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Abstract: This study introduces a novel approach using 3D Physics-Informed Neural Networks
(PINNs) for simulating blood flow in coronary arteries, integrating deep learning with fundamental
physics principles. By merging physics-driven models with clinical datasets, our methodology accu-
rately predicts fractional flow reserve (FFR), addressing challenges in noninvasive measurements.
Validation against CFD simulations and invasive FFR methods demonstrates the model’s accuracy
and efficiency. The mean value error compared to invasive FFR was approximately 1.2% for CT209,
2.3% for CHN13, and 2.8% for artery CHN03. Compared to traditional 3D methods that struggle
with boundary conditions, our 3D PINN approach provides a flexible, efficient, and physiologically
sound solution. These results suggest that the 3D PINN approach yields reasonably accurate out-
comes, positioning it as a reliable tool for diagnosing coronary artery conditions and advancing
cardiovascular simulations.

Keywords: FFR; blood flow simulation; coronal stenosis; coronary computed tomography angiography;
3D PINN

1. Introduction

Coronary artery disease (CAD) remains a significant global health challenge [1], em-
phasizing the need for accurate computational models to understand its underlying patho-
physiology and devise effective interventions. Computational fluid dynamics (CFD) simu-
lations play a crucial role in elucidating blood flow behavior in coronary arteries, aiding
in diagnosis and treatment planning. However, traditional CFD approaches are often
computationally intensive, limiting their clinical applicability. Recent advancements in
deep learning, particularly physics-informed neural networks (PINNs), offer promising
opportunities to expedite and enhance coronary artery flow modeling. In the next work,
a review of the relevant literature will synthesize the recent literature focusing on the
application of 3D PINN simulations in coronary artery trees, covering methodologies,
applications, and future directions.

The 3D PINN method offers a novel, non-invasive approach for stenosis diagnosis,
bypassing the limitations of invasive techniques such as coronary angiography. It minimizes
patient invasiveness, reduces costs, and enhances safety by lowering procedural risks.

Recent studies have highlighted the potential of PINNs to transform computational
cardiovascular medicine and investigated the integration of deep learning techniques,
specifically PINNs, with traditional CFD and fluid–structure interaction (FSI) methods
to accelerate coronary artery flow simulations. Taebi (2022) provided a comprehensive
review of deep learning applications in computational hemodynamics, highlighting the
potential of PINNs to reduce the computational burden of patient-specific simulations [2].
Moser et al. (2023) compared various neural network architectures for physics-informed
flow modeling, emphasizing the efficacy of more sophisticated models such as the deep
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Galerkin method [3]. Arzani et al. (2021) demonstrated the effectiveness of PINNs in
quantifying near-wall blood flow from sparse data, addressing challenges encountered
in patient-specific CFD models [4]. These studies underscore the versatility of PINNs in
integrating physiological principles with data-driven approaches to improve coronary
artery flow predictions.

In recent years, data-driven approaches have emerged as powerful tools for enhancing
our understanding and management of CAD. This section describes the application of
data-driven methods, such as machine learning and artificial intelligence, in CAD research
and clinical practice.

Machine learning techniques have gained popularity in CAD risk prediction and
diagnosis. Researchers have harnessed the vast amount of patient data available to develop
predictive models. These models consider a multitude of factors, such as medical history,
genetic information, and lifestyle, to assess an individual’s CAD risk.

Two noteworthy studies by Abdar et al. (2019) and J. I. Z. Chen and P (2021) presented
innovative approaches for predicting CAD using machine learning methods. The first
study proposed a pooled area curve (PUC) algorithm for early CAD prediction, focusing
on identifying variations in medical imaging to aid in preventive measures. In contrast,
the second study describes an optimized machine learning methodology that leverages
genetic algorithms and particle swarm optimization to achieve high accuracy in CAD
detection. Both studies have contributed valuable insights to improving CAD diagnosis
and prognosis [5,6].

Several studies have investigated the effectiveness of finite element analysis (FEA)
and physics-informed neural networks (PINNs) in handling partial differential equations
(PDEs) across various domains, particularly in fluid flow scenarios. Recent research has
explored the fusion of AI, machine learning (ML), and computational fluid dynamics
(CFD) to better understand hemodynamics and biomechanics in cardiovascular diseases,
emphasizing the importance of precise prediction and diagnosis.

X. Li et al. (2022) underscored the collaboration between artificial intelligence (AI)
and biomechanics modeling in predicting cardiovascular diseases (CVDs) [7]. Their study
highlighted machine learning’s role in directly forecasting CVD through risk factors and
medical imaging findings, as well as its utility in hemodynamics with vascular geometries.
Zhang et al. (2023) focused on the application of PINNs for 4D hemodynamic prediction,
demonstrating their effectiveness in generating flow field datasets for personalized models
and enabling accurate space–time behavior forecasts [8]. Arzani et al. (2022) discussed
the challenges and opportunities of using ML for cardiovascular biomechanics modeling,
emphasizing the strategic integration of ML to augment traditional physics-based mod-
elling [9]. Moradi et al. (2023) emphasized the role of machine learning in enhancing
computational fluid dynamics, blood flow imaging, and wearable sensing technologies, of-
fering promising solutions to address computational cost and data analysis constraints [10].

Recent studies have also explored the specific application of ML and PINN in the
context of coronary artery disease. Farajtabar et al. (2023) introduced a novel deep neu-
ral network framework for predicting blood flow behavior in patient-specific coronary
arteries with abnormalities, achieving high accuracy in pressure and velocity magnitude
predictions [11]. Taebi (2022) investigated the integration of deep learning with CFD,
particularly in solving hemodynamic problems in the aorta and cerebral arteries, antici-
pating a shift in computational medical decisions [2]. Additionally, Sarabian et al. (2022)
developed a physics-informed deep learning framework for brain hemodynamic predic-
tions, showing its potential for accurately estimating cerebral hemodynamic variables [12].
Isaev et al. (2024) utilized PINNs to estimate blood flow parameters in post-Fontan four-
vessel junctions, demonstrating the applicability of PINNs in complex cardiovascular
anatomies [13].

Several studies have underscored the importance of fluid–structure interaction (FSI)
analysis in comprehending hemodynamics in specific arteries. Lee et al. (2012) conducted a
thorough numerical investigation of carotid artery hemodynamics using FSI, highlighting



Fluids 2024, 9, 153 3 of 32

the significant influence of geometric factors and flow conditions on carotid artery hemody-
namic characteristics. They extended this analysis to examine a model for atherosclerotic
carotid artery bifurcation, identifying key stress factors contributing to artery wall dissec-
tion [14]. Nolte and Bertoglio (2022) provided a comprehensive review of inverse problems
in blood flow modeling, focusing on formulating and numerically solving inverse prob-
lems using clinical data, primarily medical images, for personalized spatially distributed
models of the vasculature [15]. Additionally, Ma (2023) proposed innovative strategies
combining magnetic resonance imaging (MRI), CFD, and PINN for the quantitative study
of hemodynamics, emphasizing their potential in precision medicine and personalized
medical therapy [16].

Aligned with these findings, Du et al. (2023) introduced a novel method for pressure
estimation based on physics-informed neural networks, offering an effective approach for
predicting intravascular pressure in aortic arch models, with implications for diagnosing
cardiovascular diseases [17]. In the study by Alzhanov et al. (2023), a novel physiologi-
cally based algorithm (PBA) was developed for computing fractional flow reserve (FFR)
in coronary artery trees (CATs) using computational fluid dynamics (CFD). The PBA ex-
tends Murray’s law and incorporates additional inlet conditions, prescribed iteratively.
Implemented in OpenFOAM v1912, this algorithm was tested and validated using 3D
models of CATs created from CT scans and computational meshes. The validation involved
comparing the PBA results with invasive coronary angiographic (ICA) data [18].

As we delve deeper into the realm of hybrid physics/data-driven and multiscale/
multiphysics methods for CAD research, it is crucial to acknowledge the challenges that
researchers face and chart a course for future advancements. This section discusses the
prominent challenges and outlines potential directions for CAD simulation research.

In summary, the reviewed literature underscores the growing integration of AI, ML,
CFD, and FSI methods in cardiovascular disease research, and particularly in the devel-
opment of hybrid physics/data-driven and multiscale/multiphysics simulation methods
for patient-specific analysis and diagnosis of coronary artery disease. These integrated
approaches demonstrate promising potential in improving the accuracy and efficiency of
cardiovascular disease prediction and treatment, potentially transforming cardiovascular
biomechanics research and clinical practice.

