
Citation: Chen, Y.C.; Keh, H.J. Slow

Translation of a Composite Sphere in

an Eccentric Spherical Cavity. Fluids

2024, 9, 154. https://doi.org/

10.3390/fluids9070154

Academic Editors: Hua Tan and

Ricardo Ruiz Baier

Received: 7 May 2024

Revised: 26 June 2024

Accepted: 27 June 2024

Published: 28 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Slow Translation of a Composite Sphere in an Eccentric
Spherical Cavity
Yi C. Chen and Huan J. Keh *

Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; r12524072@ntu.edu.tw
* Correspondence: huan@ntu.edu.tw; Tel.: +886-2-33663048

Abstract: This semi-analytical study is presented examining the quasi-steady creeping flow caused
by a soft (composite) spherical particle, which is a hard (impermeable) sphere core covered by a
porous (permeable) layer, translating in an incompressible Newtonian fluid within a non-concentric
spherical cavity along the line joining their centers. To solve the Brinkman and Stokes equations for
the flow fields inside and outside the porous layer, respectively, general solutions are constructed
in two spherical coordinate systems attached to the particle and cavity individually. The boundary
conditions at the cavity wall and particle surface are fulfilled through a collocation method. Numerical
results of the normalized drag force exerted by the fluid on the particle are obtained for numerous
values of the ratios of core-to-particle radii, particle-to-cavity radii, the distance between the centers
to the radius difference of the particle and cavity, and the particle radius to porous layer permeation
length. For the translation of a soft sphere within a concentric cavity or near a small-curvature cavity
wall, our drag results agree with solutions available in the literature. The cavity effect on the drag
force of a translating soft sphere is monotonically increasing functions of the ratios of core-to-particle
radii and the particle radius to porous layer permeation length. While the drag force generally rises
with an increase in the ratio of particle-to-cavity radii, a weak minimum (surprisingly, smaller than
that for an unconfined soft sphere) may occur for the case of low ratios of core-to-particle radii and of
the particle radius to permeation length. This drag force generally increases with an increase in the
eccentricity of the particle position, but in the case of low ratios of core-to-particle radii and particle
radius to permeation length, the drag force may decrease slightly with increasing eccentricity.

Keywords: creeping flow; soft sphere; hydrodynamic drag force; boundary effect; spherical cavity

1. Introduction

The motions of solid particles in viscous fluids at small Reynolds numbers continue
to receive plentiful attention from investigators in the fields of chemical, biomedical, civil,
mechanical, and environmental engineering. This creeping motion is fundamental in nature,
but permits us to develop rational thoughts of various practical systems and industrial
processes such as sedimentation, filtration, agglomeration, electrophoresis, microfluidics,
aerosol technology, rheology of suspensions, and motions of cells in blood vessels. The
theoretical investigation of this topic grew out of the classic work of Stokes [1] on the motion
of a hard (impermeable) sphere in an unbounded Newtonian fluid, and was extended to
the creeping motion of a composite sphere [2].

A soft sphere of radius b is a composite particle with a hard sphere core of radius a
covered by a porous (permeable) layer of uniform thickness b − a. In the limiting cases
of a = b and a = 0, the soft sphere degenerates to a hard sphere and a porous sphere,
respectively, of radius b. A biological cell with protein surface attachments [3] and a
polystyrene latex with a macromolecular surface layer [4] are examples of a soft particle. To
achieve the steric stabilization of colloid suspensions, polymers are deliberately adsorbed
onto hard particles to form permeable layers [5].
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In practical cases of creeping motion, the particles are not isolated, and the ambient
fluid is bounded by solid walls. Therefore, it is important to determine if the existence of
adjacent boundaries affects the motion of the particles significantly. The low-Reynolds-
number motions of a hard sphere confined by boundaries, such as those within a concentric
or nonconcentric spherical cavity [6–9], near one or two large planes [10–15], and in a
circular cylinder [16–18], were analyzed extensively. Some fluid streamline plots showing
the recirculation flow for the case of a spherical particle within the concentric spherical
cavity were presented [6]. Similarly, the creeping motions of a soft sphere inside a concentric
spherical cavity [19–22], near one or two large planes [4,23] and in a circular cylinder [24],
were theoretically investigated. Although the motions of an entirely porous sphere [25–27]
within an eccentric spherical cavity were examined, the translation of a general soft particle
inside a non-concentric cavity has not been studied yet.

The system of a soft sphere translating within a spherical cavity can be viewed as an
idealized model for the capture of composite particles in a filter composed of connecting
spherical pores. The hydrodynamic interaction between the soft particle and the cavity wall
determines the deposition behavior of particles toward confining walls and the capture
efficiency of filters. The objective of this article is to obtain a theoretical solution for the
quasi-steady slow translation of a soft spherical particle in a non-concentric spherical cavity
along their common diameter. A boundary collocation method [7] will be used to solve the
creeping flow equations applicable to this system, and the wall-corrected hydrodynamic
drag exerted on the particle will be obtained in many cases. The drag results reveal some
interesting features of the influence of the cavity wall on soft particle motion. Although the
drag force generally increases with increasing the particle-to-cavity radius ratio, a weak
minimum (even less than that for an unconfined soft particle) may occur at low ratios
of core-to-particle radii and of the particle radius to permeation length. This drag force
generally increases with increasing eccentricity of the particle position, but for low values
of these ratios, the drag force may decrease slightly with increasing eccentricity.

