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Abstract: Numerical simulations provide unfettered access to details of the flow where experimental
measurements are difficult to obtain. This paper summarises the progress achieved in the study of
passive scalars in flows over rough surfaces thanks to recent numerical simulations. Townsend’s
similarity applies to various scalar statistics, implying the differences due to roughness are limited to
the roughness sublayer (RSL). The scalar field exhibits a diffusive sublayer that increasingly conforms
to the roughness surface as k+s or Pr increase. The scalar wall flux is enhanced on the windward slopes
of the roughness, where the analogy between momentum and scalar holds well; the momentum and
scalar fields, however, have very different behaviours downwind of the roughness elements, due
to recirculation, which reduces the scalar wall flux. Roughness causes breakdown of the Reynolds
analogy: any increase in St is accompanied by a larger increase in c f . A flattening trend for the
scalar roughness function, ∆Θ+, is observed as k+s increases, suggesting the possibility of a scalar
fully rough regime, different from the velocity one. The form-induced (FI) production of scalar
fluctuations becomes dominant inside the RSL and is significantly different from the FI production of
turbulent kinetic energy, resulting in notable differences between the scalar and velocity fluctuations.
Several key questions remain open, in particular regarding the existence of a fully rough scalar regime
and its characteristics. With the increase in Re and Pr, various quantities such as scalar roughness
function, the dispersive fluxes, FI wall flux, etc., appear to trend towards saturation. However, the
limited range of Re and Pr achieved by numerical simulations only allows us to speculate regarding
such asymptotic behaviour. Beyond extending the range of Re and Pr, systematic coverage of
different roughness types and topologies is needed, as the scalar appears to remain sensitive to the
geometrical details.

Keywords: roughness; scalar transport; numerical simulations

1. Introduction
1.1. Scalar Transport

The transport of scalar quantities in turbulent flows is of great importance in many
engineering applications, as well as a central phenomenon in nature. The transfer of internal
energy or enthalpy affects applications such as heat exchangers, gas turbines, and nuclear
reactors, while mass transport governs the dispersion of particles in the atmosphere, or
hazardous material release. Scalar transport adds additional transport equations with a
new parameter, the Prandtl number Pr = ν/α or Schmidt number Sc = ν/D, where ν is
the fluid kinematic viscosity, and α or D are the conductivity or diffusivity of the scalar,
respectively. Scalars are defined as “passive” when their effect on the fluid or flow is
negligible, that is, they do not change significantly the fluid viscosity, density, etc.

1.2. Stanton Number and the Reynolds Analogy

Scalar transport (especially for heat transfer applications) has been studied for over
a century. Reynolds [1] suggested that momentum and heat in a fluid are transferred in
the same way and, therefore, proportionality must exist in geometrically similar systems;
this relation is commonly referred to as the “Reynolds analogy”. Generally, it applies to
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gases where the fluid viscosity and scalar diffusivity are similar, and is based on the notion
that the same turbulent eddies transport both scalar quantities and momentum [2–4]. The
Reynolds analogy is based on the formal similarity between the transport equations for
momentum and scalar quantities, as long as the pressure gradient is insignificant and no
additional forces are present [1,2]. The skin-friction coefficient and the scalar-flux coefficient,
St, are defined as

C f =
2τw

ρU2
b

; St =
qw

ρcpΘmUb
=

1
Θ+

mU+
b

, (1)

where τw is the wall stress, qw the wall flux, ρ the fluid density, cp the specific heat capacity,
Θm is the mixed-mean scalar, and Ub is the average velocity. The Reynolds analogy implies
that the ratio 2C f /St, known as the Reynolds analogy factor, RA = U+

b /Θ+
m , is constant and

equal to one for Pr near unity [2–5]. While this analogy also applies to mass transfer (where
the transfer coefficient is the Sherwood number, Sh) or any other type of scalar transport,
the rest of the paper will refer to heat transfer and temperature. It is to be understood that
other scalars can be treated in the same way.

The analogy may also hold when Pr 6= 1; in this case, RA 6= 1 (but remains constant) [4,6].
Classic approximations of RA for Pr ≤ 5 are power laws of the form RA ∼ Prm, and various
values of m have been suggested [3,7,8]. For larger Pr, a more complicated formulation is
necessary [4,8,9].

1.3. Effects of Roughness on Scalar Transport

The Reynolds analogy has been extensively verified for smooth surfaces [10–14].
However, hydraulically smooth behaviour can only be achieved at sufficiently low Re
[15,16]. At higher Re, when the roughness scale becomes comparable to the viscous
sublayer, any surface becomes rough. Roughness has many effects on momentum transfer;
the main ones are (1) an increase in the drag [17,18]; (2) the amplification of the wall-normal
and spanwise fluctuations, at the expense of the streamwise ones, resulting in decreased
flow anisotropy [19–22]; and (3) the breakup of the near-wall structures and modifications
of the near-wall turbulence generation cycle [23,24]. The increased wall stress results in a
downward shift of the logarithmic layer, the “roughness function”, ∆U+ (here, + denotes
wall units, i.e., quantities normalised using uτ and ν, where uτ =

√
τw/ρ is the friction

velocity). Townsend [25] proposed a similarity hypothesis stating that, at sufficiently high
Reynolds numbers, the only role of the region below the roughness crest is to set the length
and velocity scales for the outer flow. Approximately 3− 5 roughness heights above the crest,
the turbulence statistics thus normalised collapse with the corresponding smooth-wall
case [15,16,26,27]. This region is known as the roughness sublayer, RSL. Reviews of this topic
can be found in Flack and Schultz [15], Chung et al. [16], Raupach et al. [23], Jiménez [28].

There are many similarities between the effects of roughness on momentum and scalar
transport. St increases, and the mean scalar profile, which for smooth wall presents a
log-law behaviour, is also shifted down by a scalar roughness function, ∆Θ+. Townsend’s
similarity hypothesis was found to apply to the scalar variance and turbulent fluxes [29–33],
to the terms in their budget [29,31,34], to skewness and flatness [29], and to some of the
higher-order moments [29]. However, experimental studies [9,35] showed that when
roughness is introduced St remains sensitive to scalar diffusivity and decreases with Re,
while c f approaches a constant value in the fully rough regime [9,15,17,35]. This implies
the breakdown of the Reynolds analogy when the surface is sufficiently rough. Since the
roughness elements create stagnation points and recirculation regions, significant pressure
gradients occur that break the formal similarity between momentum and scalar transport
equations. Away from the wall, on the other hand, the scalar transport is dominated by the
turbulent transport, so that Townsend’s similarity hypothesis [25] also applies to the scalar.

1.4. Numerical Simulations of Rough-Wall Scalar Transport

Numerical simulations have recently begun to contribute to our understanding of
scalar-transport physics over rough surfaces. Direct numerical simulations (DNSs) (which
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requires that all the scales of motion are resolved) and large-eddy simulations (LESs) (in
which only the large, energy-carrying eddies are resolved) have been used to highlight the
flow physics and validate turbulence models for the Reynolds-averaged Navier–Stokes
(RANS) equations. Early simulations were limited to simple roughness shapes, such as
two-dimensional (2D) square bars, ribs with various orientations, circular rods, wavy
walls, or ridges [36–42]. Direct and large-eddy simulations have also been used to study
three-dimensional roughness [5,30–32,34,41,43–54]. These studies considered Pr = 0.2–6
and k+s up to 700, where k+s is the equivalent sand-grain size (that is, the sand-grain height
from Nikuradse’s experiments [17] for which the same roughness function, ∆U+, value as
the present surface is achieved); however, most of them were focused on Pr near unity (in
particular 0.7 and 1.0), and k+s ≤ 400. Table 1 contains a non-exhaustive list of key studies.