Three-dimensional Physics-Informed Neural Networks (PINNs) differ from their 2D
and 1D counterparts in their ability to model complex three-dimensional (3D) physical
systems, such as flow in arteries, aerodynamics around complex geometries, or heat transfer
in intricate 3D structures. While 2D PINNs are limited to two-dimensional systems and
1D PINNs to one-dimensional systems, 3D PINNs extend the capability to capture spatial
variations and boundary interactions in three dimensions, offering more accurate and
detailed simulations of real-world phenomena with higher complexity and fidelity.

The main objective of this study is to develop and validate a novel, non-invasive
approach for diagnosing coronary artery stenosis using 3D Physics-Informed Neural Net-
works (PINNs). This method aims to overcome the limitations of invasive techniques
such as coronary angiography by minimizing patient invasiveness, reducing costs, and
enhancing safety by lowering procedural risks.

Our methodology integrates 3D PINNs without providing customized outflow bound-
ary conditions, ensuring precise diagnostic accuracy without the need for extensive em-
pirical data. By incorporating synthetic data, our approach closely aligns with real-world
physiological phenomena. The 3D PINN simulations are designed to accelerate and refine
coronary artery flow modeling, offering valuable insights into hemodynamic and disease
mechanisms. The study adheres to ethical standards with Institutional Review Board
(IREC) approval, ensuring patient confidentiality and ethical compliance.

2. Mathematical Formulations and Numerical Methods

Traditional Computational Fluid Dynamics (CFD) methods, such as the finite element
method (FEM), finite volume method (FVM), and finite difference method (FDM), are used
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to solve Navier–Stokes equations by discretizing the computational domain and iteratively
solving the equations. However, applying these methods to arterial blood flow presents
significant challenges due to complex geometries, dynamic and nonlinear boundary con-
ditions, and high computational costs. The intricate branching of arterial networks, the
pulsatile nature of blood flow, and the elastic properties of arterial walls make accurate
discretization and boundary condition application difficult. Additionally, traditional CFD
methods require substantial computational resources and are highly sensitive to initial
and boundary conditions, leading to potential errors. These challenges highlight the need
for innovative approaches like the 3D Physics-Informed Neural Network (PINN) method,
which integrates deep learning with fundamental physics principles for more efficient and
accurate simulations.

2.1. Governing Equations for Hemodynamic Flow

The dynamic behavior of a fluid is generally described by the Navier–Stokes and
continuity equations.

Assumptions:
Flow Type: Unsteady flow.
Compressibility: Incompressible flow.
Fluid Nature: Newtonian fluid.
Fully developed laminar flow.
Flow in a patient-specific artery.
Physical Properties: constant physical properties of the fluid viscosity of 0.0035 Ns/m2

and a density of 1056 kg/m3.

2.1.1. Continuity Equation

For incompressible flow, the continuity equation is expressed as

∇·u = 0 (1)

where u is the velocity vector.

2.1.2. Equation of Motion (Navier–Stokes Equation)

The Navier–Stokes equation for incompressible, Newtonian fluid flow is given by

ρ

[
du
dt

+ (u·∇)u
]
− µ∇2u +∇p + f = 0, (2)

where the definitions are as follows:

u is the velocity vector;
t is time;
ρ is the fluid density (constant);
p is the pressure;
ν is the kinematic viscosity (constant);
f represents body forces (e.g., gravity).

2.1.3. Reynolds Number in Artery Flow

The Reynolds number is a crucial dimensionless parameter in characterizing blood
flow in arteries. For laminar flow in arteries, it can be expressed as:

Re =
ρuavgD

u
(3)

where the definitions are as follows:

ρ is the density of blood;
uavg is the average flow velocity derived from the Hagen–Poiseuille equation;
D is the diameter of the artery;
µ is the dynamic viscosity of blood.
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By evaluating the Reynolds number, one can predict the flow regime and ensure that
the assumptions of laminar flow are valid.

2.1.4. Significance of the Reynolds Number

For laminar flow, Re < 2000 (typically less than 1000 in small arteries due to their
smaller diameter and slower flow rate).

For transitional flow, 2000 ≤ Re ≤ 4000.
For turbulent flow, Re > 4000.
In arteries, because the Reynolds number often remains below the critical threshold

(2000), the flow is typically laminar under normal physiological conditions. However, in
certain pathological conditions or in larger arteries with higher flow rates, the Reynolds
number can approach or exceed the critical value, leading to turbulence.

2.2. Physics-Informed Neural Networks

Physics-informed neural networks, commonly known as PINNs, offer a novel ap-
proach, leveraging recent advancements in deep learning to infer solutions and parameters.
The concept of PINNs was proposed by Raissi et al. (2019), wherein the partial differential
equation (PDE) governing the physical system is integrated into the loss function of a
neural network [19,20]. This inclusion of an additional constraint results in a solution that
progressively converges to one consistent with the fundamental laws of physics. PINNs
have the capability to directly produce the solution of a physical system based solely on
the underlying PDE, along with initial and boundary conditions, eliminating the necessity
for supplementary data such as measurement data. In essence, a physical system can be
characterized by this set of equations.

N [u] = g(x), x ∈ Ω, (4)

B[u] = g(x), x ∈ ∂Ω, (5)

In this context, N [·] represents a nonlinear differential operator acting on the solution
u(x), where Ω signifies the geometry and B [·] characterizes the boundary conditions of the
geometry on the boundary ∂Ω. This paper focuses on transient systems, with the need for
initial conditions. Following the approach introduced by Raissi et al., 2019, we approximate
the solution u(x) using a deep neural network denoted as unet (x; θ), where θ represents the
trainable parameters (i.e., weights and biases) [20].

In a standard fully connected architecture, neurons in adjacent layers are connected,
whereas neurons inside a single layer are not linked. The network output unet(x, θ) of a
neural network (NN) with n layers takes the following form.

unet(x; θ) = Wn{ϕn−1 ◦ ϕn−2 ◦ . . . ◦ ϕ1}(x) + bn, (6)

ϕi(xi) = σ(Wixi + bi), (7)

where ϕi is the i-th layer. Wi and bi are the weights and biases of the i-th layer, x is the
network’s input, and σ are the activation functions used throughout this paper. The θ
represents the set of trainable parameters = {W i, bi}n

i=1.

2.3. Loss Function: Accounting for All Constraints

In the preceding sections, we outlined the process of formulating the separate compo-
nents of the loss function, encompassing measurements, physical constraints, and continu-
ity which the model needs to adhere to. In this section, we will elucidate how to integrate
these individual components to establish the comprehensive structure of the loss function.
We will also provide descriptive examples to interpret the procedure, which was obtained
from Raissi et al. (2019) [20].

The overall loss function comprises multiple components: (a) LPDE, a loss term
derived from the residuals of the PDE; (b) LBC, a loss term determined by the boundary
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conditions; and (c) Ldata, a loss term calculated based on potentially available sparse
measurement data.

L = ωPDE LPDE + ωBC LBC + ωdata Ldata (8)

LPDE =
1

NPDE

NPDE

∑
i=1

(N [u]− g(x))2 (9)

LBC =
1

NBC

NBC

∑
j=1

(B[u]− g(x))2 (10)

Ldata =
1

Ndata

Ndata

∑
k=1

(u(xk)− uk)

2

(11)

Equation (9) represents the mean squared residuals of the PDE assessed at NPDE
randomly chosen points xi within the geometric space. Similarly, Equation (10) assesses
the boundary loss by considering randomly selected points xj along the boundary of the
geometry. In Equation (11), the Ndata points xk denote the locations where the solution u
may be available or measured. The data loss term in Equation (8) is enclosed in brackets,
since it could incorporate available measurement data into the PINN training process,
although it was utilized in this study. The weighting parameters (ωPDE, ωBC, ωdata) regulate
the significance of the loss terms. The objective of PINN training is to determine the optimal
set of network parameters q using various optimization algorithms (e.g., Adam by [21]) to
minimize the loss function L.

