω2 well beyond that due to the geometric focusing. Recent experiments in librationally
forced spherical shells and cylinders with sloping endwalls have observed similar nonlinear
interactions at reflection sites leading to mean shear flows [18–22]. Here, for ω = 0.24, these
reflections occur in the equatorial region, and since the mean shears are aligned parallel to the
rotation axis, their presence is localized to this region and not readily distinguishable from the
focusing shear layers. In contrast, for ω = 0.70, these reflections are at the north and south
polar regions, and so there is a strong mean shear localized along the rotation axis. Figure 7
shows the enstrophy density of the mean flows, |∇× v|2, illustrating the above discussion.
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Figure 5. Snapshot of ω2 on the surface and in the meridional and equatorial planes at E = 10−5

and Ro = 0.01 for both libration and precession at ω as indicated. Supplementary Video S2 animates
these states over one forcing period.
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Figure 6. Time-averaged enstrophy density, |∇× v|2, on the surface and in the meridional and
equatorial planes at E = 10−5 and Ro = 0.01 for both libration and precession at ω as indicated.

Figure 8 shows how the time-averaged enstrophy, E(v), and the enstrophy of the
mean flow, E(v), vary with Ro for both libration and precession at E = 10−5 and the three
values of ω considered. For Ro ≲ 10−2, E(v) is independent of Ro as v is independent
of Ro. In contrast, E(v) ∼ Ro2, which is indicative of the flow becoming increasingly
nonlinear with increasing Ro. The form of these behaviors is a result of the scaling and
non-dimensionalization of the velocity, where u = Ro v ∝ Ro and u = Ro v ∝ Ro2 with
v ∝ Ro. These follow from the scaled Euler force (13) being independent of the forcing
amplitude α ∼ Ro and being temporally harmonic with the vanishing mean and the
nonlinear advection term in (11) being proportional to α; these are general results for
periodically forced flows [23]. Generically, mean flows are generated via the nonlinear
advection term in the Navier–Stokes equations. When the oscillatory flows in rapidly-
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rotating containers are driven by low-amplitude harmonic forcing, such as libration or
precession at low Ro, the flow in the interior of the container is predominantly solid-body
rotation plus small amplitude inertial oscillations of an amplitude that is of order Ro. In the
interior, the Coriolis force constrains the mean flow to be axially invariant. In the viscous
oscillatory boundary layers of the container, the Coriolis force is not dominant and does
not constrain the mean flow to be axially invariant.

Libration Precession
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100 103 106

surface |∇× v|2

100 102 104

interior |∇× v|2

Figure 7. Enstrophy density of the mean flow, |∇× v|2, on the surface and in the meridional and
equatorial planes at E = 10−5 and Ro = 0.01 for both libration and precession at ω as indicated.
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Figure 8. Variation with Ro of the mean enstrophy, E(v), and the enstrophy of the mean flow, E(v),
for (a) libration and (b) precession at E = 10−5 and ω as indicated; the second panel in each part is a
zoom-in of the first panel.
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5. Instabilities to Broadband Dynamics

The flows become unstable when Ro is increased so that E(v) reaches a few percent of
E(v). The instabilities are symmetry-breaking and result in non-periodic flows. With the
various instabilities, additional frequencies are introduced. For Ro values just slightly
beyond the instability threshold, the flow has, in some of the cases, a quasi-periodic nature
before the frequency content becomes broadband as Ro is increased further. In other cases,
broadband frequency content is observed immediately following the onset of instability.