Table 1. Summary of recent numerical simulations of wall-resolved passive scalar transport with
roughness.

Study Max k+
s

I Pr or Sc Roughness Type

Doosttalab et al. [29] 11 0.7 Grit blasted
Stroh et al. [42] 12 I 0.7 Streamwise-aligned triangular ridges
Peeters [48] 52 II 2.0–6.0 Grit blasted
Peeters and Sandham [46] 102 1.0 Grit blasted
Hantsis and Piomelli [31] 110 0.7–1.4 Sand grain
Yang et al. [55] 120 0.7 Ice accretion, sandpaper, combustion chamber deposits
Miyake et al. [36] 130 I 0.7 Sand grain III, 2D ribs
Jelly et al. [5] 130 0.7 X-ray computed tomography
Orlandi et al. [43] 200 I 1.0 Regularly arranged protrusions
Kuwata [52] 200 1.0 Distributed hyperbolic elements
Nagura et al. [56] 230 0.7 Sinusoidal wall
Forooghi et al. [51] 300 0.7 Real (scanned) surfaces, various distributed protrusions
Zhong et al. [45] 300 0.5–2.0 3D sinusoidal
Rowin et al. [57] 340 0.7 3D sinusoidal
MacDonald et al. [30,44] 380 IV 0.7 3D sinusoidal
Hantsis [32] 485 0.2–2.0 Sand grain
Leonardi et al. [39] 600 I 1.0 2D circular and square bars V

Zhang et al. [58,59] 600 I 0.7 2D sinusoidal wall
Garg et al. [54] 633 0.7 Additive manufacturing scanned surfaces
Kuwata [60] 700 1.0 Distributed hyperbolic elements
Zhang et al. [58] 700 0.7 Distributed hyperbolic elements

I If not explicitly reported, value is derived from the given values of ∆U+. II The DNS conducted in the study was
limited; however, a wider range of k+s was considered by using results from other studies. III Not explicitly solved
but represented by a line force emanating from the wall. IV This value was later revised to 233 by [45]. V Only on
one side; other wall is smooth.

1.5. Scope of This Paper

The focus of this paper is on studies that resolve the near-wall region and provide
physical understanding of the flow behaviour. First, we will present the formulation of the
models discussed here, and then we will discuss some of the novel findings obtained from
numerical simulations. A list of open questions and some concluding remarks will follow.

2. Problem Description

The problem at hand can be summarised as follows: for a given roughness topology,
knowing the velocity and pressure fields, we would like to predict the behaviour of the
scalar field and its statistics. A particular question is whether a regime equivalent to the
“fully rough” regime exists for the scalar quantity and, if so, how it manifests itself. Since
Townsend’s similarity hypothesis extends to scalar transport [29,31,44,46,52], the focus of
this review will be the roughness sublayer (RSL), which extends a few roughness heights, k
(typically 3–5) above the roughness crest. Most of the studies considered focus on canonical
flows: plane channels or flat-plate boundary layers. A passive scalar is then transported by
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the flow, with the rough boundaries either kept at a constant scalar value, or providing a
constant and uniform flux.

2.1. Governing Equations

In incompressible flows, conservation of mass, momentum, and passive scalar can be
written as

∂uk
∂xk

= 0 (2)

∂ui
∂t

+
∂(uiuk)

∂xk
= − ∂p

∂xi
+

∂

∂xk
(2νSik) (3)

∂θ

∂t
+

∂(θuk)

∂xk
=

∂

∂xk

(
α

∂θ

∂xk

)
+ Q (4)

where xi, for i = 1− 3 (or x, y, and z), are the Cartesian coordinates in the streamwise,
wall-normal and spanwise directions, respectively. ui (or u, v, and w) are the velocity
components in the Cartesian directions. p = P/ρ is the hydrodynamic pressure divided
by the density, ν is the kinematic molecular viscosity (assumed constant), and Sij is the
strain-rate tensor:

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
. (5)

In Equation (4), α is the molecular diffusivity and θ = T− Tw, where T is the transported
scalar and Tw is its value at the wall. Q is a source term used to facilitate the use of periodic
boundary conditions. For a constant-flux condition,

Q = u
dTw

dx
=

qw

ρcpδ

u
Ub

, (6)

where cp is the specific heat, δ is the boundary layer thickness (or channel half-width), and
qw is the prescribed scalar wall flux. For the constant temperature (Dirichlet) boundary
condition, Q = 0. A discussion of this approach and its limitations can be found in [61].

2.2. Averaging Process and Mean Equations

Roughness causes the time-averaged fields to be spatially inhomogeneous. Conse-
quently, three types of averages can be defined: the usual time average, and two types of
spatial averages, the superficial average, 〈 f 〉s, and the intrinsic one, 〈 f 〉. The intrinsic average
is only performed over the fluid portion of the averaging region, while the superficial one
is performed over the averaging region, including both fluid and solid [23,62,63]. If the
averaging region does not contain any solid portion, both averages are identical and corre-
spond to the spatial mean of the averaged quantity; this framework allows for consistent
comparison between averages of smooth- and rough-wall cases. Using the intrinsic and
time averages, a triple decomposition can be defined. Any variable can be written as

f (xi, t) = f (xi) + f ′(xi, t) =
〈

f
〉
+ f̃ (xi) + f ′(xi, t). (7)

Here,
〈

f
〉

is the double-averaged value of f , f̃ represents the spatial inhomogeneity of

the time-averaged f , and is known as the dispersive or wake component, and f ′ is the
stochastic part. The differentiation of the averaged quantities introduces additional terms
in the governing equations. The double-averaged momentum and passive-scalar equations
are [23,63]
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−
〈
Π
〉

s =−
〈
uj
〉

s
∂〈ui〉
∂xj

− ∂

∂xj

〈
u′iu
′
j

〉
s
− ∂

∂xj

〈
ũi ũj

〉
s +

∂

∂xj

(
ν

∂〈ui〉s
∂xj

)

+

〈
∂

∂xj

(
ν

∂ũi
∂xj

)〉
s

−
〈

∂ p̃
∂xi

〉
s

(8)

−
〈

Q
〉

s =−
〈
uj
〉

s

∂
〈
θ
〉

∂xj
− ∂

∂xj

〈
θ′u′j

〉
s
− ∂

∂xj

〈
θ̃ ũj

〉
s

+
∂

∂xj

(
α

∂
〈
θ
〉

s
∂xj

)
+

〈
∂

∂xj

(
α

∂θ̃

∂xj

)〉
s

. (9)

The third term on the RHS of Equation (8) is the dispersive stress, while the last two
terms are the viscous and pressure fluxes; integrating them over the RSL yields the viscous
and form drag, respectively. In Equation (9), conversely, the third and fifth terms on
the RHS are the dispersive flux and the form-induced (FI) flux, sometimes referred to as
“wall-interaction term” [33,60].