3. Model Setup and Boundary Conditions

While the literature on physics-informed neural networks (PINN) presents a variety of
network architectures, there is a prevailing tendency toward larger networks [2]. The prob-
lem solution is parameterized through three distinct neural networks, each dedicated to a
specific residual boundary condition coronary artery tree. Given the intricacies of our 3D
flow simulations, we decided to adopt a network structure consisting of 10 layers, each com-
prising 256 neurons, a configuration inspired by prior PINN studies on fluid dynamics [22].
To ensure consistency, we maintained the same network size, activation functions (swish
with parameter b = 1) [23], exponentially decaying learning rates (initialized at 0.0001 with
a decay rate of 0.97 over 10,000 steps), and Adam and L-BFGS optimizers across all PINN
architectures utilized in this research. Additionally, equal weighting for the loss terms in
Equation (8) was applied for uniformity in comparison. This architectural configuration has
the capacity to effectively capture intricate features inherent in propagating waveforms.

The PINN solver used a total of 1 × 105 randomly sampled spatial points per epoch
during the training process. A batch size of 10,000 was used, i.e., 1 × 104 points were
employed in each training iteration.

In this study, two types of PINN simulations were conducted: one with training
and one without training data. The main boundary conditions for each are presented in
Tables 1 and 2. The key differences between these simulations lie not only in the training
data but also in the boundary conditions. The PINN with training data uses both pulsatile
velocity and pressure with no outlet conditions, while the PINN without training data
uses only the average static pressure from Table 3 with zero pressure outlet conditions.
The training data for the first case were derived from the transient results in CFD PBA
methodology [18]. Additionally, in the first case, each of the three arteries was trained and
run separately, whereas in the second case, the model was trained only based on physics of
the Navier–Stokes equation on the CHN13 model, enabling it to generate results for other
arteries without additional training for other geometries separately.
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Table 1. Boundary conditions used in the PINN with training data.

Patch Name Boundary Condition

Inlet Pulsatile inlet velocity and pressure

Outlet No outlet

Wall No-slip: (u, v, w) = 0

Interior Navier–Stokes residual

Table 2. Boundary conditions used in the PINN without training data.

Patch Name Boundary Condition

Inlet Static averaged inlet pressure

Outlet p = 0

Wall No-slip: (u, v, w) = 0

Interior Navier–Stokes residual

Table 3. Experimentally obtained input parameters for simulation of CHN13.

Parameter Value

Experimental inlet pressure Pexp 90.61 mm Hg (12,870.12 Pa)
Experimental inlet flow rate Qexp 7.17551 cm3/s

In our CFD model of arterial blood flow, the following boundary conditions are
employed: a pulsatile inlet velocity and pressure to represent the time-varying nature of
blood flow driven by the cardiac cycle, no specified outlet condition assuming a sufficiently
large computational domain, and a no-slip condition at the arterial walls reflecting the zero
velocity of blood at the wall ((u) = 0). Additionally, a Navier–Stokes residual boundary
condition is applied at internal boundaries or interfaces within the computational domain
to manage and minimize the residuals of the Navier–Stokes equations, stabilizing the
numerical solution and ensuring continuity and momentum balance. This approach is
crucial for achieving an accurate and stable representation of the fluid dynamics within the
artery. The boundary conditions are shown in Tables 1 and 2.

All calculations (PINN training) were performed on a workstation with a Xeon(R) Gold
5220, NVIDIA Tesla T4, and 64 GB of RAM (NVIDIA, Santa Clara, CA, USA). Schematic
illustration of the proposed algorithm are shown in Figure 1.

Figure 1. The diagram delineates the distinct components of the loss function. The blue box signifies
the portion related to residual losses, the green box corresponds to boundary losses, and the red box
represents measurement loss. The amalgamation of these components constitutes the comprehensive
loss function, where the tuning of neural network parameters is achieved through minimization.
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The geometries and outlets of CT209, CHN13, and CHN03 are presented in
Figures 2–4, respectively.
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The transient inlet values are shown in Figure 5.
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For this investigation, uniform fluid properties and blood models were employed,
featuring a Newtonian dynamic viscosity of 0.0035 Ns/m2 and a density of 1056 kg/m3 [24].
The simulations were conducted with velocity/pressure inlets as boundary conditions,
defining the blood flow as laminar fluid flow. The inlet data for each artery specified the
consistent use of three cycles in all the simulations.

In Figure 5, the pulsatile velocity vector v = [u(x), v(x), w(x)] represents the velocity
magnitude, while p = p(x) denotes the pressure field. The inflow was set to be perpendicular
to the inlet plane, with boundary conditions including a no-slip condition on the geometry
walls (u, v, w = 0) and no pressure condition at the outlet. The blood was modeled as a
laminar fluid, dependent on the geometry.

The FFR is computed using a formula as previously carried out in the CFD PBA
method [18] (12).

FFR =
min

(
Pss

1 , Pss
2 , . . . Pss

n
)

Pexp
(12)

4. Results and Discussion
4.1. Three-Dimensional Artery Tree Validation with Training Data

The proposed methodology will be tested in a scenario where we consider two inlet
velocities and pressures without applying outlet boundary conditions. In this scenario, we
examine prototypes of arterial networks depicted in Figures 2–4. The key innovation lies in
the fact that we use training data generated from the CFD PBA method [18] and without
outlet boundary conditions, and the model will be trained based on both physics equations
using DeepXDE (https://deepxde.readthedocs.io/en/latest/) library and training data,
code added in Appendix A. This software can solve forward problems given initial and
boundary conditions, and supports complex-geometry domains through the technique
of constructing solid geometry. The authors noted from their experience that for smooth
partial differential equation (PDE) solutions, L-BFGS tends to converge in fewer iterations
than does Adam. This is attributed to L-BFGS’s utilization of second-order derivatives of
the loss function, while Adam relies solely on first-order derivatives [25].

Additionally, a comprehensive systematic study will be conducted to assess the ac-
curacy and robustness of the proposed method. The implementation of the proposed
algorithms utilizes TensorFlow v1.10.

Figure 6 illustrates the 3D PINN residual history for each artery while the neural
network is running. In all three scenarios, the residual values surpassed 10−4 and were
within the range of 10−4 to 10−6. This suggests that all three cases exhibit satisfactory
convergence, indicating accurate calculations by the code.

https://deepxde.readthedocs.io/en/latest/
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Figure 6. The 3D PINN residual history for each artery.

4.2. Fractional Flow Reserve (FFR)

Figure 7 depicts the 3D PINN model of the CT209 coronary artery, where FFR valida-
tion is conducted at both the systolic and diastolic phases of the cardiac cycle. In Figure 7c,d,
FFR values ranging between 0.9 and 0.7 are observed at the probe point, aligning with
averaged invasive data for validation. This indicates an increase in the FFR to 0.9 during
the systolic phase at higher pressure, followed by a decrease to 0.7 during the diastolic
phase. The average FFR value of 0.77.
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Figure 8 showcases the 3D PINN model of the CHN13 coronary artery, where FFR
validation is performed at both the systolic and diastolic phases of the cardiac cycle. In
Figure 8c,d, FFRs ranging between 0.84 and 0.6 are observed at the probe point, which is
consistent with the average invasive data used for validation. This indicates an increase in
the FFR to 0.84 during the systolic phase at higher pressure, followed by a decrease to 0.6
during the diastolic phase. The average FFR value of 0.67.
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Figure 9 presents the 3D PINN model of the CHN03 coronary artery, validating the
FFR at both the systolic and diastolic phases of the cardiac cycle. In Figure 9c,d, FFRs
ranging between 1.1 and 0.8 are observed at the probe point, which is consistent with
the average invasive data used for validation. This indicates an increase in the FFR to
1.1 during the systolic phase at higher pressure, followed by a decrease to 0.8 during the
diastolic phase. The average FFR value of 0.89.

Each scenario depicted in Figure 10 exhibited a pulsatile FFR, with the resulting mean
values closely compared to the invasive values, as shown in Table 4 for all three cases.
The mean value error compared to invasive FFR was approximately 1.2% for CT209, 2.3%
for CHN13, and 2.8% for artery CHN03. Notably, the greatest discrepancy was noted for
artery CHN03 at 2.8%, consistent with errors observed in prior PBA [18], indicating its
acceptability within this context. Hence, it can be inferred that the 3D Physics-Informed
Neural Network (PINN) approach yielded reasonably accurate outcomes.
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Table 4. The invasive FFRs values.