Figure 9 shows the power spectral density (PSD) determined from the time series
of the y-component of velocity at points (x, y, z) = (0.456,−0.456,−0.456) for ω = 0.24
(near an equatorial vertex), (−0.475, 0, 0) for ω =

√
1/3 (near the center of one wall),

and (−0.456,−0.456,−0.456) for ω = 0.70 (near the south polar vertex), for both libration
and precession. These points are within the viscous boundary layer and close to where the
velocity oscillations are of large amplitude for each ω. For each ω and forcing type (libration
or precession), two Ro values are chosen for the FFTs: (i) Ro = 0.01 corresponding to that
used in Figure 5 where the flows are very nonlinear, but still symmetric synchronous
limit cycles—the large powers in the superharmonics attest to the nonlinearity; and
(ii) Ro = 0.04 > Roc, with FFTs that have a broad spectrum of peaks—the most promi-
nent are at the forcing frequency 2ω and its superharmonics, as is true for the high-Ro
symmetric limit cycles, along with a few subharmonic peaks due to the modulations as-
sociated with symmetry-breaking. Choosing points remote from these locations results
in FFTs that consist of peaks at 2ω and its superharmonics until Ro is well beyond the
onset of symmetry-breaking. Figure 10 shows the spectra for Ro = 0.04, reproducing the
boundary spectra from Figure 9 (gray), together with the y-velocity spectra at an interior
point x = y = z = −0.25 (blue), and spectra of the global kinetic energy in the cube
(red). The interior spectra are dominated by the forcing frequency and its superharmonics;
the broadband seen in the boundary spectra is greatly diminished and the subharmonic
peaks from the boundary spectra are still evident, but weaker, corresponding to inertial
oscillations in the interior driven by the boundary instability. The global K spectra are
dominated by the boundary spectra, where the largest oscillations reside, as is evident from
Video S3. Notice, however, that for precession, the various peaks in the global K spectra
are 3× the frequencies of those for the local spectra; this is due to the spatio-temporal
symmetry (20).
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Figure 9. Power spectral densities (PSDs) from the time series of the y-component of velocity at
points (0.456,−0.456,−0.456) for ω = 0.24 (near an equatorial vertex), (−0.475, 0, 0) for ω =

√
1/3

(near the center of one wall), and (−0.456,−0.456,−0.456) for ω = 0.70 (near the south polar vertex),
for libration and precession at Ro as indicated.
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Figure 10. Power spectral densities (PSDs) at Ro = 0.04 from the time series of the y-component of ve-
locity at the points used in Figure 9 (gray), from the y-velocity at an interior point, x = y = z = −0.25
(blue), and from the global kinetic energy K (red).

The onset of instability appears to be due to a symmetry-breaking Neimark–Sacker
bifurcation, a secondary Hopf-like bifurcation from a limit cycle that introduces a new sec-
ond frequency ωNS [24]. Due to the quadratic nonlinearity in the Navier–Stokes equations,
the temporal spectrum of the bifurcating two-torus state typically has peaks at ω, ωNS and
all their linear combinations, with the peaks at low-order combinations typically being
largest. With further increases in Ro, the two-torus breaks up, typically introducing a broad
spectrum [25].

The presence of dominant peaks at 2ω, ωNS, and 2ω − ωNS in the boundary spectra at
Ro = 0.04 in Figure 9 is suggestive of a triadic resonance of inertial waves, but this is not the
case. Such a triadic resonance would require the wavenumbers of the three inertial waves
involved to also “add up”. The problem here is that we do not have these wavenumbers;
the shear layer thickness (“wavenumber”) changes upon each reflection. The instability is
of the oscillatory boundary layer interacting with the reflecting shear layers; at the points
of reflection, the nonlinearity is large, and vortex stretching and tilting is strongly localized.

Figure 11 shows snapshots of ω2 on the cube surface and in the meridional and
equatorial planes for Ro = 0.04. Supplementary Video S3 animates these symmetry-broken,
non-periodic states over four forcing periods. The spatio-temporal details of these states
are quite intricate, and the snapshots in the figure are inadequate for appreciating these; it
is strongly recommended to view the video alongside reading this text.