2. Analysis

As shown in Figure 1, we consider the quasi-steady flow caused by a soft spherical
particle of radius b translating with a velocity U in an incompressible Newtonian fluid
inside an eccentric spherical cavity of radius c along their common diameter (z axis). Here,
(ρ, ϕ, z) and (r2, θ2, φ) represent the circular cylindrical and spherical coordinate systems,
respectively, with their origins attached to the cavity center. The soft particle has a hard
core of radius a and a porous layer of thickness b − a. The center of the particle is situated at
a distance d from the cavity center instantaneously. The purpose of this is to determine the
correction for the hydrodynamic drag experienced by the particle because of the existence
of the cavity.
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Owing to the low Reynolds number (Re < 0.1), the fluid motion is governed by the
Brinkman (inside the porous surface layer) and Stokes (outside the soft sphere) equations
for the axisymmetric creeping flow,

(E2 − λ2)E2Ψ̂ = 0 (a ≤ r1 ≤ b), (1)

E2(E2Ψ) = 0 (r1 ≥ b and r2 ≤ c), (2)

where (r1, θ1, ϕ) is the spherical coordinate system based on the center of the soft particle,
λ−1 is the permeation length or square root of the fluid permeability in the porous layer,
Ψ̂ and Ψ are stream functions of the flow in the porous layer and external flow, respec-
tively, related to their nontrivial velocity components (v̂ri , v̂θi ) and (vri , vθi ) in spherical
coordinates by

(v̂ri , vri ) = − 1
r2

i sin θi

∂(Ψ̂, Ψ)

∂θi
, (v̂θi , vθi ) =

1
ri sin θi

∂(Ψ̂, Ψ)

∂ri
, (3)

the Stokes operator

E2 =
∂2

∂r2
i
+

sin θi

r2
i

∂

∂θi
(

1
sin θi

∂

∂θi
), (4)

and i = 1 or 2.
The boundary conditions for the fluid flow are

r1 = a: v̂r1 = v̂θ1 = 0, (5)

r1 = b: vr1 = v̂r1 , vθ1 = v̂θ1 , (6a)

τr1θ1 = τ̂r1θ1 , τr1r1 − p = τ̂r1r1 − p̂, (6b)

r2 = c: vr2 = −U cos θ2, vθ2 = U sin θ2. (7)

Here, (τ̂r1θ1 , τ̂r1r1) and (τr1θ1 , τr1r1) are the nontrivial stress components in the spherical
coordinates (r1, θ1, ϕ) for the flow in the porous surface layer and external flow, respectively,
p̂ and p are the matching pressure profiles, and Equations (5)–(7) take a reference frame
translating with the soft particle. For axisymmetric motions with the effective viscosity
of the fluid in the porous layer equal to the bulk fluid viscosity [2,28] and satisfying
Equation (6a) simultaneously, the boundary condition (6b) is equivalent to [29]

r1 = b:
∂vθ1

∂r1
=

∂v̂θ1

∂r1
, p = p̂ (or τr1r1 = τ̂r1r1). (8)

The various boundary conditions to describe flow characteristics at the boundary between a
porous medium and a free fluid have received considerable attention in the literature [28,30].
Although a jump in shear stress was suggested to be accounted for in Equation (6b) [31],
the present case of zero jump can be physically realistic and mathematically consistent [2].

We can express the stream functions as [7,23]

Ψ̂ =
∞

∑
n=2

{
A1nrn

1 + B1nr−n+1
1 + [C1n In−1/2(λr1) + D1nKn−1/2(λr1)](λr1)

1/2
}

G−1/2
n (cos θ1), (9)

Ψ =
∞

∑
n=2

[(A2nrn
2 + C2nrn+2

2 )G−1/2
n (cos θ2) + (B2nr−n+1

1 + D2nr−n+3
1 )G−1/2

n (cos θ1)], (10)

where In and Kn are the modified Bessel functions of the first and second kinds of order n,
respectively, and G−1/2

n is the Gegenbauer polynomial of the first kind of order n and degree
−1/2. The unknown coefficients Ain, Bin, Cin, and Din (i = 1 or 2) will be determined
using Equations (5)–(7). When constructing the solution (10), the general solutions of
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Equation (2) in the two spherical coordinate systems can be superimposed due to the
linearity of this equation.