Model Invasive FFR

CT209 0.76

CHN03 0.86

CHN13 0.68

4.3. Three-Dimensional Artery Tree Validation without Training Data

The proposed methodology will be tested in a scenario where we consider the average
inlet pressure while applying outlet boundary conditions of zero pressure. In this scenario,
we examine prototypes of arterial networks depicted in Figures 2–4. The key innovation
lies in the fact that we do not use training data and predict the CHN03 and CT209 models
based only on the training CHN13 case; therefore, by training only one model, we want
to predict other models only by importing their coordinate points as an input value.
The model will be trained based only on physics equations using the DeepXDE library.
Additionally, a comprehensive systematic study will be conducted to assess the accuracy
and robustness of the proposed method. The implementation of the proposed algorithms
utilizes TensorFlow v1.10.

The 3D PINN residual history for the CHN13 artery revealed that in the current
scenario, the residual values reached 10−5. This suggests that the CHN13 case exhibits
satisfactory convergence, indicating accurate calculations by the code.

4.4. Fractional Flow Reserve (FFR)

Figure 11a illustrates the 3D PINN model for the CT209 coronary artery, showing
FFR validation at averaged phases of the cardiac cycle. The FFR at the probe point is
approximately 0.9, which does not match the average invasive value of 0.76, indicating an
18% error in the FFR.
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Figure 11b displays the 3D PINN model for the CHN13 coronary artery, with FFR
validation conducted at mean pressure phases of the cardiac cycle. The observed FFR value
at the probe point is 0.88, which does not align with the average invasive value of 0.68,
resulting in a 29% error in the FFR.

Figure 11c shows the 3D PINN model for the CHN03 coronary artery, with FFR
validation performed at mean pressure phases of the cardiac cycle. The FFR value at the
probe point was 0.88, closely matching the average invasive value of 0.86, indicating a 2.3%
error in the FFR.

The artery used for training exhibited the largest error compared to other models that
were not trained. This indicates that without training data, the PINN cannot accurately
capture the unique characteristics of an artery, resulting in incorrect blood flow modeling.
A PINN without training data tends to generate a pattern with higher pressure at the inlet
and lower pressure at the outlets, with pressure uniformly distributed from upstream to
downstream. Although the CHN03 coronary artery showed very accurate results, this is
likely coincidental.

Despite these errors, there is potential for developing a universal point cloud model
that can predict blood flow in various arteries without additional setup or training for each
specific artery. This study aimed to demonstrate the feasibility of training a model once
and using it to predict blood flow in other artery models with the same scale but different
configurations, suggesting promising directions for future research.

Advances in physics-informed machine learning represent a pivotal step toward har-
monizing theoretical frameworks with empirical data, a paradigm prominently exemplified
in our endeavor utilizing 3D PINN for cardiovascular fluid dynamics simulations. Through
the seamless fusion of physics-driven models with clinical datasets, we engineered deep
neural networks capable of forecasting intricate hemodynamic parameters pivotal for CFD
simulations, notably fractional flow reserve (FFR), whose noninvasive measurement poses
a significant challenge. The momentum behind our adoption of 3D PINNs for CFD lies in
extending the groundwork laid by [2,26], thereby enriching the approach to initializing
real patient data. We acknowledge the inherent complexities in modeling intricate cardio-
vascular systems, particularly in capturing the nuanced dynamics of outflow boundary
conditions. Our methodology capitalizes on the fundamental principles governing fluid
flow in compliant arteries and supplements them with scattered CFD simulation data, thus
bridging the chasm between theoretical constructs and clinical application.

Conventional 3D methodologies encounter barriers in accurately capturing the out-
flow boundary conditions in cardiovascular models, particularly when a cardiac network
entails a variety of capillary branches interfacing with downstream microcirculation. The
small diameters of these branches render experimental measurements of outflow bor-
der conditions more or less unfeasible. Consequently, conventional techniques resort to
Wind–Kessel-type boundary conditions, predicated on lumped parameter models (LPMs)
or lumped parameter network models (LPNMs), to approximate the intricate dynamic
interplay between a network and its downstream microvasculature [27].

However, these conventional approaches accurately address the computing resis-
tances, capacitances, and empirical correlations required for the circuit analogy theory
underpinning LPMs and LPNMs. Moreover, interfacing the generated ordinary differential
equations (ODEs) from these approaches with computational fluid dynamics (CFD) solvers
often produces ambiguous boundary conditions, resulting in slow convergence or even
numerical solution divergence.

In contrast, our approach utilizes a 3D PINN, providing a data-driven alternative to
conventional methods that avoids the need for precise measurements and cumbersome pa-
rameter estimations. By integrating physics-driven models with CFD simulation data, our
methodology provides a more flexible and physiologically grounded avenue for simulating
blood flow in intricate cardiovascular systems.

Table 5 presents a comparison of different simulation methods in terms of their com-
putational time and invasive FFR error percentage among all given patient arteries.
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• CFD PBA: Utilizes computational fluid dynamics with a physiologically based algo-
rithm. Requires significant computational resources and time, particularly for transient
simulations, but achieves relatively low error rates.

• 3D PINN: Utilizes a three-dimensional physics-informed neural network. Training
times are longer but still faster than CFD PBA, and prediction times are very short.
Similar to 1D PINN, it depends on training data from CFD simulations and does not
require outlet conditions.

Table 5. Comparative evaluation of computational efficiency and invasive FFR error analysis across
various methods.

Method Time
Error, %

CT209 CHN13 CHN03

CFD PBA steady-state CPU 5 h 0.26 0.44 2.33

CFD PBA transient CPU 30 h 5.26 1.47 0.02

3D PINN with training data CPU 24 h

1.2 2.3 2.83D PINN with training data GPU 5 h

3D PINN prediction 10 s

3D PINN without training data CPU 20 h

18 29 2.33D PINN without training data GPU 4 h

3D PINN prediction 10 s

In conclusion, while each method has its advantages and disadvantages, the 3D PINN
method emerges as the most convenient and efficient option. It offers significantly reduced
running times compared to CFD PBA, while still providing accurate results and enabling
time-dependent simulations or predictions.

Despite the feasibility of previous methods like PBA, they suffered from complexity
and automation issues. Our proposed method streamlined the process by requiring only
mesh node coordinates and patch labelling, eliminating the need for setting up specific
conditions for each artery.

In connection with conventional pure physics-based computational models, our data-
driven approach circumvents the intricacies associated with mesh generation, initial and
boundary condition prescriptions, and constitutive laws. By framing the problem as
PDE-constrained filtering of scattered noisy data, our methodology offers flexibility and
efficiency, potentially limiting the temporal transparency required to procure reliable
prognoses in clinical settings. Nonetheless, challenges persist, particularly in improving
the setup and training data of physics-informed neural networks and refining the accuracy
and robustness of predictions.

The validation of our methodology entailed the meticulous scrutiny of a prototype
arterial network and the numerical exploration of a real coronary artery tree model via
CFD simulations and invasive methodologies. The integration of 3D PINN computations
for outlet values in a rigid wall scenario underscored the pivotal nature of these values
in resolving intricate simulations. Comparative analysis between 3D PINN and invasive
methods for FFR further corroborated the consistency and accuracy of our methodology,
positioning it as an invaluable tool for advancing cardiovascular simulations.

5. Conclusions

This study presents a pioneering approach to simulating fluid flow in coronary arter-
ies using a 3D Physics-Informed Neural Network (PINN). By integrating deep learning
with fundamental physics principles, the 3D PINN model accurately replicates fluid flow
patterns and identifies potential areas of constriction within coronary artery networks.
The model, trained using physics principles and validated against invasive mean FFR
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distributions, demonstrates remarkable accuracy and efficiency, outperforming the finite
element method (FEM) by approximately tenfold. Further validation using Finite Ele-
ment Analysis (FEA), CFD, and FSI emphasizes the versatility and importance of the 3D
PINN results for various applications, suggesting a potential noninvasive and safer alterna-
tive for diagnosing coronary artery conditions, potentially superior to invasive coronary
angiography (ICA).

Major Results

1. Innovative 3D PINN Model:

◦ Combines deep learning with fundamental physics principles.
◦ Accurately replicates fluid flow patterns in coronary artery networks.
◦ Identifies potential areas of constriction effectively.

2. Training and Validation:

◦ Trained using physics principles.
◦ Validated against invasive mean FFR distributions.
◦ Demonstrates exceptional accuracy and efficiency, surpassing FEM by approxi-

mately tenfold.

3. Further Validation:

◦ Validated using Finite Element Analysis (FEA), Computational Fluid Dynamics
(CFD), and Fluid–Structure Interactions (FSI).