In all cases, the instabilities are localized in the cube boundary layers. For ω = 0.70,
this is near the poles; for ω = 0.24 it is near the equator; while for ω =

√
1/3, it is more

widespread over the entire faces of the cube, but more prominent along the polar edges.
These are all regions where the emitted shear layers tend to focus. With Ro = 0.04, the non-
linear vortex stretching and tilting mechanisms are very active in these regions, contributing
to the instability. The increased flow inertia at Ro = 0.04 manifests as a sloshing motion in
the boundary layers, the details of which differ between libration and precession, akin to
the difference between shaking and stirring. This leads to a lagged response between the
boundary layer flows, which directly respond to the libration or precession, and the interior
flow. The subharmonic peaks in the FFTs manifest as inertial oscillations in the interior.
In the meridional planes, weak ω2 bands are evident. These bands are roughly aligned
at small angles relative to the rotation axis for ω = 0.70, almost orthogonal to the rotation
axis for ω = 0.24, and in between for ω =

√
1/3. These are consistent with the dispersion

relation for linear inviscid inertial wavebeams (26). However, the equatorial plane shows
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these structures to be complicated and fully three-dimensional, manifesting swirling and
sloshing motions. These additional inertial oscillations also interact with the mean shears,
which break up into irregular columnar vortex structures principally aligned with the
rotation axis. These are very similar to the so-called vortex clusters associated with the
instability of inertial wave attractors observed in the experiments and simulations of
Boury et al. [26]. A theoretical treatment of inertial wave instabilities in fully three-
dimensional flows in finite containers is still lacking [27,28].
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Figure 11. Snapshot of ω2 on the surface and in the meridional and equatorial planes at E = 10−5

and Ro = 0.04 for both libration and precession at ω as indicated. Supplementary Video S3 animates
these states over four forcing periods.

6. Discussion and Conclusions

Direct comparisons between the flow responses in a rapidly rotating container to
libration and precession were investigated numerically. Such a comparison is not straight-
forward, as libration modulates the magnitude, and precession modulates the direction
of the rotation vector. These differences result in systems with different spatio-temporal
symmetries, which can generally be expected to result in distinct response flows. By match-
ing the amplitudes and frequencies of the two forcing protocols, we explored differences
in the resulting responses in a geometrically simple container, a cube, rotating around
its diagonal.

Inertial wavebeams are beams of energy, associated with circularly polarized wave
solutions of the linear, inviscid, unforced system obtained by setting α = 0, E = 0, and
f = 0 in (11). These beams can be traced using our VEBA protocol, an informed ray tracing
technique that takes into account points and the direction of emission from the vertices
and edges of the cube and follows the beams’ reflections. As such, VEBA is identical for
libration and precession. In the current configuration, with all walls oblique to the rotation
axis, all beams eventually focus upon successive reflections to edges or vertices, whereby
their wavevector magnitude and energy density increase. This focusing results in singular
energy distributions called attractors [29], which are typical in containers with at least one
oblique wall [30–32] or curved walls with positive net focusing [33,34].

In the linear but viscous setting, α = 0 and E > 0, the (scaled) Euler force f is needed
to sustain the oscillations and prevent the system from reverting to the static equilibrium
v = 0, very much like in a forced damped spring-mass system. Both E > 0 and f ̸= 0
contribute to the modifications of the polarized wave solutions obtained in the inviscid
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setting. While it is generally accepted that viscous regularization results in a broadening,
of order E1/3, of the shear layers, our simulations show that these shear layers are also
annihilated before reaching the inviscid attractor location, as viscous dissipation exceeds
Coriolis effects upon focusing due to the increase in the beams’ wavenumber. This arresting
of the focusing leaves room for the particular solution of the linear system due to the non-
trivial forcing to manifest itself, in the form of synchronous, non-inertial waves. Such waves
are clearly visible in Supplementary Video S1, where they are found along each tropical
edge at ω = 0.24, moving inward until eventually dissipating. They are quasi-geostrophic,
essentially invariant in the axial direction, akin to topographic Rossby waves. The six
waves originating from the six tropical edges are in phase for libration but 1/6 of a period
out of phase with each other for precession. Their footprints in the core are quasi-standing
waves for libration and quasi-rotating waves for precession.

For small forcing amplitudes α > 0, the dynamics are essentially the same as in
the linear α = 0 case, except for the appearance of a weak mean flow, which is more
prominent, especially for libration, in the core along the axis of rotation at the largest of
the forcing frequencies considered because of focusing near the poles. At the smallest
forcing frequency considered, the mean flow is localized in oscillatory boundary layers in
the equatorial region, away from the axis of rotation, and is completely dominated by the
focusing and/or the linear non-inertial waves.