Application of Equation (3) to Equations (9) and (10) leads to the components of
fluid velocities, (v̂ρ, v̂z) and (vρ, vz) for the flow inside the porous layer and external flow,
respectively, in circular cylindrical coordinates as

v̂ρ =
∞

∑
n=2

[A1n A′
n
(
r1, θ1) + B1nB′

n(r1, θ1) + C1nγ′
n(r1, θ1) + D1nδ′n(r1, θ1)] , (11a)

v̂z =
∞

∑
n=2

[A1n A′′
n(r1, θ1) + B1nB′′

n (r1, θ1) + C1nγ
′′
n(r1, θ1) + D1nδ

′′
n (r1, θ1)], (11b)

vρ =
∞

∑
n=2

[A2n A′
n(r2, θ2) + C2nC′

n(r2, θ2) + B2nB′
n(r1, θ1) + D2nD′

n(r1, θ1)], (12a)

vz =
∞

∑
n=2

[A2n A′′
n(r2, θ2) + C2nC′′

n (r2, θ2) + B2nB′′
n (r1, θ1) + D2nD′′

n (r1, θ1)], (12b)

where A′
n, A′′

n , B′
n, B′′

n , C′
n, C′′

n , D′
n, D′′

n , γ′
n, γ

′′
n , δ′n, and δ

′′
n are functions of spherical coordi-

nates (r, θ) defined by Equations (A1)–(A12) in Appendix A. Applying boundary conditions
(5)–(7) to Equations (11) and (12), we obtain

∞

∑
n=2

[A1n A′
n
(
a, θ1) + B1nB′

n(a, θ1) + C1nγ′
n(a, θ1) + D1nδ′n(a, θ1)] = 0, (13a)

∞

∑
n=2

[A1n A′′
n(a, θ1) + B1nB′′

n (a, θ1) + C1nγ
′′
n(a, θ1) + D1nδ

′′
n (a, θ1)] = 0, (13b)

∞

∑
n=2

{
[A2n A′

n
(
r2, θ2) + C2nC′

n(r2, θ2)] r1=b + B2nB′
n(b, θ1) + D2nD′

n(b, θ1)

−A1n A′
n(b, θ1)− B1nB′

n(b, θ1)− C1nγ′
n(b, θ1)− D1nδ′n(b, θ1)} = 0, (14a)

∞

∑
n=2

{
[A2n A′′

n(r2, θ2) + C2nC′′
n (r2, θ2)] r1=b + B2nB′′

n (b, θ1) + D2nD′′
n (b, θ1)

−A1n A′′
n(b, θ1)− B1nB′′

n (b, θ1)− C1nγ
′′
n(b, θ1)− D1nδ

′′
n (b, θ1)

}
= 0, (14b)

∞

∑
n=2

{
[A2n A∗

n(r2, θ2) + C2nC∗
n(r2, θ2)]r1=b + B2nB∗

n(b, θ1) + D2nD∗
n(b, θ1)

−A1n A∗
n(b, θ1)− B1nB∗

n(b, θ1)− C1nγ∗
n(b, θ1)− D1nδ∗n(b, θ1)} = 0, (14c)

∞

∑
n=2

{
[A2n A∗∗

2n(r2, θ2) + C2nC∗∗
n (r2, θ2)]r1=b + B2nB∗∗

2n(b, θ1) + D2nD∗∗
n (b, θ1)

−A1n A∗∗
1n(b, θ1)− B1nB∗∗

1n(b, θ1)− C1nγ∗∗
n (b, θ1)− D1nδ∗∗n (b, θ1)} = 0, (14d)

∞

∑
n=2

{
A2n A∗∗∗

n (c, θ2) + C2nC∗∗∗
n (c, θ2) + [B2nB∗∗∗

n (r1, θ1) + D2nD∗∗∗
n (r1, θ1)]r2=c

}
= −U, (15a)

∞

∑
n=2

{
A2n A∗∗∗∗

n (c, θ2) + C2nC∗∗∗∗
n (c, θ2) + [B2nB∗∗∗∗

n (r1, θ1) + D2nD∗∗∗∗
n (r1, θ1)]r2=c

}
= −U, (15b)

where A∗
n, A∗∗

1n, A∗∗
2n, A∗∗∗

n , A∗∗∗∗
n , B∗

n, B∗∗
1n , B∗∗

2n , B∗∗∗
n , B∗∗∗∗

n , C∗
n, C∗∗

n , C∗∗∗
n , C∗∗∗∗

n , D∗
n, D∗∗

n ,
D∗∗∗

n , D∗∗∗∗
n , γ∗

n, γ∗∗
n , δ∗n, and δ∗∗n are functions of (r, θ) defined by Equations (A13)–(A34).
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Equations (10), (12), (14), and (15) can be expressed in a single spherical coordinate
system by using the following transformation formulas between (r2, θ2) and (r1, θ1):

r2 = [(r1 cos θ1 + d)2 + r2
1(1 − cos2 θ1)]

1/2
, (16a)

cos θ2 = (d + r1 cos θ1)/r2. (16b)

The subscripts 1 and 2 of the coordinates r and θ in the previous equations can be inter-
changed through the sign conversion of d.