◦ Highlights the importance of 3D PINN results for various applications.
◦ Incorporates flexible nonlinear wall materials for the enhanced realism of FFRs.

4. Potential for Noninvasive Diagnosis:

◦ Suggests a noninvasive and safer alternative for diagnosing coronary artery
conditions.

◦ Potentially outperforms conventional methods like invasive coronary angiog-
raphy (ICA).

5. Ongoing Research:

◦ Aims to refine the standalone PINN model for 3D fluid flow modeling and the
diagnosis of stenosis in individual coronary arteries.

◦ Introduces a novel approach for addressing experimental outflow boundary
condition measurements in complex cardiac trees.

6. Standalone Simulations:

◦ Utilizes 3D PINN to establish standalone simulations based on physics princi-
ples and training data without requiring outlet conditions.

◦ Shows promise for more effective and noninvasive stenosis diagnosis.

7. Validation without Training Data:

◦ Demonstrates promising results despite significant errors, indicating a physics-
based approach’s potential.

8. Final Outlet Conditions:

◦ Determined based on tree geometry, conservation laws, numerical iterations,
and patient-specific parameters.

◦ Exclusively relies on 3D PINN for estimating initial conditions, setting it apart
from data-driven models.

9. Accuracy of 3D Artery Tree Validation with Training Data:

◦ Mean value error compared to invasive FFR: 1.2% for CT209, 2.3% for CHN13,
and 2.8% for CHN03.

◦ Acceptable error rates, indicating reasonably accurate outcomes of the 3D
PINN approach.
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10. Accuracy of 3D Artery Tree Validation without Training Data:

◦ For CT209: 18% error in FFR.
◦ For CHN13: 29% error in FFR.
◦ For CHN03: 2.3% error in FFR, closely matching the average invasive value.

This approach, grounded in physiology, physics, and real-world data, shows signifi-
cant promise for predicting stenosis locations and FFRs, with the potential to develop a
novel numerical tool for early heart attack detection, aligning with WHO strategies for
combating cardiovascular diseases globally.
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Appendix A. The 3D PINN PYTHON Code 
 

“““Backend supported: tensorflow.compat.v1, tensorflow, pytorch””” 
import deepxde as dde 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.spatial import Delaunay 
import random 
 
from scipy.spatial import cKDTree 
import pandas as pd 
# import os  # this is swiched off GPU 
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# os.environ[“CUDA_VISIBLE_DEVICES”] = “-1” ## this is swiched off GPU     
import tensorflow as tf 
from numba import jit, cuda 
 
inlet_geo = pd.read_csv(“inlet.csv”) 
inlet_coordinates_ALL = inlet_geo[[“Points:0”, “Points:1”, “Points:2”]].values 
 
outlet1_geo = pd.read_csv(“outlet1.csv”) 
outlet1_coordinates_ALL = outlet1_geo[[“Points:0”, “Points:1”, “Points:2”]].values 
 
outlet2_geo = pd.read_csv(“outlet2.csv”) 
outlet2_coordinates_ALL = outlet2_geo[[“Points:0”, “Points:1”, “Points:2”]].values 
 
outlet3_geo = pd.read_csv(“outlet3.csv”) 
outlet3_coordinates_ALL = outlet3_geo[[“Points:0”, “Points:1”, “Points:2”]].values 
 
outlet4_geo = pd.read_csv(“outlet4.csv”) 
outlet4_coordinates_ALL = outlet4_geo[[“Points:0”, “Points:1”, “Points:2”]].values 
 
outlet5_geo = pd.read_csv(“outlet5.csv”) 
outlet5_coordinates_ALL = outlet5_geo[[“Points:0”, “Points:1”, “Points:2”]].values 
 
outlet6_geo = pd.read_csv(“outlet6.csv”) 
outlet6_coordinates_ALL = outlet6_geo[[“Points:0”, “Points:1”, “Points:2”]].values 
 
wall_geo = pd.read_csv(“wall.csv”) 
wall_coordinates_ALL = wall_geo[[“Points:0”, “Points:1”, “Points:2”]].values 
 
df1 = pd.read_csv(“dataset_2.csv”) 
 
#  interior coordinates from which randomly select collocation points for training 
X_coordinates_ALL = df1[“Points:0”].values 
Y_coordinates_ALL = df1[“Points:1”].values 
Z_coordinates_ALL = df1[“Points:2”].values 
 
mesh_nodes_ALL = df1[[“Points:0”, “Points:1”, “Points:2”]].values 
 
 
inletPoints = inlet_coordinates_ALL 
outlet1Points = outlet1_coordinates_ALL 
outlet2Points = outlet2_coordinates_ALL 
outlet3Points = outlet3_coordinates_ALL 
outlet4Points = outlet4_coordinates_ALL 
outlet5Points = outlet5_coordinates_ALL 
outlet6Points = outlet6_coordinates_ALL 
wallPoints = wall_coordinates_ALL 
interiorPoints = mesh_nodes_ALL 
 
n = 75 
inletPoints = inlet_coordinates_ALL[::] 
outlet1Points = outlet1_coordinates_ALL[::] 
outlet2Points = outlet2_coordinates_ALL[::] 
outlet3Points = outlet3_coordinates_ALL[::] 
outlet4Points = outlet4_coordinates_ALL[::] 
outlet5Points = outlet5_coordinates_ALL[::] 
outlet6Points = outlet6_coordinates_ALL[::] 
wallPoints = wall_coordinates_ALL[::n] 
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interiorPoints = mesh_nodes_ALL[::n*2] 
 
allPoints = np.concatenate((inletPoints, outlet1Points, outlet2Points, outlet3Points, outlet4Points, 
                             outlet5Points, outlet6Points, wallPoints, interiorPoints), axis = 0) 
 
m = len(allPoints) 
 
def load_training_data(num): 
    df1 = pd.read_csv(“CHN13 PINN.csv”) 
 
    mesh_nodes_ALL = df1[[“Points:0”, “Points:1”, “Points:2”, “t”,”U:0”, “U:1”, “U:2”, “p”]].values 
    
   # Select number of random indices 
    random_indices = random.sample(range(mesh_nodes_ALL.shape[0]), num) 
    random_points_xyz = mesh_nodes_ALL[random_indices] 
 
    x_train = random_points_xyz[:, 0].reshape(−1, 1)   
    y_train = random_points_xyz[:, 1].reshape(−1, 1)  
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    t_train = random_points_xyz[:, 3].reshape(−1, 1)   
    u_train = random_points_xyz[:, 4].reshape(−1, 1)   
    v_train = random_points_xyz[:, 5].reshape(−1, 1)   
    w_train = random_points_xyz[:, 6].reshape(−1, 1)   
    p_train = random_points_xyz[:, 7].reshape(−1, 1)  
     
    return [x_train, y_train, z_train, u_train, v_train, w_train, p_train]  
     
def pde(x, u): 
    u_vel, v_vel, w_vel = u[:, 0:1], u[:, 1:2], u[:, 2:3] 
    rho = 1056 
    mu = 0.00385 
    u_vel_x = dde.grad.jacobian(u, x, i = 0, j = 0) 
    u_vel_y = dde.grad.jacobian(u, x, i = 0, j = 1) 
    u_vel_z = dde.grad.jacobian(u, x, i = 0, j = 2) 
    u_vel_t = dde.grad.jacobian(u, x, i = 0, j = 3) 
    u_vel_xx = dde.grad.hessian(u, x, component = 0, i = 0, j = 0) 
    u_vel_yy = dde.grad.hessian(u, x, component = 0, i = 1, j = 1) 
    u_vel_zz = dde.grad.hessian(u, x, component = 0, i = 2, j = 2) 
     
 
    v_vel_x = dde.grad.jacobian(u, x, i = 1, j = 0) 
    v_vel_y = dde.grad.jacobian(u, x, i = 1, j = 1) 
    v_vel_z = dde.grad.jacobian(u, x, i = 1, j = 2) 
    v_vel_t = dde.grad.jacobian(u, x, i = 1, j = 3) 
    v_vel_xx = dde.grad.hessian(u, x, component = 1, i = 0, j = 0) 
    v_vel_yy = dde.grad.hessian(u, x, component = 1, i = 1, j = 1) 
    v_vel_zz = dde.grad.hessian(u, x, component = 1, i = 2, j = 2) 
    