With increasing α, the limit cycle response flows become increasingly nonlinear, pro-
gressively deviating from temporal harmonic behavior, with both temporal superharmonics
and a stronger mean flow developing as a result of inertial wave–wave interactions, in-
cluding at reflection sites due to vortex tilting and stretching. The nonlinear limit cycles
eventually lose stability with increasing α as the enstrophy of the mean flow grows to within
a few percent of the mean enstrophy. The corresponding critical Ro varies with the type
of forcing and the frequency. However, in all cases, the instability is symmetry-breaking
and introduces additional frequencies in the response flows. These are broadband with
subharmonic peaks. Recently, ref. [35] reported similar broadband behavior of instabilities
in experiments with interior inertial wave attractors, interpreting the subharmonic peaks
using the classic triadic resonance theory of inertial waves, with limited success. In our
case, the instabilities appear to develop at the edges of the boundary layers as a result
of interactions between the focusing inertial waves and the non-inertial boundary waves
generated by the Euler force, for which no theory currently exists. Extending the present
study to configurations that support both a wider “equatorial” region with shallow depth
where inertial waves are annihilated and interior attractors exist would be of interest.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/fluids9070151/s1, Video S1: movie01, Video S2: movie02, Video S3:
movie03.
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Appendix A. Emission Direction of an Edgebeam

In general, determining the direction of emission of an edgebeam, i.e., a wavebeam
emitted at a point along an edge, is complicated. For a straight edge bounded by two ver-
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tices A and B such that A emits a (half) cone of beams inside the cube while B emits none,
this direction is determined by the tangentiality of the planar edge vortex sheet formed
by all edgebeams emanating from the edge AB in the same direction, due to continuity
constraints, with the cone with apex A [15]. The direction of emission a′ along the cone is
parameterized by the azimuthal angle φ as in [15] (compare, eq4.5:)

a′ = ±
√

1 − ω2 Ω0 + ω(cos(φ) i + sin(φ) j), (A1)

where {i, j, Ω0} forms a positively oriented orthonormal basis so that points M = A + ta′

lie on the cone. The tangentiality condition is then equivalent to the collinearity (∼) of the
normal vectors to the planar edge sheet and the cone:

a′ × AB ∼ ∂M
∂t

× ∂M
∂φ

∼ a′ × (− sin(φ) i + cos(φ) j) = ωΩ0 ∓
√

1 − ω2(cos(φ) i + sin(φ) j), (A2)

i.e., equivalent to the orthogonality condition

AB · [ωΩ0 ∓
√

1 − ω2(cos(φ) i + sin(φ) j)] = 0, (A3)

which determines φ (mod π). In using (A1), condition (A3) can also be written as AB · a′ =
±AB · Ω0/

√
1 − ω2.

For ω <
√

1/3, A= (−0.5,−0.5,−0.5) (south pole), B= (−0.5, 0.5,−0.5) (tropical
vertex), i = (1, 1,−2)/

√
6, and j = Ω0 × i = (−1, 1, 0)/

√
2 (i, j, and Ω0 are the three

columns of P from (7)), condition (A3) with ∓ = − (corresponding to the positive cone
associated with ± = + in (A1)) yields

sin
(

φ +
π

6

)
=

1
2

cos(φ) +

√
3

2
sin(φ) =

ω√
2(1 − ω2)

. (A4)

Observe that (A4) admits two solutions φ, associated with supplementary angles φ + π/6,
provided that ω <

√
2/3, i.e., the edge is outside the cone. These two solutions correspond

to two directions â associated with the two planar edge sheets emitted from the edge. Note
that (A4) differs from the values obtained from the protocol used in Wu et al. [3], which
enforces the equality between components of â. For small ω, variations in φ only impact
(A1), slightly due to the presence of the factor ω in the component orthogonal to Ω0.
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