To exactly satisfy the conditions in Equations (13)–(15), solutions of the whole infinite
unknown constants Ain, Bin, Cin, and Din are required. But, the collocation technique [7]
enforces boundary conditions at a limited number of discrete points on the longitudinal
semicircle of each of the spherical surfaces (from θi = 0 to θi = π at r1 = a, r1 = b,
and r2 = c) and truncates the infinite series in Equations (9)–(12) to finite series. If the
longitudinal semicircle is approximated by N discrete points satisfying the conditions in
Equations (5)–(7), then the infinite series in Equations (9)–(12) are truncated after N terms,
resulting in 8N linear algebraic equations in the truncated form of Equations (13)–(15).
These equations can be solved numerically to produce the 8N unknowns Ain, Bin, Cin, and
Din required for the truncated Equations (9)–(12). Once these unknowns are solved for
a sufficiently large number of N, the fluid velocity can be fully obtained. Details of the
boundary collocation scheme are given in a previous paper on the translational motion of a
hard spherical particle in a cavity [7].

The drag force exerted by the external fluid on the soft particle (in the opposite
direction of U) can be determined from [7]

F = 4πηD22, (17)

where η is the viscosity of the fluid. The previous equation indicates that only the lowest-
order constant D22 contributes to the hydrodynamic force acting on the particle. If the
soft sphere is located at the center of the spherical cavity (d = 0), D22 can be obtained
analytically as Equation (A35).

When the porous layer of the soft particle vanishes, it reduces to a hard particle of
radius a = b, Equations (1), (5), (6b), (8), (9), (11), (13), and (14c,d) are trivial, v̂ρ = v̂z = 0,
A1n = B1n = C1n = D1n = 0, and Equations (14a,b) and (15) only are needed to be solved
for the 4N unknown constants A2n, B2n, C2n, and D2n. When the hard core disappears
(a = 0), the soft sphere reduces to a porous particle of radius b, Equations (5) and (13) are
trivial, B1n = D1n = 0, and Equations (14) and (15) only are needed for the 6N unknowns
A1n, C1n, A2n, B2n, C2n, and D2n.

In the limiting case of b/c = 0, the soft sphere is unconfined, and Equation (17) can be
expressed analytically as [2,19]

F0 = −6πηλ−1U
{

Wλa cosh λa − 3λ2a2(V + λasinhλa) + cosh(λb − λa)[W(λaV − λb cosh λa)
+3λ3a2bsinhλa] + sinh(λb − λa)[W cosh λa + 3λ2a2(λaV − sinhλa)]

}
{(λasinhλb

− cosh λa)[(W + 3λb) cosh(λb − λa) + 3(λ2a2 − 1)sinh(λb − λa)− 6λa]
}−1

(18)

where
V = λbsinhλb − cosh λb, (19a)

W = 2λ3b3 + λ3a3 + 3λa. (19b)

For the cases of a = b and a = 0, Equation (18) becomes Stokes’ law (F0 = 6πηbU) for a
hard sphere and the corresponding result for a porous sphere, respectively. In the limits
λb → ∞ (impermeable in the porous surface layer of the particle) and λb = 0 (completely
permeable in the porous surface layer), Equation (18) again simplifies to Stokes’ law for
hard spheres of radii b and a, respectively.
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3. Results and Discussion

Results of the hydrodynamic drag force acting on a soft sphere translating inside
an eccentric spherical cavity, obtained with good convergence by using the boundary
collocation technique described in the previous section for various values of the ratios of
the core-to-particle radii a/b, particle-to-cavity radii b/c, distance between the centers to
radius difference of the cavity and particle d/(c − b), and particle radius to porous layer
permeation length λb, are presented for cases of porous sphere (a = 0) and general soft
sphere in Tables 1 and 2, respectively. The drag force F0 acting on an identical particle in the
unbounded fluid given by Equation (18) is used to normalize the cavity-corrected value F.
These results converge to at least the significant digits as given in the tables, and agree with
the available analytical solution in the concentric limit d/(c − b) = 0 given in Appendix B.
Also, our results in the limit b/c → 0 (vanishing cavity wall curvature compared with the
particle) but finite in b/(c − d) are in agreement with the results for a soft spherical particle
translating perpendicular to a large plane wall obtained by Chen and Ye [23]. In the limit
λb → ∞ (or a = b), our results agree with those [7] obtained for a hard sphere translating
in a corresponding cavity. F/F0 = 1 as b/(c − d) = 0 (the cavity wall is far away from the
particle) as expected, irrespective of the other parameters.