     
    w_vel_x = dde.grad.jacobian(u, x, i = 2, j = 0) 
    w_vel_y = dde.grad.jacobian(u, x, i = 2, j = 1) 
    w_vel_z = dde.grad.jacobian(u, x, i = 2, j = 2) 
    w_vel_t = dde.grad.jacobian(u, x, i = 2, j = 3) 
    w_vel_xx = dde.grad.hessian(u, x, component = 2, i = 0, j = 0) 
    w_vel_yy = dde.grad.hessian(u, x, component = 2, i = 1, j = 1) 
    w_vel_zz = dde.grad.hessian(u, x, component = 2, i = 2, j = 2) 
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    p_x = dde.grad.jacobian(u, x, i = 2, j = 0) 
    p_y = dde.grad.jacobian(u, x, i = 2, j = 1) 
    p_z = dde.grad.jacobian(u, x, i = 2, j = 2) 
 
 
    momentum_x = rho * (u_vel_t + (u_vel * u_vel_x + v_vel * u_vel_y + w_vel * u_vel_z) + p_x − mu 
* (u_vel_xx + u_vel_yy + u_vel_zz)) 
    momentum_y = rho * (v_vel_t + (u_vel * v_vel_x + v_vel * v_vel_y + w_vel * v_vel_z) + p_y − mu 
* (v_vel_xx + v_vel_yy + v_vel_zz)) 
    momentum_z = rho * (w_vel_t + (u_vel * w_vel_x + v_vel * w_vel_y + w_vel * w_vel_z) + p_z − 
mu * (w_vel_xx + w_vel_yy + w_vel_zz)) 
     
    continuity = u_vel_x + v_vel_y +w_vel_z 
 
    return [momentum_x, momentum_y, momentum_z, continuity] 
 
#initialization IC 
 
def init_func_u(x): 
    a0 = 0.06524 
    a1 = −0.06233 
    b1 = 0.03425 
    a2 = 0.02919 
    b2 = −0.05661 
    a3 = 0.002014 
    b3 = 0.04904 
    a4 = −0.01396 
    b4 = −0.007084 
    a5 = 0.01114 
    b5 = −0.01307 
    a6 = 0.005425 
    b6 = 0.01828 
    a7 = −0.008751 
    b7 = −0.0112 
    a8 = 0.008746 
    b8 = −0.003356 
    w = 7.151 
    #alpha = 0.315 
    x = x[:, 0:1] 
    u = ((a0 + a1 * np.cos(x * w) + b1 * np.sin(x * w) + 
              a2 * np.cos(2 * x * w) + b2 * np.sin(2 * x * w) + 
              a3 * np.cos(3 * x * w) + b3 * np.sin(3 * x * w) + 
              a4 * np.cos(4 * x * w) + b4 * np.sin(4 * x * w) + 
              a5 * np.cos(5 * x * w) + b5 * np.sin(5 * x * w) + 
              a6 * np.cos(6 * x * w) + b6 * np.sin(6 * x * w) + 
              a7 * np.cos(7 * x * w) + b7 * np.sin(7 * x * w) + 
              a8 * np.cos(8 * x * w) + b8 * np.sin(8 * x * w) + 0.464))/2 
     
    return u 
    # return  np.zeros([len(x),1]) 
     
def init_func_v(x): 
    a0 = 0.06524 
    a1 = −0.06233 
    b1 = 0.03425 
    a2 = 0.02919 
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    b2 = −0.05661 
    a3 = 0.002014 
    b3 = 0.04904 
    a4 = −0.01396 
    b4 = −0.007084 
    a5 = 0.01114 
    b5 = −0.01307 
    a6 = 0.005425 
    b6 = 0.01828 
    a7 = −0.008751 
    b7 = −0.0112 
    a8 = 0.008746 
    b8 = −0.003356 
    w = 7.151 
    #alpha = 0.315 
    x = x[:, 1:2] 
    u = ((a0 + a1 * np.cos(x * w) + b1 * np.sin(x * w) + 
              a2 * np.cos(2 * x * w) + b2 * np.sin(2 * x * w) + 
              a3 * np.cos(3 * x * w) + b3 * np.sin(3 * x * w) + 
              a4 * np.cos(4 * x * w) + b4 * np.sin(4 * x * w) + 
              a5 * np.cos(5 * x * w) + b5 * np.sin(5 * x * w) + 
              a6 * np.cos(6 * x * w) + b6 * np.sin(6 * x * w) + 
              a7 * np.cos(7 * x * w) + b7 * np.sin(7 * x * w) + 
              a8 * np.cos(8 * x * w) + b8 * np.sin(8 * x * w) + 0.464))/2 
     
    return u 
    # return  np.zeros([len(x),1]) 
 
def init_func_w(x): 
    a0 = 0.06524 
    a1 = −0.06233 
    b1 = 0.03425 
    a2 = 0.02919 
    b2 = −0.05661 
    a3 = 0.002014 
    b3 = 0.04904 
    a4 = −0.01396 
    b4 = −0.007084 
    a5 = 0.01114 
    b5 = −0.01307 
    a6 = 0.005425 
    b6 = 0.01828 
    a7 = −0.008751 
    b7 = −0.0112 
    a8 = 0.008746 
    b8 = −0.003356 
    w = 7.151 
    #alpha = 0.315 
    x = x[:, 2:3] 
    u = ((a0 + a1 * np.cos(x * w) + b1 * np.sin(x * w) + 
              a2 * np.cos(2 * x * w) + b2 * np.sin(2 * x * w) + 
              a3 * np.cos(3 * x * w) + b3 * np.sin(3 * x * w) + 
              a4 * np.cos(4 * x * w) + b4 * np.sin(4 * x * w) + 
              a5 * np.cos(5 * x * w) + b5 * np.sin(5 * x * w) + 
              a6 * np.cos(6 * x * w) + b6 * np.sin(6 * x * w) + 
              a7 * np.cos(7 * x * w) + b7 * np.sin(7 * x * w) + 
              a8 * np.cos(8 * x * w) + b8 * np.sin(8 * x * w) + 0.464))/2 



Fluids 2024, 9, 153 22 of 32

Fluids 2024, 9, x FOR PEER REVIEW 24 of 34 
 

     
    return u 
    
def init_func_z(x):  
    return  np.zeros([len(x),1]) 
 
def init_func_p(x): 
    t = np.sqrt((x[:, 0:1]**2) + (x[:, 1:2]**2) + (x[:, 2:3]**2))     
    a0 = 90.47 
    a1 = −14.95 
    b1 = −1.668 
    a2 = 5.915 
    b2 = −7.521 
    a3 = 2.781 
    b3 = 5.894 
    a4 = −3.216 
    b4 = −0.788 
    w = 6.783 
    p = (a0 + a1 * np.cos(t * w) + b1 * np.sin(t * w) + 
            a2 * np.cos(2 * t * w) + b2 * np.sin(2 * t * w) + 
            a3 * np.cos(3 * t * w) + b3 * np.sin(3 * t * w) + 
            a4 * np.cos(4 * t * w) + b4 * np.sin(4 * t * w) + 2.19) * 133 
    return p 
     
def init_func_wall_u(x): 
    return  np.zeros([len(x),1]) 
 
def init_func_wall_v(x): 
    return  np.zeros([len(x),1]) 
 
def init_func_wall_w(x): 
    return  np.zeros([len(x),1]) 
 
def init_func_wall_p(x): 
    return  np.zeros([len(x),1]) 
     
def init_func_interior_u(x): 
    return  np.zeros([len(x),1]) 
 
def init_func_interior_v(x): 
    return  np.zeros([len(x),1]) 
 
def init_func_interior_w(x): 
    return  np.zeros([len(x),1]) 
 
def init_func_interior_p(x): 
    return  np.zeros([len(x),1]) 
 
def init_func_outlet1_p(x): 
    return  np.zeros([len(x),1]) 
 
#BC   
def u_func_inlet(x): 
    return np.zeros([len(x),1]) 
 
def v_func_inlet(x): 
    return np.zeros([len(x),1]) 
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def w_func_inlet(x): 
    return np.zeros([len(x),1]) 
 
def p_func_inlet(x): 
    return np.zeros([len(x),1]) 
     
def u_func_wall(x): 
    return np.zeros([len(x),1]) 
 
def v_func_wall(x): 
    return np.zeros([len(x),1]) 
 
def w_func_wall(x): 
    return np.zeros([len(x),1]) 
 
 
def p_func_outlet1(x): 
    return np.zeros([len(x),1]) 
 
def p_func_outlet2(x): 
    return np.zeros([len(x),1]) 
 
def p_func_outlet3(x): 
    return np.zeros([len(x),1]) 
 
def p_func_outlet4(x): 
    return np.zeros([len(x),1]) 
 
def p_func_outlet5(x): 
    return np.zeros([len(x),1]) 
 
def p_func_outlet6(x): 
    return np.zeros([len(x),1]) 
 
def p_func_wall(x): 
    return np.zeros([len(x),1])     
 