3. Achievements
3.1. Instantaneous Scalar Field

Numerical simulations provide unfettered access to details of the flow field, both for
momentum and scalar. Examining the instantaneous and time-averaged scalar field is the
most direct way to understand the effects of roughness on scalar quantities.

The key differences between the scalar and momentum fields occur near and around
the roughness elements, which frequently have stagnation points in front and recirculation
regions behind them, leading to significant pressure gradients. As is well known, in the fully
rough regime closely packed roughness elements “shelter” each other [62], and the pressure
drag (which is weakly dependent on Re) is much larger than the Re-dependent viscous one.
This behaviour has been observed in many investigations [30–32,39,41,44,46,52].

Figure 1 shows the instantaneous velocity (a, e) and scalar contours (b–d, f–h) for a
range of Pr and k+s . It is apparent that, as k+s increases, the scalar gradients are confined to
a thinner and thinner layer that closely follows the geometry [30,44]. This is demonstrated
by the thickness of the regions covered by u+ ≤ 5 or θ+ ≤ 5, respectively, which indicate
the extent of viscous and diffusive sublayers.

The same effect is observed when Pr is increased, and the low diffusivity also acts to
confine the gradients to a thin layer. For the lower values of Pr and k+s , however, we still
observe some effect of the sheltering and of the recirculation regions. When the convection
behind the roughness elements is less vigorous, the scalar forms regions where it is well
mixed, where the small gradient limits the local transfer rate of the scalar quantity [30,46,51].
The much thicker recirculation regions behind the roughness protrusions act as “resistance”
to the scalar wall flux [30,32,45,51].

In a smooth-wall case, an increase in Re affects the thickness of both viscous and
diffusive sublayers (and the boundary layer thickness itself). For a fully rough case, on
the other hand, the increase in Re does not affect the viscous sublayer while still thinning
the diffusive sublayer; therefore, the mechanisms that govern the viscous sublayer in the
smooth-wall case do not apply directly to the rough-wall case. It is then clear that the effects
of Re and Pr, while similar, work separately from each other—a Péclet-number scaling
Peτ = Reτ Pr, commonly used in the smooth-wall case, is not directly applicable in the
presence of roughness [34,45,57].
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Figure 1. Instantaneous velocity u+ (a,e) and scalar (b–h) at various Pr ranging from 0.2 to 2.0
shown across a vertical plane (x− y) of dimensions δ× 0.2δ. k+s is 70 in the first column (a–d) and
265 in the second (e–h). Velocity quivers show the direction of the instantaneous velocity. The white
region corresponds to ≈ 5.0; purple lines indicate u+ = 0. All quantities are scaled in inner units.
Figure reprinted with permission from Hantsis [32].

Repeated impingement of bulk fluid on the exposed (i.e., not sheltered by upstream
elements) windward side of the roughness produces an attached thin diffusive sublayer
over the windward surface [45,57]. Zhong et al. [45] found that the ratio between the local
diffusive and viscous sublayer thicknesses δα/δν ∝ Pr−1/3 at the crests, supporting an
argument originally put forward by Owen and Thomson [35] and Yaglom and Kader [64]
that “smooth-wall-like“ boundary-layer behaviour is seen at the local roughness crests. The
diffusive sublayer is observed to be thinnest on the exposed windward side and around
the crest, resulting in sharp scalar gradients that enhance the scalar wall flux [45,46]. Both
viscous and diffusive sublayers at the roughness crests were shown to be thinner compared
with an equivalent smooth-wall case (under the same Reτ and Pr) [45,57]; however, as k+s
increased, their thickness approached that of the smooth-wall case (this was shown for
Pr = 0.5–2.0; it is assumed that this behaviour is maintained at higher Pr) [30,32,45].

Conversely, on the leeward side, the diffusive sublayer is much thicker than the
equivalent smooth-wall one [45,57]. This can be seen best on the leeward side right behind
the crest in Figure 1, where the diffusive sublayer can sometimes be the same thickness as
the roughness elements themselves, and this is further supported by the effective reduction
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in the scalar wall flux in the recirculation regions. On the windward side, the rough-
wall diffusive sublayer is analogous to a contorted, smooth-wall diffusive sublayer (at
sufficiently high k+s ) [44,45]; a similar analogy cannot be made on the leeward side. The
variation of the diffusive-sublayer thickness (compared with an equivalent smooth-wall
case) results in enhanced scalar transport in some regions but attenuation in others; the
integral of all of these results in a net increase or decrease in scalar transport relative to the
smooth-wall case.

The recirculation affects the fluid that impinges on the windward slope, drawing it
down and backwards (opposite to the direction of the bulk flow) towards the base of the
roughness [44,46]. The lack of a pressure-equivalent mechanism for the scalar results in
reduced advection of the scalar away from the troughs and, therefore, results in some
accumulation of the scalar in “pockets” [45,46]. These “pockets” extend into sheltered
regions where the velocity is much smaller, or even negative [44,46]; their extent seems to
be well correlated with the location where u becomes zero [45]. This mechanism generates
larger scalar gradients locally, which partially compensates the reduced scalar transfer in
the recirculation regions (more details in Section 3.3).

3.2. Mean Profiles and the Scalar Roughness Function

Mean velocity and scalar profiles have been extensively measured experimentally
([11–13,17,23,26–28,35,62,65–69] and others). These studies produced empirical correlations
and phenomenological models that, in turn, led to predictions of the scalar roughness
function, ∆Θ+, in the fully rough regime.

Disagreement amongst these models resulted in very different predicted behaviours
of ∆Θ+ when k+s → ∞. The underlying physical assumptions that underpin these models
were difficult to evaluate, due to a lack of high-fidelity data, in particular for dense rough-
ness. Numerical simulations provide a tool to test the underlying physical assumptions,
and to sweep systematically across a range of parameters (geometry, Prandtl number,
Reynolds number, etc.), which may be difficult to achieve experimentally. In particu-
lar, the minimal-channel approach facilitates a relatively low-cost way to achieve such
parameter sweeps.

Figure 2 show the profile of the mean scalar as Re and Pr are varied. Similar to the
mean velocity, the mean scalar also shows a logarithmic region, which can be expressed as:

Θ+ =
〈
θ
〉+

=
1
κθ

log
[
(y− d)+

]
+ Aθ − ∆Θ+ (10)

where κθ ≈ 0.46 [31,70] and Aθ(Pr) is the smooth-wall intercept. Zhong et al. [45] report
other equivalent forms of Θ+. Aθ increases with Pr [3,70], resulting in an upwards shift
of the logarithmic region. In contrast, the increase in Re (and therefore k+s ) results in a
downward shift of the logarithmic region.

The downwards shift of the logarithmic region between the smooth- and rough-wall
cases is quantified by the scalar roughness function, ∆Θ+, which is equivalent to the
Clauser–Hama roughness function, ∆U+. ∆Θ+ depends on Pr and various geometrical
roughness parameters, as illustrated in Figure 2. In Figure 2a, Pr = 1.0 is fixed and k+ is
increased (by varying Re); ∆Θ+ increases with k+, but seems to approach an asymptotic
state where all curves collapse at high k+. This trend was also noticed in other types of
roughness [5,30,34,45,57]. In Figure 2b, the roughness height is fixed and Pr is varied.
Again, there is an upwards shift of the logarithmic layer with Pr, which is much larger in
the smooth-wall case [34,64]. As a consequence, the net shift in ∆Θ+ between the smooth-
and rough-wall cases (for each Pr) increases with Pr [34,48,57].
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Figure 2. Variation of the mean (double-averaged) scalar profiles with Reτ and Pr. (a) Pr = 1.0 at
different Reτ ; (b) Pr between 0.2 and 2.0 at Reτ = 4200 (k+s = 265). Dashed line in (a) indicates the
smooth-wall curve for Pr = 1.0. Reprinted with permission from Hantsis [32] .