Table 1. The normalized drag force F/F0 experienced by a porous sphere (a = 0) translating inside a
spherical cavity at different values of d/(c − b), b/c, and λb.

d/(c−b) b/c F/F0

λb = 0.1 λb = 1 λb = 10 λb = 100 λb = 500

0.25 0.1 0.9949 1.0380 1.2619 1.3015 1.3048
0.2 0.9702 1.0569 1.6570 1.7931 1.8046
0.3 0.9626 1.0890 2.2845 2.6428 2.6738
0.4 0.9673 1.1303 3.3190 4.2244 4.3053
0.5 0.9766 1.1728 5.0786 7.4727 7.6958
0.6 0.9869 1.2108 8.0957 15.1128 15.8189
0.7 0.9953 1.2397 12.9569 37.0789 39.9815
0.8 1.0004 1.2572 19.2043 1.244 × 102 1.447 × 102

0.9 1.0023 1.2643 23.9350 6.971 × 102 1.195 × 103

0.95 1.0018 1.2652 24.8577 1.692 × 103 7.847 × 103

0.975 1.0023 1.2649 24.9698 2.025 × 103 2.702 × 104

0.99 1.0026 1.2654 25.0226 2.212 × 103 4.747 × 104

0.999 1.0027 1.2655 25.0247 2.245 × 103 5.564 × 104

0.5 0.1 0.9901 1.0419 1.3253 1.3778 1.3821
0.2 0.9389 1.0379 1.8007 1.9933 2.0100
0.3 0.8681 1.0007 2.5106 3.0559 3.1058
0.4 0.8634 1.0237 3.6576 5.0423 5.1760
0.5 0.9022 1.0925 5.5773 9.1351 9.5057
0.6 0.9435 1.1622 8.7466 18.7607 19.9314
0.7 0.9755 1.2169 13.5844 46.2215 51.0323
0.8 0.9943 1.2500 19.4783 1.521 × 102 1.857 × 102

0.9 1.0014 1.2631 23.9276 7.604 × 102 1.522 × 103

0.95 1.0023 1.2649 24.8262 1.600 × 103 9.517 × 103

0.975 1.0010 1.2633 24.8767 1.756 × 103 1.958 × 104

0.99 1.0021 1.2647 24.9957 2.147 × 103 3.790 × 104

0.999 1.0027 1.2654 25.0246 2.245 × 103 5.564 × 104

The normalized drag force F/F0 of a porous sphere (a = 0) translating axisymmet-
rically within a non-concentric spherical cavity is plotted against the parameters b/c,
d/(c − b), and λb in Figures 2–4, respectively. For fixed values of d/(c − b) and b/c, the
normalized force F/F0 increases monotonically with a decrease in permeability or an in-
crease in λb from unity (with F = F0 = 0) at λb = 0 to a finite value (or infinity at the limit
b/c = 1 where the particle seals the cavity and d = 0) as λb → ∞ , as illustrated in Table 1
and Figures 2a, 3b, and 4a,b. F/F0 changes weakly with d/(c − b) and b/c (less than 27%
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for all cases with b/c ≤ 0.999) as λb ≤ 1. When b/c and d/(c − b) are not close to unity, the
normalized force F/F0 on a porous particle with λb > 100 approaches that when λb → ∞
(a porous sphere of little permeability performs as a hard sphere), but when the porous
sphere is near the wall, the difference in F/F0 can become significant.

Table 2. The normalized drag force F/F0 experienced by a soft sphere with λb = 1 translating inside
a spherical cavity at different values of d/(c − b), b/c, and a/b.

d/(c−b) b/c F/F0

a/b = 0.5 a/b = 0.8 a/b = 0.95

0.25 0.1 1.1387 1.2304 1.2858
0.2 1.2976 1.5592 1.7389
0.3 1.5105 2.0622 2.5003
0.4 1.7973 2.8642 3.8672
0.5 2.1822 4.2100 6.5427
0.6 2.7002 6.6206 12.4338
0.7 3.3984 11.3193 27.8263
0.8 4.3408 21.5831 80.8279
0.9 5.6261 48.0522 3.924 × 102

0.95 6.4505 78.1032 1.327 × 103

0.975 6.9168 1.021 × 102 2.846 × 103

0.99 7.2290 1.224 × 102 5.793 × 103

0.999 7.4251 1.369 × 102 9.589 × 103

0.5 0.1 1.1668 1.2842 1.3569
0.2 1.3269 1.6664 1.9150
0.3 1.4769 2.1951 2.8323
0.4 1.7280 3.0461 4.4755
0.5 2.1288 4.5028 7.6832
0.6 2.6887 7.1133 14.6867
0.7 3.4357 12.1532 32.7173
0.8 4.4057 22.8894 93.2114
0.9 5.6672 49.4743 4.310 × 102

0.95 6.4648 78.8504 1.351 × 103

0.975 6.9173 1.009 × 102 2.153 × 103

0.99 7.2224 1.221 × 102 5.328 × 103

0.999 7.4251 1.369 × 102 9.587 × 103

For given values of λb and d/(c− b), as illustrated in Table 1 and Figures 2a,b, 3a, and 4b,
the normalized force F/F0 acting on a porous sphere generally is an increasing function
of the ratio of the particle-to-cavity radii b/c from unity at b/c = 0 to a finite value (or
infinity if λb → ∞ ) at b/c = 1. This is because the closer the cavity wall is to the particle
surface, the stronger the hydrodynamic hindrance effect of the cavity wall. Unexpectedly,
when d/(c − b) is not near zero (the particle eccentricity within the cavity is not negligible)
and λb is smaller than about two (the porous sphere is relatively permeable), F/F0 may
not be a monotonic function of b/c, and will reach a minimum either greater or less than
unity at medium values of b/c. That is, the existence of a confinement wall can decrease
the hydrodynamic force on a porous sphere, and this counter-intuitive behavior seems
to be caused by the approximations in the porous particle where the volume-averaged
superficial velocity of the local fluid is used, and its effective viscosity is equal to the bulk
fluid viscosity [28]. The dependence of F/F0 on b/c disappears at the limit λb = 0, but is
strong when λb is large.