     
#BC  
def boundary_wall(x, on_boundary): 
    x1,y,z,t = x 
    on_boundary = [x1, y, z] in wallPoints 
    return on_boundary  
     
def boundary_inlet(x, on_boundary): 
    x1,y,z,t = x 
    on_boundary = [x1, y, z] in inletPoints 
    return on_boundary   
     
def boundary_outlet1(x, on_boundary): 
    x1,y,z,t = x 
    on_boundary = [x1, y, z] in outlet1Points 
    return on_boundary   
 
def boundary_outlet2(x, on_boundary): 
    x1,y,z,t  = x 
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    on_boundary = [x1, y, z] in outlet2Points 
    return on_boundary  
 
def boundary_outlet3(x, on_boundary): 
    x1,y,z,t  = x 
    on_boundary = [x1, y, z] in outlet3Points 
    return on_boundary  
 
def boundary_outlet4(x, on_boundary): 
    x1,y,z,t  = x 
    on_boundary = [x1, y, z] in outlet4Points 
    return on_boundary  
 
def boundary_outlet5(x, on_boundary): 
    x1,y,z,t  = x 
    on_boundary = [x1, y, z] in outlet5Points 
    return on_boundary  
 
def boundary_outlet6(x, on_boundary): 
    x1,y,z,t  = x 
    on_boundary = [x1, y, z] in outlet6Points 
    return on_boundary  
 
def boundary_interior(x, on_boundary): 
    x1,y,z,t  = x 
    on_boundary = [x1, y, z] in interiorPoints 
    return on_boundary  
    
 
def compute_normals(allPoints): 
    # Assuming allPoints contains the coordinates of boundary points 
    tri = Delaunay(allPoints) 
    # Compute normals based on triangle connectivity 
    # Example code to compute normals from triangles: 
    normals = np.cross( 
        allPoints[tri.simplices[:, 1]] − allPoints[tri.simplices[:, 0]], 
        allPoints[tri.simplices[:, 2]] − allPoints[tri.simplices[:, 0]], 
    ) 
    return normals 
 
boundary_normals = compute_normals(allPoints) 
 
def downsample_normals(boundary_normals, allPoints, num_desired_points): 
    num_normals = len(boundary_normals) 
 
    # Compute the downsampling factor 
    downsample_factor = num_normals//num_desired_points 
 
    # Reshape the boundary normals to facilitate averaging 
    reshaped_normals = boundary_normals[:num_desired_points * downsample_factor].re-
shape(num_desired_points, downsample_factor, 3) 
 
    # Average the normals within each group 
    downsampled_normals = np.mean(reshaped_normals, axis = 1) 
 
    return downsampled_normals 
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# Specify the desired number of boundary points 
desired_num_allPoints = len(allPoints) 
 
# Downsample boundary normals to match the desired number of boundary points 
downsampled_normals = downsample_normals(boundary_normals, allPoints, desired_num_all-
Points) 
 
print(“Size of allPoints[:m]:”, allPoints[:m].shape) 
 
#spatial_domain = dde.geometry.PointCloud(allPoints, allPoints[:m], boundary_normals = None) 
spatial_domain = dde.geometry.pointcloud.PointCloud(allPoints, allPoints[:], boundary_normals = 
downsampled_normals) 
     
#print(‘type of spatial_domain’, type(spatial_domain)) 
temporal_domain = dde.geometry.TimeDomain(0, 1) 
print(‘type of temporal_domain’, (temporal_domain)) 
sp_tem_dom = dde.geometry.GeometryXTime(spatial_domain, temporal_domain) 
 
ic_u = dde.icbc.IC(sp_tem_dom, init_func_z, lambda _, on_initial: on_initial, component = 0)# 
проверено! 
ic_v = dde.icbc.IC(sp_tem_dom, init_func_z, lambda _, on_initial: on_initial, component = 1)# 
проверено! 
ic_w = dde.icbc.IC(sp_tem_dom, init_func_z, lambda _, on_initial: on_initial, component = 2)# 
проверено! 
ic_p = dde.icbc.IC(sp_tem_dom, init_func_p, lambda _, on_initial: on_initial, component = 3)# 
проверено! 
 
bc_u_wall = dde.icbc.DirichletBC(sp_tem_dom, u_func_wall, boundary_wall,  component = 0)# 
bc_v_wall = dde.icbc.DirichletBC(sp_tem_dom, v_func_wall, boundary_wall,  component = 1)# 
bc_w_wall = dde.icbc.DirichletBC(sp_tem_dom, w_func_wall, boundary_wall,  component = 2)# 
bc_p_wall = dde.icbc.NeumannBC(sp_tem_dom, p_func_wall, boundary_wall,  component = 3)# 
 
bc_interior_u = dde.icbc.DirichletBC(sp_tem_dom, init_func_interior_u, boundary_interior,  com-
ponent = 0) 
bc_interior_v = dde.icbc.DirichletBC(sp_tem_dom, init_func_interior_v, boundary_interior,  com-
ponent = 1) 
bc_interior_w = dde.icbc.DirichletBC(sp_tem_dom, init_func_interior_w, boundary_interior,  
component = 2) 
bc_interior_p = dde.icbc.NeumannBC(sp_tem_dom, init_func_interior_p, boundary_interior,  
component = 3) 
 
num_domain = 40000#40000 
num_boundary = 4000#4000 
num_initial = 4000#4000 
num_test = 1e5 
num = 1000 
[ob_x, ob_y, ob_z, ob_t, ob_u, ob_v, ob_w, ob_p] = load_training_data(num = num) 
 
ob_xyzt = np.hstack((ob_x, ob_y, ob_z, ob_t)) 
observe_u = dde.icbc.PointSetBC(ob_xyzt, ob_u, component = 0) 
observe_v = dde.icbc.PointSetBC(ob_xyzt, ob_v, component = 1) 
observe_w = dde.icbc.PointSetBC(ob_xyzt, ob_w, component = 2) 
observe_p = dde.icbc.PointSetBC(ob_xyzt, ob_p) 
 
data = dde.data.TimePDE( 
    sp_tem_dom, 
    pde, [ 
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        bc_u_wall, 
        bc_v_wall, 
        bc_w_wall, 
         
        bc_interior_u, 
        bc_interior_v, 
        bc_interior_w, 
        bc_interior_p, 
         
        ic_u, 
        ic_v, 
        ic_w, 
        ic_p, 
         
        observe_u, 
        observe_v, 
        observe_w, 
        observe_p         
        ], 
     
    num_domain = num_domain, 
    num_boundary = num_boundary, 
    num_initial = num_initial, 
    num_test = num_test,  
    anchors = ob_xyzt 
    ) 
 
activation_func = “tanh” 
initializer = ‘Glorot uniform’ 
lr = 1e-3 
optimizer = ‘adam’ 
k = 4 
layer_size = [k] + 10 * [256] + [k] 
epochs_ = 10000#30000 
net = dde.nn.FNN(layer_size, activation_func, initializer) 
model = dde.Model(data, net) 
 
checkpointer = dde.callbacks.ModelCheckpoint(“model/model.ckpt”, verbose = 1, save_beĴer_only 
= True) 
 
model.compile(‘adam’, lr = lr) 
loss_history, train_state = model.train(epochs = epochs_, callbacks = [checkpointer], display_every 
= 1000, disregard_previous_best = True) 
# dde.saveplot(loss_history, train_state, issave = True, isplot = True) 
 
model.compile(“L-BFGS”) 
loss_history, train_state = model.train(epochs = epochs_, callbacks = [checkpointer], display_every 
= 1000, disregard_previous_best = True) 
# dde.saveplot(loss_history, train_state, issave = True, isplot = True) 
# plt.plot(train_state, loss_history) 
 
def Pressure_inlet(t): 
    a0 = 90.47 
    a1 = −14.95 
    b1 = −1.668 
    a2 = 5.915 
    b2 = −7.521 
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    a3 = 2.781 
    b3 = 5.894 
    a4 = −3.216 
    b4 = −0.788 
    w = 6.783 
    return (a0 + a1 * np.cos(t * w) + b1 * np.sin(t * w) + 
            a2 * np.cos(2 * t * w) + b2 * np.sin(2 * t * w) + 
            a3 * np.cos(3 * t * w) + b3 * np.sin(3 * t * w) + 
            a4 * np.cos(4 * t * w) + b4 * np.sin(4 * t * w) + 2.19) * 133 
 