Several empirical models have been proposed to relate ∆Θ+ to the equivalent sand-
grain roughness, Prandtl number, and scalar von Kármán constant [3,9,35,64,69]. These
models result in disparate predictions of ∆Θ+, generally suggesting a monotonic decrease
at higher k+s . These studies also cannot agree on the value of k+s at which this decrease
starts or on the decrease rate.

A different trend was observed by MacDonald et al. [30,44], who suggested a flattening
of ∆Θ+ and the possibility of an asymptotic value ∆Θ+

FR for k+s → ∞. This behaviour is
consistent with the observation of a thin diffusive sublayer that conforms to the topography
in the fully rough regime. Other studies [5,31,41,46,47,52,53,57,71], covering various types
of roughness and a wider range of Pr, support this trend (Figure 3).

Zhong et al. [45], however, found that the scalar roughness function is largest at
k+ ≈ 40, and then gradually decreases. They suggest that this trend would lead to a
decrease of the wall flux, which contradicts the current understanding of rough-wall scalar
transfer [72,73]. This discrepancy may result from the use of the minimal-channel approach,
in which the mean profiles away from the wall may be artificially altered.

101 102 103

k+
s

0

2

4

6

8

10

12

"
#

+

Pr=0.2
Pr=0.5
Pr=0.7
Pr=1.0
Pr=2.0

"U
+

(a)

101 102

k+
s

0

1

2

3

4

5

6
6f = 0:09
6f = 0:18
6f = 0:36

Pr = 0:7

(b)

Figure 3. Scalar roughness function, ∆Θ+, vs k+s from selected studies; (a) shows the effect of Pr
and (b) the effect of the frontal solidity, λ f . For (a): Colours and lines indicate the Prandtl number:

Pr=0.2; Pr=0.5; Pr=0.7; Pr=1.0; Pr=2.0. Markers indicate: Hantsis [32];
Zhong et al. [45]; Rowin et al. [57]; MacDonald et al. [44]; Jelly et al. [5]; Peeters and

Sandham [46], Peeters [48]; De Maio [74]; Kuwata [60]. Grey dash–dot line: The velocity
roughness function, ∆U+, from Nikuradse’s sandpaper experiment [17]. For (b): Pr = 0.7, data from
Rowin et al. [57] for Λ=0.09; Λ=0.18; Λ=0.36. Reprinted with permission
from [57].
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Figure 3a shows the variation of ∆Θ+ with k+s at different Pr. One commonly observed
feature is ∆Θ+ < ∆U+ at sufficiently high k+s . For Pr > 1.0, there exists a finite range of
k+s for which the opposite is true; the value of k+s for which ∆Θ+ intersects the velocity
asymptote increases with Pr. Since higher values of ∆U+ and ∆Θ+ indicate enhancement
of momentum and scalar transport, respectively, the range in which ∆U+ < ∆Θ+ is of
significant interest.

The implication of an asymptotic value ∆Θ+
FR for all Pr is the possibility that an

“ultimate regime”, a scalar equivalent of the fully rough regime, exists, characterised by
∆Θ+ → ∆Θ+

FR. Peeters [47,48] suggested a model for ∆Θ+
FR, noting that the flattening

of ∆Θ+ at sufficiently high k+s was reproduced when only the viscous–convective and
diffusive ranges were considered; otherwise an increase in ∆Θ+ would be observed. Peeters
[48] concluded that the flattening must be the result of the interaction between the viscous–
convective and diffusive scales with the rough wall.

∆Θ+
FR increases with Pr for a fixed roughness geometry [31,32] (Figure 3a). For a fixed

Pr, it is sensitive to topological details such as the frontal solidity, λ f (the ratio between
the frontal area of the roughness and the total plan area), as shown in Figure 3b. ∆Θ+

FR
also increases with λ f , unlike ∆U+, which saturates. Figure 3a also raises the possibility
of ∆Θ+

FR clustering with Pr, even for different roughness types and topologies, suggesting
stronger dependence on Pr and weaker dependence on the roughness details.

Because of the limited range of Pr and k+s achieved by numerical studies, we can only
speculate on the behaviour of ∆Θ+ at higher k+s , and further investigations are required to
clarify the issue. However, it is expected that at the ultimate regime the enhancement of
the scalar transport will saturate and will be accompanied by increasing drag.

MacDonald et al. [30] and Rowin et al. [57] analytically derived a relation between
∆Θ+ and the Stanton number, St:

∆Θ+ =

√
2

c f 0

(
1

St0
− 1

κθκ

)
−
√

2
c f

(
1
St
− 1

κθκ

)

= Aθ +
κ

κθ

(
∆U+ − A

)
︸ ︷︷ ︸

Term 1

−
√

2
c f

( c f

2St
− κ

κθ

)
︸ ︷︷ ︸

Term 2

, (11)

where the subscript 0 indicates the equivalent smooth-wall case value; and A and Aθ(Pr)
are the previously mentioned velocity and scalar log intercepts for the smooth-wall case.
This expression identifies two types of contributions: Term 1 depends only on inner-scale
quantities that are invariant to bulk (outer-scale) Re, while Term 2 only involves bulk
quantities (such as the skin-friction coefficient and Stanton number), which inherently
depend on the bulk Re; note that the fraction in Term 2 is the inverse of the Reynolds
analogy factor. The Reynolds number does not appear explicitly, implying that ∆Θ+ does
not scale with Re. Furthermore, in the fully rough regime, only ∆U+ and St change for
a fixed Prandtl number, with ∆U+ = log(k+s )/κ − 3.5 [15–17]. Thus, we can then rewrite
Equation (11) as:

∆Θ+ =

[
Aθ +

κ

κθ

(√
2
c f
− A

)]
+

[
κ

κθ

(
1
κ

log
(
k+s
)
− 3.5

)
−
√

c f

2
1
St

]
(12)

where the expression in the first bracket is constant for fixed Pr and given roughness
geometry. An asymptotic value ∆Θ+

FR implies that the terms in the second bracket must
also be constant and that St ∼ log−1(k+s ). This provides an alternative indicator to verify
the behaviour of ∆Θ+ at k+s → ∞ using a bulk quantity (St), which is easier to measure
experimentally.
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3.3. Scalar-Flux Coefficient

The scalar-flux coefficient, known, in normalised form, as the Stanton number, St, is
the scalar equivalent of the skin-friction coefficient, c f . The Reynolds analogy factor, RA, is
the ratio between St and c f . Both St and RA are commonly used to quantifying the effects
of roughness, by comparing them to the equivalent smooth-wall case. Hereinafter, we use
the subscript 0 to denote the values from the equivalent smooth-wall case (same Reτ and
Pr), i.e., St0, c f 0, and RA0.

Many experimental studies (such as [3,9,12,35,64,65,75] and others) focus on the bulk
values of c f and RA.