For specified values of b/c and λb, the normalized force F/F0 generally increases
with the increasing eccentricity parameter d/(c − b) from one finite value in the concentric
situation d/(c − b) = 0 to another value at the contact limit of the particle and cavity
surfaces d/(c − b) = 1, as shown in Table 1 and Figures 2b, 3a,b, and 4a. These results
indicate that the hydrodynamic hindrance of particle motion due to the proximity of the
cavity wall is enhanced on the proximal side and reduced on the distal side of the particle,
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with an enhanced net effect. But, when the value of λb is small (say, less than about 3)
or b/c is large (say, greater than about 0.8, as indicated in Figure 3a), F/F0 may decrease
slightly (even to less than unity) as d/(c − b) increases. This behavior seems to be also
caused by the approximations in the porous particle where the volume-averaged superficial
velocity of the local fluid is used. The variation of F/F0 with d/(c − b) vanishes at the
limits λb = 0 and b/c = 0, but is obvious when the value of λb is large.
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Figure 2. Normalized drag force F/F0 of a porous sphere (a = 0) translating inside a spherical cavity
versus the ratio of particle-to-cavity radii b/c: (a) d/(c − b) = 1/2 and (b) λb = 10.
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Figure 3. Normalized drag force F/F0 of a porous sphere (a = 0) translating inside a spherical cavity
versus the eccentricity parameter d/(c − b): (a) λb = 10 and (b) b/c = 1/2.
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Figure 4. Normalized drag force F/F0 of a porous sphere (a = 0) translating inside a spherical cavity
versus the shielding parameter λb: (a) b/c = 1/2 and (b) d/(c − b) = 1/2.

Having realized the hydrodynamic effects of the non-concentric cavity on a translating
porous particle, we can examine the general case of a translating soft particle. In Figures 5–8
and Table 2, the normalized force F/F0 on a soft spherical particle within the cavity is
shown as functions of the particle-to-cavity radius ratio b/c, core-to-particle radius ratio
a/b, shielding parameter λb, and eccentricity parameter d/(c − b), respectively. Likewise,
F/F0 is a monotonically increasing function of λb from a constant at λb = 0 to a finite value
(or infinity at the limit b/c = 1) as λb → ∞ , generally increases with b/c from unity at
b/c = 0 to a finite value (or infinity in the limit λb → ∞ ) at b/c = 1, and generally rises
with increasing d/(c − b) from one finite value in the concentric situation d/(c − b) = 0 to
another at the contact limit d/(c − b) = 1, keeping the other parameters unchanged. When
the value of a/b is small, d/(c − b) is not near zero, and λb is smaller than about two, F/F0
may first decrease as b/c increases from unity at b/c = 0, reach a minimum with F/F0 < 1,
and then rise with the further increase in b/c up to a value larger than unity at b/c = 1, as
shown in Figure 6 and Table 2. In addition, when the values of λb and a/b are small (such
as less than 3 and 0.5, respectively), F/F0 may decrease slightly (even to less than unity) as
d/(c − b) increases, as illustrated in Table 2 and Figures 5, 7, and 8.

For fixed values of λb, d/(c − b) and b/c, Figures 5–8 and Table 2 show that the
normalized force F/F0 on a translating soft sphere within a spherical cavity monotonically
increases with a rise in the ratio of core-to-particle radii a/b, in which the cases of a/b = 0
and a/b = 1 denote the porous particle (the hard core disappears) and solid particle (the
porous surface layer vanishes), respectively. That is, for given values of the particle radius,
permeability of the porous layer, and separation from the wall (λb, d/(c − b), and b/c), the
force acting on the particle becomes less if the porous surface layer is thicker (a/b is smaller).
All force results of the soft particle fall between the upper and lower bounds of a/b = 1
and a/b = 0, respectively. When the porous layer of the soft particle has small to moderate
permeability (say. λb ≥ 10), F/F0 on the soft particle with a/b being less than about 0.8
within a spherical cavity can be well approximated by the normalized force on a porous
particle having identical permeability, radius, and eccentricity inside an identical cavity,
as illustrated in Figures 5b and 8. Here, the hard core of the soft sphere barely feels the
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relative motion of the fluid and exerts only negligible hindrance. But, this approximation
does not apply to surface layers with high permeability.
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Figure 5. Normalized drag force F/F0 of a soft spherical particle translating inside a spherical cavity
versus the ratio of core-to-particle radii a/b: (a) λb = 1 and (b) b/c = 1/2. The solid and dashed
curves denote d/(c − b) = 1/5 and d/(c − b) = 1/2, respectively.
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Figure 6. Normalized drag force F/F0 of a soft sphere translating inside a spherical cavity with
d/(c − b) = 1/2 versus the ratio of core-to-particle radii b/c. The solid and dashed curves denote
λb = 1 and λb = 3, respectively.
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Figure 7. Normalized drag force F/F0 of a soft sphere translating inside a spherical cavity with
λb = 1 versus the eccentricity parameter d/(c − b). The solid and dashed curves denote b/c = 1/5
and b/c = 1/2, respectively.
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Figure 8. Normalized drag force F/F0 of a soft sphere translating inside a spherical cavity with
b/c = 1/2 versus the shielding parameter λb. The solid and dashed curves denote d/(c − b) = 1/5
and d/(c − b) = 1/2, respectively.