 
# Assuming mesh_nodes_ALL is your matrix of XYZ points 
# Select 1000 random indices 
random_indices = random.sample(range(mesh_nodes_ALL.shape[0]), 10000) 
 
# Extract corresponding XYZ values 
random_points_xyz = mesh_nodes_ALL[random_indices] 
 
x_values = random_points_xyz[:, 0].reshape(−1, 1)  # Extracting the first column as u 
y_values = random_points_xyz[:, 1].reshape(−1, 1)  # Extracting the second column as v 
z_values = random_points_xyz[:, 2].reshape(−1, 1)  # Extracting the third column as w 
 
elevation = −15 # CHN13 
azimut = 0 # CHN13 
# uniq_z = [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0] 
uniq_z = [0.1] 
 
mag_values = [] 
FFR_values = [] 
 
for z in uniq_z: 
    t_values = z * np.ones((len(x_values), 1)) 
     
    xyzt_pred = np.hstack((x_values, y_values, z_values, t_values)) 
    print(“xyzt_pred”, xyzt_pred)       
    
    output = model.predict(xyzt_pred) 
    print(“output”, output) 
 
    x_pred, y_pred, z_pred, t_pred = \ 
    xyzt_pred[:, 0], \ 
        xyzt_pred[:, 1], \ 
            xyzt_pred[:, 2], \ 
                xyzt_pred[:, 3] 
                 
    Uf_pred, Vf_pred, Wf_pred, P_pred  = \ 
                    output[:, 0], \ 
                        output[:, 1], \ 
                            output[:, 2], \ 
                                output[:, 3] 
                                     
    mag = np.sqrt(Uf_pred**2 + Vf_pred**2 + Wf_pred**2) 
     
    mag_values.append(mag) 
    FFR_values.append(P_pred) 
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df1 = pd.read_csv(“CHN13 PINN.csv”) 
 
#  interior coordinates from which randomly select collocation points for training 
x_values = df1[“Points:0”].values 
y_values = df1[“Points:1”].values 
z_values = df1[“Points:2”].values 
 
u_values = df1[“U:0”].values 
v_values = df1[“U:1”].values 
w_values = df1[“U:2”].values 
 
p_values = df1[“p”].values 
 
mesh_nodes_ALL = df1[[“Points:0”, “Points:1”, “Points:2”, “U:0”, “U:1”, “U:2”, “p”]].values 
 
# Select 1000 random indices 
random_indices = random.sample(range(mesh_nodes_ALL.shape[0]), 20000) 
 
random_points_xyz = mesh_nodes_ALL[random_indices] 
 
x_values = random_points_xyz[:, 0].reshape(−1, 1)  # Extracting the first column as u 
y_values = random_points_xyz[:, 1].reshape(−1, 1)  # Extracting the second column as v 
z_values = random_points_xyz[:, 2].reshape(−1, 1)  # Extracting the third column as w 
 
u_values = random_points_xyz[:, 3].reshape(−1, 1)  # Extracting the first column as u 
v_values = random_points_xyz[:, 4].reshape(−1, 1)  # Extracting the second column as v 
w_values = random_points_xyz[:, 5].reshape(−1, 1)  # Extracting the third column as w 
 
 
p_values = random_points_xyz[:, 6].reshape(−1, 1)  # Extracting the third column as w 
 
 
mag = np.sqrt(u_values**2 + v_values**2 + w_values**2) 
 
elevation = −15 # CHN13 
azimut = 0 # CHN13 
 
# elevation = −30 # CHN13 
# azimut = 0 # CHN13 
 
# elevation = −35 # CHN03 
# azimut = 0 # CHN03 
 
# elevation = −30 # CT209 
# azimut = −200 # CT209 
# Convert centimeters to inches 
cm_to_inches = 1/2.54  # 1 inch = 2.54 cm 
 
# Specify the figure size in centimeters 
width_cm = 25  # Width of the figure in centimeters 
height_cm = 20  # Height of the figure in centimeters 
 
# Convert the dimensions to inches 
width_inches = width_cm * cm_to_inches 
height_inches = height_cm * cm_to_inches 
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# Set resolution to 720p 
plt.rcParams[‘figure.dpi’] = 720 
f = 10 
s = 1000 
alpha = 0.5 
 
# PloĴing the scaĴer plot in 3D FFR 
  
fig = plt.figure(figsize = (width_inches, height_inches)) 
ax = fig.add_subplot(111, projection = ‘3d’) 
# Remove grid 
ax.grid(False) 
 
# Remove axis lines 
ax.axis(‘off’) 
c = p_values/12.14 #CHN13 
 
sc = ax.scaĴer(x_values*s, y_values*s, z_values*s, c = c, cmap = ‘viridis’, alpha = alpha, vmin = 0.5, 
vmax = 1) 
plt.colorbar(sc, label = r’FFR’)  # Add color bar 
 
# # Set labels and title 
# ax.set_xlabel(‘X’, fontsize = f) 
# ax.set_ylabel(‘Y’, fontsize = f) 
# ax.set_zlabel(‘Z’, fontsize = f) 
# plt.title(‘CHN13’+ “(t = “ + str(z) +”)”, fontsize = 10) 
ax.view_init(elev = elevation, azim = azimut) 
 
plt.show() 
    
# PloĴing the scaĴer plot in 2D FFR 
plt.scaĴer(x_values*s, y_values*s, c = c, cmap = ‘viridis’, alpha = alpha, vmin = 0.5, vmax = 1) 
plt.colorbar(label = r’FFR’)  # Add color bar 
plt.xlabel(‘X, mm’, fontsize = f) 
plt.ylabel(‘Y, mm’, fontsize = f) 
# plt.title(‘CHN13’ + “(t = “ + str(z) +”)”, fontsize = 10) 
plt.show() 
 
# PLOT FFR at POINT    
uniq_t = [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0] 
uniq_z = [0.0,0.2,0.4,0.6,0.8,1.0] 
 
mag_values = [] 
FFR_values = [] 
for z in uniq_z:  
    x_val = 0.0154 
    y_val = −0.014 
    z_val= 0.0119 
    t_val = z  
 
    xyzt_pred_FFR = np.column_stack((x_val, y_val, z_val, t_val)) 
    print(“xyzt_pred_FFR”, xyzt_pred_FFR) 
     
    output_FFR = model.predict(xyzt_pred_FFR) 
    print(“output”, output_FFR) 
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    x_pred_u, y_pred_v, z_pred_w, t_pred_t = \ 
    xyzt_pred_FFR[:, 0], \ 
        xyzt_pred_FFR[:, 1], \ 
            xyzt_pred_FFR[:, 2], \ 
                xyzt_pred_FFR[:, 3] 
 
    Uf_pred_point, Vf_pred_point, Wf_pred_point, P_pred_point  = \ 
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# Convert the list of mag values to a numpy array 
mag_array = np.array(mag_values) 
FFR_array = np.array(FFR_values) 
 
# PloĴing the scaĴer plot 
plt.plot(uniq_z, FFR_array/inlet_P) 
# plt.colorbar(label = r’$\mathrm{\nu}$, m/s’)  # Add color bar 
plt.xlabel(‘time’, fontsize = f) 
plt.ylabel(‘FFR’, fontsize = f) 
plt.title(‘CHN13’) 
plt.show() 
 
### important plot LOSSES 
data = np.genfromtxt(‘loss.dat’) 
 
# Extract the columns 
step = data[:, 0] 
loss_train = data[:, 1] 
loss_test = data[:, 2] 
metrics_test = data[:, 3] 
 
# Plot the data 
plt.figure(figsize = (10, 6)) 
plt.plot(step, loss_train, label = ‘Loss Train’) 
plt.plot(step, loss_test, label = ‘Loss Test’) 
plt.plot(step, metrics_test, label = ‘Metrics Test’) 
plt.xlabel(‘Step’) 
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plt.legend() 
plt.grid(True) 
 
# Set y-axis to logarithmic scale 
plt.yscale(‘log’) 
 
plt.show() 
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