A common objective is to find a predictive empirical correlation for St in various
roughness conditions which, in conjunction with known c f correlations, can be used to
calculate RA. Numerical simulations, on the other hand, have allowed us to examine
the local distributions of their quantities, and to access the flow properties below the
roughness crest.

Local values of both St and c f (and therefore RA) can be defined using either the instan-
taneous or time-averaged scalar flux, qw, shear velocity, uτ, and shear scalar, θτ [30,44–46].
MacDonald et al. [44] separated the friction- and pressure-drag components of c f (which is
difficult or impossible in experimental studies). The viscous component, c f ν, was then com-
pared with St locally. They are shown over a section of the roughness surface (which was a 3D
sinusoid) in Figure 4. For Pr = 0.7, the behaviours of St and c f ν are overall similar; the most
distinct differences occur in the troughs between roughness elements. Unlike St, which is a
non-negative quantity, the viscous component, c f ν, is negative in the recirculation regions on
the leeward side of the roughness elements. For this sinusoidal roughness, the negative region
covers approximately 40% of the plan area, both in the transitionally and fully rough regimes
[44]. Thus, RA is more likely to be close to one on the windward side of the roughness elements,
or near the crests [44].
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Figure 4. Spatial distribution of the time-averaged viscous skin-friction component c f ν (a) and St (b).
A dashed contour in (a) show negative stress. Reprinted with permission from [44].

A different approach was employed by Zhong et al. [45], who used a compensated
viscous-to-diffusive sublayer ratio, Rνα = (δν/δα)Pr1/3, to identify where a Reynolds
analogy-type behaviour exists. The Reynolds analogy can be assumed to be valid when
this ratio is approximately constant (with a value depending on Pr). Departures from a
constant value indicate weakening of the analogy. It was found that, at the shear-driven
windward side of the roughness elements, the Reynolds analogy usually holds locally, as
the ratio is almost constant, in line with the findings of [30]. The thicknesses of the viscous
and diffusive sublayers on the windward side are comparable to those in the equivalent
smooth-wall case. At the crests, a mild departure from a constant is reported, suggesting a
partial analogy [45,58]. It is in the detached regions behind the roughness elements where
the analogy clearly breaks down, due to the prominence of reversed flow and weak shear.
Zhong et al. [45] noted that, while a Reynolds analogy-type mechanism is dominant on the
windward side, behind the roughness elements an ensemble of different local behaviours
determine the attenuation of the scalar wall flux. The degree of dissimilarity also depends
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on the relaxation of the detached region, and whether reattachment occurs before the next
roughness element (i.e., on the level of sheltering).

This is also confirmed by examining the probability density functions (PDFs) of the
instantaneous c f and St, as well as their joint PDF (jPDF), conditioned on flow reversal.
Indeed, the conditioning on u > 0 (attached flow) resulted in similar PDFs for c f and St.
In contrast, the condition u < 0 (reversed-flow region) produced significantly different
PDFs for c f and St [45,46]. Similarly, both the shape and trend of the jPDFs between c f and
StPr2/3 (the components of Rνα) on the windward side were very similar to a smooth-wall
case; in contrast, the trough regions resulted in very different-looking jPDFs for all the cases
examined [45]. These results were consistent over a wide range of roughness heights.

Another qualitative observation of [44] was quantitatively confirmed by the PDFs:
higher values of St are associated with the larger positive slopes on the windward side,
while lower St values are associated with the negative slopes where the flow is reversed in
the troughs, which act as local resistance [40,46]. That means that taller roughness elements
are likely to have higher-than-average St on the windward side, and lower-than-average St
on the leeward side [30,46,56]. This indicates that describing the rough wall as a “contorted
smooth wall” with increased effective wall area (compared with the plan area) is only
reasonable in regions where Reynolds analogy-type behaviour exists.

Comparing δν and δα on the rough surface to the equivalent smooth-wall value is a
measure of the local augmentation or attenuation of the scalar wall flux [45]. The deviation
of the rough-wall values from the smooth-wall ones can be integrated over the entire wall
to estimate the bulk effect of the roughness.

On the windward side of the roughness elements, where the flow is attached and exposed
to high shear, a smooth-like boundary layer is observed, thickest at the crest [35,45,64]. Here,
both δν and δα are smaller than the equivalent smooth-wall values, and δν is attenuated more
significantly than δα at Pr = 1.0 [45]. As k+s increases, however, both δν and δα approach
their respective smooth-wall values, albeit at a decreasing rate. This trend appears to become
insensitive to Pr as k+s increases; the slowdown of the growth rate is much more drastic for δα

than for δν. This implies a local Reynolds analogy-type behaviour at higher k+s , and an increase
in St relative to the smooth-wall case on the windward side. Furthermore, for a wavy rough
wall, [45] suggested the following correlations for c f and St at the crests:

c f crest = 2
uδν

Uk

1
U+

k δ+ν
≈ 0.46

(
k+
)−0.5 (13)

Stcrest =
θδα

Θk

1
U+

k δ+α
≈ 0.16

(
k+
)−0.42Pr−0.72 (14)

where uδν
and θδα

are the velocity and scalar at the edge of the viscous or conductive
sublayers, and Uk = 〈u〉y=ycrest

and Θk =
〈
θ
〉

y=ycrest
are the averaged crest velocity and

scalar, respectively. In this context, the roughness height, k, is the wavy-wall amplitude,
related to the equivalent sand-grain size by k+s = 2.7k+.

Numerical simulations also help understand the effect of Pr on St in the different
regions. In general, St ∼ Pr−m, where for a smooth wall m = 0.48–0.5 [3,7,67]. On the
windward side and crests, m ≥ 0.5, while on the leeward side and in recirculation bubbles,
m ≤ 0.5. In the wavy-wall example mentioned earlier, St ∼ Pr−0.38 in the troughs, while
St ∼ Pr−0.72 at the crests [45]. Rowin et al. [57] further refined this observation, noting that,
when the windward slope is partially sheltered, St ∼ Pr−2/3 (corresponding to RA = 1)
on the exposed side of the slope, while St ∼ Pr−0.45 on the sheltered side. They used
correlations similar to Equations (13) and (14) to develop a model predicting the scalar
transport for rough walls, accounting for the “sheltered” and “exposed” regions of the
roughness. The model gives good results for the cases tested (3D sinusoidal roughness
with high frontal solidity, and Pr = 0.5–2.0). Further improvements of the model for lower
solidity are, however, desirable.
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The local contributions can be integrated over the roughness surface to determine the
net effect of roughness on the bulk scalar, which is a more relevant measure for practical
engineering applications. The increased contribution of the windward side overcomes the
resistance due to the recirculating regions, resulting in a net increase in the scalar transport
compared with the smooth-wall case, that is, St > St0 [9,35,44,46].

The smooth-wall Stanton number and skin-friction coefficients can be obtained from
correlations of the experimental data [3,76]:

St0 = 0.021Re−1/5Pr−1/2; c f 0 = 0.073Re−1/4. (15)

Both quantities decrease with Re at different rates. In the rough-wall case, St increases with
equivalent sand-grain size k+s , reaching a peak in the transitionally rough regime, followed
by a monotonic decrease in the fully rough regime [35,39,44,46,48,51]. In contrast, the bulk
c f approaches an asymptotic value in the fully rough regime [17].