4. Concluding Remarks

The axially symmetric translation of a soft sphere in a viscous fluid within an eccen-
tric spherical cavity is semi-analytically investigated in the quasi-steady limit of a small
Reynolds number. A boundary collocation method is used to solve the Brinkman and
Stokes equations for the fluid flows inside and outside the porous surface layer of the
soft particle, respectively. Numerical results with good convergence for the normalized
drag force F/F0 exerted by the fluid on the particle are obtained for numerous values of
the core-to-particle radius ratio a/b, particle-to-cavity radius ratio b/c, ratio of distance
between the centers to radius difference of the particle and cavity d/(c − b), and ratio of



Fluids 2024, 9, 154 12 of 15

particle radius to porous layer permeation length λb. The cavity wall effect on the drag
force of a translating soft sphere includes monotonically increasing functions of a/b and
λb. While F/F0 generally increases with an increase in b/c, a weak minimum (surprisingly,
smaller than unity) may occur for the case of low a/b and low λb. This normalized drag
force generally increases with an increase in d/(c − b), but for the case of low a/b and low
λb, the drag force may decrease slightly with an increase in d/(c − b).

We presented in Section 3 the solutions for a resistance problem, in which the drag force
F acting on the soft sphere undergoing translation inside a spherical cavity is determined
for a given particle velocity U. On the other hand, in a mobility problem, an applied force
F acting on the particle is given and the wall-corrected particle velocity U needs to be
determined. For the low-Reynolds-number translational motion of a soft sphere inside
a cavity along their common diameter considered here, the normalized particle velocity
U/U0 [where U0 is given by U in Equation (18) with F0 = F] for a mobility problem is
equal to the reciprocal normalized drag force, (F/F0)

−1, provided by Tables 1 and 2 and
Figures 2–8 for its matching resistance problem.
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Appendix A

Some functions in Equations (11)–(15) are defined here.

A′
n(r, θ) = −rn−2[(n + 1)G−1/2

n+1 (cos θ) csc θ − (2n − 1)G−1/2
n (cos θ) cot θ], (A1)

A′′
n(r, θ) = −rn−2[(2n − 1)G−1/2

n (cos θ) + Pn(cos θ)], (A2)

B′
n(r, θ) = −(n + 1)r−n−1G−1/2

n+1 (cos θ) csc θ, (A3)

B′′
n (r, θ) = −r−n−1Pn(cos θ), (A4)

C′
n(r, θ) = −rn[(n + 1)G−1/2

n+1 (cos θ) csc θ − (2n + 1)G−1/2
n (cos θ) cot θ], (A5)

C′′
n (r, θ) = −rn[(2n + 1)G−1/2

n (cos θ) + Pn(cos θ)], (A6)

D′
n(r, θ) = −r−n+1[(n + 1)G−1/2

n+1 (cos θ) csc θ − 2G−1/2
n (cos θ) cot θ], (A7)

D′′
n (r, θ) = −r−n+1[2G−1/2

n (cos θ) + Pn(cos θ)], (A8)

γ′
n(r, θ) = λ1/2r−3/2[λrIn−3/2(λr)G−1/2

n (cos θ) cot θ − (n + 1)In−1/2(λr)G−1/2
n+1 (cos θ) csc θ], (A9)

γ
′′
n(r, θ) = −λ1/2r−3/2[λrIn−3/2(λr)G−1/2

n (cos θ) + In−1/2(λr)Pn(cos θ)], (A10)

δ′n

(
r, θ) = λ1/2r−3/2

{
Kn−1/2(λr)[nG−1/2

n (cos θ) cot θ − Pn−1(cos θ) sin θ]− λrKn+1/2(λr)G−1/2
n (cos θ) cot θ

}
, (A11)

δ
′′
n (r, θ) = −λ1/2r−3/2

{
Kn−1/2(λr)[nG−1/2

n (cos θ) + Pn−1(cos θ) cos θ]− λrKn+1/2(λr)G−1/2
n (cos θ)

}
, (A12)

A∗
n(r, θ) = 2n(n − 2)rn−3G−1/2

n (cos θ) csc θ, (A13)
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A∗∗
1n(r, θ) = (−2n + 4 − λ2r2

n − 1
)rn−3Pn−1(cos θ), (A14)

A∗∗
2n(r, θ) = −2(n − 2)rn−3Pn−1(cos θ), (A15)

B∗
n(r, θ) = 2(n2 − 1)r−n−2G−1/2

n (cos θ) csc θ, (A16)

B∗∗
1n(r, θ) = (2n + 2+

λ2r2

n
)r−n−2Pn−1(cos θ), (A17)

B∗∗
2n(r, θ) = 2(n + 1)r−n−2Pn−1(cos θ), (A18)

C∗
n(r, θ) = 2(n2 − 1)rn−1G−1/2

n (cos θ) csc θ, (A19)

C∗∗
n (r, θ) = −2(n − 2 − 3

n − 1
)rn−1Pn−1(cos θ), (A20)

D∗
n(r, θ) = 2n(n − 2)r−nG−1/2

n (cos θ) csc θ, (A21)

D∗∗
n (r, θ) = 2(n + 1 − 3

n
)r−nPn−1(cos θ), (A22)

γ∗
n(r, θ) = −λ1/2r−5/2[2λrIn+1/2(λr)− (2n2 − 4n + λ2r2)In−1/2(λr)]G−1/2

n (cos θ) csc θ, (A23)

γ∗∗
n (r, θ) = −2λ1/2r−5/2[λrIn+1/2(λr) + (n − 2)In−1/2(λr)]Pn−1(cos θ), (A24)

δ∗n(r, θ) = λ1/2r−5/2[2λrKn+1/2(λr) + (2n2 − 4n + λ2r2)Kn−1/2(λr)]G−1/2
n (cos θ) csc θ, (A25)

δ∗∗n (r, θ) = 2λ1/2r−5/2[λrKn+1/2(λr)− (n − 2)Kn−1/2(λr)]Pn−1(cos θ), (A26)

A∗∗∗
n (r, θ) = −rn−2[(n + 1)G−1/2

n+1 (cos θ) sec θ + Pn(cos θ)], (A27)

B∗∗∗
n (r, θ) = B′′

n (r, θ) + B′
n(r, θ) tan θ2, (A28)

C∗∗∗
n (r, θ) = −rn[(n + 1)G−1/2

n+1 (cos θ) sec θ + Pn(cos θ)], (A29)

D∗∗∗
n (r, θ) = D′′

n (r, θ) + D′
n(r, θ) tan θ2, (A30)

A∗∗∗∗
n (r, θ) = −rn−2[(2n − 1)G−1/2

n (cos θ) csc2 θ − (n + 1)G−1/2
n+1 (cos θ) csc θ cot θ + Pn(cos θ)], (A31)

B∗∗∗∗
n (r, θ) = B′′

n (r, θ)− B′
n(r, θ) cot θ2, (A32)

C∗∗∗∗
n (r, θ) = −rn[(2n + 1)G−1/2

n (cos θ) csc2 θ − (n + 1)G−1/2
n+1 (cos θ) csc θ cot θ + Pn(cos θ)], (A33)

D∗∗∗∗
n (r, θ) = D′′

n (r, θ)− D′
n(r, θ) cot θ2, (A34)

where Pn is the Legendre polynomial of order n.

Appendix B

For the slow translation of a soft sphere inside a concentric spherical cavity (d = 0),
the exact solution of its drag force in Equation (17) was obtained explicitly as follows [19]:

D22 = 6
Uγ

λ∆
[60αβ2 − (2β4s5 − 3α2s6 + αβs0s7) cosh(β − α)

+(2β3s8 + αs0s6 − 3α2βs7)sinh(β − α)] (A35)

where
∆ = 12αs22 + (9α2s19 − αs0s20 − 2βs21) cosh(β − α)

+3(2s23 + αs0s19 − α2s20)sinh(β − α), (A36)

s0 = α2 + 3, s5 = β5 + 15β3 − γ5, s6 = 6β5 + 45β3 − γ5,

s7 = β5 + 45β3 − γ5, s8 = 6β5 + 15β3 − γ5,
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s19 = 8β5 − 15β4γ + 60β3 + 10β2γ3 − 3γ5,

s20 = 4β6 − 9β5γ + 180β4 + 10β3γ(γ2 − 18)− 9βγ5 + 4γ6,

s21 = 4β8 − 9β7γ + 60β6 + 2β5γ(5γ2 − 63)− 3β3γ(3γ4 − 20γ2 + 90) + 4β2γ6 + 6γ6,

s22 = 20β6 − 27β5γ + 5β3γ(γ2 − 18) + 2γ6,

s23 = 8β8 − 15β7γ + 20β6 + 2β5γ(5γ2 − 36)− β3γ(3γ4 − 20γ2 + 90) + 2γ6, (A37)

α = λa, β = λb, and γ = λc.
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