Several numerical studies [40,44,45,51,56,57,60,77] examined various types of rough-
ness, systematically changing some topological parameters while maintaining the others
fixed. They included variation of the frontal solidity, spacing, density, orientation, slope,
etc. They showed that St is both sensitive to the type of roughness and to its topology.
The rate of decrease for St seems to be specific to the type of roughness and details of the
topology [5,51,52] and, perhaps, also to the value of Pr.

This corresponds to the scalar roughness function behaviour discussed in Section 3.2.
Some authors (e.g., [5,30]) reported that St decreases at a slower rate than St0, indicating
that the St increase by roughness becomes larger with Re (although at a decreasing rate),
while others [45,58] reported the opposite. This suggests that, at high enough k+s , St may
be smaller than in the corresponding smooth-wall case at the same values of Re and Pr. It
would be worthwhile to explore this issue in a systematic manner.

The frontal solidity, λ f , is a key parameter associated with impingement and recircu-
lation. The effective slope, ES, plays the same role as λ f , as the two are directly related
by ES = 2λ f [78]. Therefore, low values of λ f correspond to sparsely packed shallow
roughness, while high values of λ f correspond to densely packed steep roughness [16].
Depending on the roughness geometry, a peak of St can be seen in 0.1 < λ f < 0.3, usually
corresponding to maximum c f [39,45,51].

Forooghi et al. [51] used distribution of truncated cones, and varied independently
the height, effective diameter (i.e., the diameter of a cylinder with the same frontal area),
and the spacing between the roughness elements. They found that as the spacing decreases
(while maintaining the other parameters, i.e., the roughness becomes more “dense”) St
reaches a maximum and then decreases. It was suggested that this behaviour occurs
because more of the upwind portions becomes sheltered (partially or fully), which limits
the amount of unmixed fluid that could impinge on the surface [45,51]. In the limit of
zero spacing (or infinite density), a smooth-wall equivalent is expected with St → St0,
consistent with this trend. In contrast, increasing in the slope by scaling the geometry while
maintaining the elevation resulted in a monotonic increase in St.

As discussed, c f and St behave differently at increasing Re and for different roughness
geometries, and, therefore, RA depends on the morphological parameters for both regular
and irregular roughness [5,44,51]; this is a result of the large differences between momentum
and scalar in the recirculation region downstream of roughness elements.

An expression for RA can be directly derived from a semi-empirical expression for
the scalar roughness function proposed by Kays and Crawford [3]. Kuwata [60] modified
this expression based on the phenomenological behaviour of ∆Θ+ discussed in Section 3.2
and on their DNS data; their expression predicted all the results within a 4.2% error. Its
universality, however, was not established and the authors suggest the possibility of adding
a coefficient dependent on roughness type.

Figure 5 compares c f /c f 0 and St/St0. In most cases, the skin friction increases faster
than the Stanton number, implying RA < 1; in Ref. [41], however, the opposite behaviour
was observed. It should be pointed out that in this paper high-aspect-ratio streamwise
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ribs were used, whose behaviour differs significantly from that of distributed roughness
because of the rollers generated by the Kelvin–Helmoltz instability, which suppresses
sweeps and ejections, resulting in lower Reynolds stress [41,77]. A similar effect can be
achieved using blowing or suction at the wall [77]. It is important to note that RA > 1 can
only be attained for a limited range of Re; once the rib spacing, s+, becomes too large the
increased drag overcomes the augmentation of scalar transfer, leading to RA < 1; this is
true for various types of longitudinal ribs and riblets [41,77] where the range of s+ at which
RA > 1 depends on the geometry.
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Figure 5. (a) St/St0 vs. c f /c f 0 for various types of roughness. NHH2004: Nagano et al. [37] ;
B2005: Bons [72] ; FSF2018: Forooghi et al. [51] ; MHC2019: MacDonald et al. [44] ; NKS2020:
Nishiyama et al. [79] ; K2021: Kuwata [52] ; NYKS2022: Nagura et al. [56] ; JDLW2023: Ji et al.
[40] ; JRHC2023: Jelly et al. [5] ; Black dotted line indicates St/St0 = c f /c f 0. K2022: Kuwata
[41] —reference case with longitudinal ribs. (b) Variation of η = RA/RA0 with the equivalent
sand-grain roughness k+s . FSF2018: Forooghi et al. [51] truncated cones, cylinders, IC piston
surface, turbine blades; PS2019: Peeters and Sandham [46] ; MHC2019: MacDonald et al. [44] ;
NYKS2022: Nagura et al. [56] ; JRHC2023: Jelly et al. [5] Isotropic, streamwise bars, spanwise
bars; GWF2024: Garg et al. [54] ; Black dotted line is Equation (18) with the grey dashed lines
indicating a 10% error interval.

It is also possible to examine how RA compares to the equivalent smooth-wall value
RA0 as function of k+s . The rough-to-smooth ratio of the Reynolds analogy factor, η,

η =
RA
RA0

=
St
St0

c f 0

c f
. (16)

is an efficiency parameter commonly known as the “aero-thermal efficiency factor”. We
will use the same terminology here, understanding it is applicable to the various scalar
quantities. In most cases, η < 1 (i.e., ∆U+ > ∆Θ+); riblets or other high-aspect-ratio
streamwise longitudinal ribs have a different behaviour [41,77]. Using the discrete element
approach (in which the flow is spatially averaged over the roughness elements, modifying
the mean flow equations to account for blockage effects, as well as the drag and scalar flux),
Aupoix [80] suggested:

η =
1− ∆U+

√
c f 0/2

1− RA0∆Θ+
√

c f 0/2
(17)

which was found to give good predictions for various types of roughness [46,51].
Forooghi et al. [51] observed that η is a convex function of the roughness density

and the frontal solidity, λ f ; predicting the λ f value of the minimum for different types of
roughness is still an open question. It was also shown [5,51,56] that η decreases both with
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an increase in k+s or in the effective slope, ES. This decrease eventually saturates, Figure 5b.
Forooghi et al. [51] derived an expression for η based on a systematic DNS study, using
various types of roughness for Pr = 0.7:

η = 0.55 + 0.45e−k+s /130 (18)

similar to the proposal by Bons [72], but using k+s instead of the outer-scaled ks. This is meant to be
a simplified single-parameter correlation rather than a general expression that accounts for all possi-
ble effects; nevertheless, although only requiring the knowledge of k+s , Equation (18) predicts
all the roughness morphologies considered by Forooghi et al. [51] (with a single exception)
within a 10% error, as well as the results of Jelly et al. [5], Nagura et al. [56], Aupoix [80].
Interestingly enough, Equation (18) also predicts well the data of Peeters and Sandham [46]
(grit-blasted surfaces) and Kuwata and Kawaguchi [33] (irregular roughness) for Pr = 1.0.
One exception is the additive-manufacturing (AM) roughness of [54], which follows the
same trend but falls below all the other results. This may indicate some significant difference
in the properties of AM compared with other types of roughness.

3.4. Dispersive Flux

The roughness geometry generates a stationary inhomogeneity in the velocity and
scalar fields, referred to as a wake or dispersive field. The wake velocity, ũ, and scalar, θ̃, fields
are compared in Figure 6 for Pr = 1, showing overall similarity throughout the RSL. A
difference can be observed in the troughs between roughness elements, where ũ and θ̃ tend
to have opposite signs [31,58], the result of the accumulation of scalar near the wall due to
the lack of a pressure-like mechanism, discussed in Section 3.1. For Pr ≥ 1.0, it is expected
that the θ̃ > 0 regions would be more extensive than the ũ > 0 regions.
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Figure 6. Dispersive component of the streamwise velocity, ũ (a) and scalar, θ̃, with Pr = 1.0 (b),
normalised in wall units. The vertical slice has dimensions 1.4δ× 0.2δ. Colour denotes the magnitude
of each component. Isolines denote the ũ = 0 or θ̃ = 0 contours.

The normal dispersive stresses, ũkũk, tend to be largest at the crest of the elements.
Their streamwise component, ũũ, is the largest in magnitude, and has been found to be
insensitive to k+s [58,60]. A secondary peak of high ũkũk can be found around the troughs,
usually at the edge of the recirculation bubble. These locations generally correspond to the
points where the stochastic normal Reynolds stresses, 〈u′ku′k〉, are smaller [32,58].

Contours of the shear components that contribute to the momentum and scalar trans-
port, 〈ũṽ〉 and

〈
θ̃ṽ
〉

, from Zhang et al. [58], are shown in Figure 7. The wall-normal wake
velocity, ṽ, is particularly large in magnitude around the crests and close to the trough,
and is directed towards the boundary [58,60,81]. The difference between the dispersive
stresses and fluxes is due to the differences in size and magnitude between θ̃ and ũ, as
well as their correlation with locations of intense ṽ (note that in a channel 〈v〉 = 〈w〉 = 0,
so that ṽ = v and w̃ = w). Both ũṽ and θ̃ṽ are large and negative around the crest but
positive on the leeward slope, where θ̃ṽ is more dominant. In the secondary peak near the
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trough, ũṽ is positive, while θ̃ṽ is negative, and peaks slightly further downstream, close to
the reattachment point [58]. This is due to the positive region of θ̃ extending towards the
recirculation region and into regions of negative ṽ, as discussed before.
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(c) (d)

ũṽ/U2
b ũṽ/U2

b
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ũ < 0
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ṽ < 0
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Figure 7. Dispersive stresses (a,b) and fluxes for Pr = 0.7 (c,d) shown on vertical XY slices over a
sinusoidal surface. Isolines denote values of ũ (a), θ̃ (c), or ṽ (b,d). λx is the sinusoidal wavelength.
Reprinted with permission from Zhang et al. [58].

Zhang et al. [58] noted that the maximum value of the various dispersive quantities,
in outer units, increased linearly as the slope became steeper. The dispersive normal
stresses, shear stress, and vertical scalar dispersive flux all showed similar trends, while
the streamwise dispersive scalar flux showed a more moderate increase.

From an average perspective, the streamwise component is the the dominant one for
both dispersive fluxes and stresses [60]. The flux component,

〈
θ̃ṽ
〉

s
, was reported to vary

between 25% [32] and 50% [82] of the total scalar flux inside the RSL. At sufficiently large
k+s , the mean dispersive stresses and fluxes become independent of k+s and Re [32,40,52,60];
a similar trend was found for

〈
θ̃ũj

〉
s

with increasing Pr [32]. Both the dispersive stresses
and fluxes remain dependent on the roughness topological details.

Overall, the dispersive fluxes are not well studied and may be a very useful avenue of
numerical exploration, since they are very difficult to measure experimentally. They seem
to be less sensitive to k+s [60] and even reach saturation [32,58,60]. They are also important
for the production of turbulent fluxes [31,32] and in the context of modelling, especially if
the double-averaged NS equations (DANS) are used [80,82,83].

3.5. Form-Induced Scalar Flux

A key difference between the transport of momentum and scalar, in the context of
roughness, is the mechanism by which the flux across the solid boundary takes place.
The transfer of momentum becomes progressively dominated by the pressure drag, Fp,
as k+s increases, while the viscous drag, Fν, decreases. The scalar wall transfer, however,
is only due to diffusive mechanisms [3,9,35], and is denoted here as“form-induced (FI)
transfer”, Fα (sometimes referred to as “wall-interaction transfer term” [52,56,60]). The
spatial distributions of Fν, Fp, and Fα are difficult to obtain experimentally but can be easily
calculated numerically [23,62,84].
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The FI scalar transfer, Fα, is the spatial integral of the local FI flux fα, found on the
RHS of Equation (9):

fα =

〈
∂

∂xj

(
α

∂θ̃

∂xj

)〉
s

= − 1
A0

∮
∂S f

α
∂θ̃

∂xk
(nkdl)

and the viscous drag, Fν, and pressure drag, Fp, are the integrals of

fν =

〈
∂

∂xj

(
ν

∂ũi
∂xj

)〉
s

= − 1
A0

∮
∂S f

ν
∂ũi
∂xk

(nkdl)

fp = −
〈

∂ p̃
∂xi

〉
s
= − 1

A0

∮
∂S f

p̃(nkdl)

respectively, found on the RHS of Equation (8). The integration domain, ∂S f , is the part of
the roughness surface that intersects the averaging domain of size A0 (i.e., the perimeter of
the roughness surface intersecting a horizontal plane of size A0 for a channel) and nk is the
k-th component of the outward-pointing unit vector normal to the roughness surface.

As the bottom of the RSL is approached, Fp and Fν dominate the mean momentum
transfer (with Fp being more significant at increasing k+s ), while Fα dominates the mean
scalar transfer [31–33].

The total FI momentum flux, f+ν + f+p , is generally larger than the scalar FI one, f+α , [32,33],
which results in the total drag (F+

ν + F+
p ) being larger than the scalar wall transfer (F+

α ). Kuwata
and Kawaguchi [33] noted that, in the region closest to the bottom of the roughness, the opposite
( f+ν + f+p < f+α ) can occur locally due to the negative local shear stress.

Kuwata [52] showed that the total momentum FI, f+ν + f+p , and scalar FI flux, f+α , have
similar behaviours when scaled in inner units and plotted against non-dimensionalised wall
distance. Furthermore, the increase in the effective slope, ES, shifts the main contribution
of f+α away from the base of the roughness. A possible explanation for this is the increase
in surface area away from the base, as well as the presence of the well-mixed fluid between
the roughness elements (see Section 3.1), referred to as an “insulation layer”, near the base
of the roughness. Consistent with the discussion of the thinning of the diffusive layer,
which tends to conform to the roughness shape when either Re or Pr increase, F+

α becomes
proportional to the solid fraction [31,32], as shown in Figure 8.
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Figure 8. Comparison of the FI momentum and scalar fluxes for a range of Reτ with roughness
height k/δ = 0.04. Dash–dot lines ( ) indicate the total drag (F+

p + F+
ν ); circle markers ( ) indicate

the scalar wall transfer F+
α for Pr = 1.0. Figure reprinted with permission from Hantsis [32].

3.6. Scalar Fluctuations and Turbulent Structures

Roughness has a profound impact on both velocity and scalar fluctuations, and nu-
merical simulations are able to access them even below the roughness crest. Several studies
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compared stochastic stresses and scalar correlations inside the RSL, contributing to a better
understanding of the dynamics of momentum and scalar transport.

Roughness breaks up both velocity and scalar streaks, resulting in more isotropic
turbulence, evidenced by both stochastic stresses,

〈
u′iu
′
j

〉
s
, and scalar correlations,

〈
u′iθ
′
〉

s
.

Numerical studies show that both the magnitude and peak location of
〈

θ′θ′
〉

s
are affected:

for Pr ≥ 1, the peak is lower in the rough-wall case [32,46,52], while for lower values of Pr it
increases [32]. Roughness attenuates the mean streamwise velocity fluctuations (normalised
in wall units),

〈
u′u′

〉
s
, more than the scalar ones,

〈
θ′θ′
〉

s
, for Pr near unity [29,31,46,52].

It could be expected that the mean wall-normal stochastic flux,
〈

θ′v′
〉

s
, in wall units,

is less affected by roughness than
〈

u′v′
〉

s
. For Pr = 1.0, however, they are similar at

low-to-moderate k+s . However, the differences between the two inside the RSL increase
with roughness size [34,46,60]; outside the RSL,

〈
θ′v′

〉
s

obey Townsend’s outer-layer
similarity [25,32].

Various studies [29,31,32,39,46,52,60] examined the time-averaged field, θ′v′. As men-
tioned in Section 3.1, the main differences between the scalar and velocity fields occur
in recirculation regions behind roughness elements and in the sheltered portion of the
windward slopes. This is also evident for the turbulent scalar fluxes, Figure 9, where the
time-averaged wall-normal Reynolds stress, −u′v′

+
, and scalar flux, −θ′v′

+
, are shown in

a vertical plane, for k+s ≈ 200 and Pr = 1.0. For the most part, the two fields are visually
similar, which is expected due to the fact that both are driven by the same turbulent eddies
and associated with v′. There are noticeable differences in the recirculation regions down-
stream of larger roughness elements, where the scalar flux is more intense than the stress
(both in positive and negative values). Quasi-streamwise elongated vortices develop in
narrow gaps in the roughness, which strengthen both the turbulent stress and flux close
to the rough surface [60]. For Pr > 1, this enhances the scalar turbulent flux more than
the stress.

Fig. 10. Contour maps of − u’v’+ and − v’θ’+ in a x − y plane for Sk = − 0.53 and ES = 0.64; (a) − u’v’+, and (b) − v’θ’+. White dashed lines indicate the region where 

the difference between − u’v’+ and − v’θ’+ is apparent. 

Figure 9. Contours of (a) time-averaged Reynolds stress, −u′v′
+

, and (b) scalar flux, −θ′v′
+

, with
Pr = 1.0 in an xy-plane. The dimensions of the region considered are 2δ× 0.3δ and k+s ≈ 200. All
quantities are scaled in inner units. Reprinted with permission from Kuwata [52].

Quadrant analysis (QA) [85] can be used to examine the instantaneous behaviour
through the probabilities of turbulent events, as well as their relative contribution to the
Reynolds stresses and scalar fluxes. The quadrants are defined as Q1: u′ > 0, v′ > 0; Q2:
u′ < 0, v′ > 0; Q3: u′ < 0 v′ < 0; and Q4: u′ > 0, v′ < 0. Q2 and Q4 events, in flat-plate
boundary layers and plane channels, correspond to ejections (slow fluid moving away from
the wall) and sweeps (fast fluid moving towards the wall), respectively. They are the main
contributors to the Reynolds shear stress, u′v′. Replacing u′ with θ′ provides an additional
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way to examine the relationship between the flow topology and the scalar fluxes. Note that
in the classical quadrant analysis the fluctuations normal to the wall are used; here, instead,
u′ and v′ are fluctuations parallel and normal to the surface at the bottom of the roughness,
and not to the roughness surface. Thus, Q2 events represent fluid going away from the
roughness layer towards the outer flow, and, conversely, Q4 events represent outer-layer
fluid advected into the troughs.

Figure 10 shows the distribution of events, sorted by quadrants, in the near-wall
region. Above the roughness crest, the smooth-wall distribution is found both in the
u′ − v′ and θ′ − v′ planes, with Q2 and Q4 events dominating. Inside the RSL, on the
other hand, the probability of the four quadrants becomes roughly equal for the stress,
tending to approximately 25% as the base of the roughness is approached. For the scalar
flux (at Pr = 1.0), however, the probability of Q4 motions, where θ′ > 0 & v′ < 0, is
meaningfully diminished, while the probability of Q3 events, where θ′ < 0 & v′ > 0, is
significantly enhanced (Figure 10b) [39,46]. The difference in event probability, however,
does not translate into a contribution to the mean flux and stress [46,82]. Examining the
relative contributions to the mean (double-averaged) scalar flux,

〈
θ′v′

〉
i
/
〈

θ′v′
〉

shows
that the relative contribution of Q4 events remains larger than that of Q2 events (Figure 10d,
similar to the counterpart quadrants

〈
u′v′

〉
i
. This implies that fewer Q4 motions occur

(e.g., motions of hot fluid towards the troughs) but they are generally higher in intensity
compared with the smooth-wall case [29,39,46]. These results are consistent with the
observations of Doosttalab et al. [29] that roughness enhances the transport of both v′u′v′

+

and v′θ′v′
+

towards the troughs, as well as the increasing the skewness of v′ and θ′,
mentioned earlier.

Figure 10. Quadrant analysis for the Reynolds stress, u′v′+ (a,c) and scalar flux, θ′v′+ (b,d) at
k+s ≈ 52. (a,b) Probabilities of the various events; (c,d) relative contributions to the Reynolds stress
and scalar flux, respectively. Vertical dashed line indicates k/δ ≈ 1/3. Reprinted with permission
from Peeters and Sandham [46].

Despite the conclusion that the relative contributions of Q1–Q4 to the mean are similar
between momentum and scalar, there is meaningful dissimilarity in the type of motions
experienced by the momentum and scalar, implying a breakdown of analogy locally
between the two in the near-wall region [46], which corresponds to y/k < 1/3 in the case
presented in Figure 10.

3.7. Scalar-Fluctuation Budget

Roughness was shown to affect the scalar fluctuations and the TKE differently [31,32,46,60].
These differences are reflected in the budgets for the double-averaged scalar fluctuation variance
Kθ ≡

〈
θ′θ′
〉

s
/2 and TKE. Figure 11 shows the various budget terms in the fully rough regime

for Pr = 1. A key reason for the difference between velocity and scalar fluctuations lies in
the production of the TKE and scalar variance near the roughness crests. In addition to the
shear production, Ps, which also exists in a smooth-wall case, a second “bypass” production
mechanism exists, which generates velocity and scalar fluctuations at a scale comparable to
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the roughness height [23,31,62,63]. This form-induced (FI) production, Pf i, stems from the
gradients of the wake fields of the velocity and scalar:

P
f i
ij = −

〈
u′iu
′
m

∂ũj

∂xm
+ u′ju

′
m

∂ũi
∂xm

〉
s

(19)

P
f i
θ = −2

〈
θu′m

∂θ̃

∂xm

〉
s

. (20)

The total production is P= Ps +Pf i.
If the wall is rough, the total production (in wall units) of both velocity and scalar fluctua-

tions is reduced, compared with the smooth-wall case; this reduction depends on k+s [29,31,32].
The reduction in the velocity fluctuation production is more significant than that of the scalar
ones: for transitional roughness, Doosttalab et al. [29] reported a reduction of∼5% in the pro-
duction of Kθ compared with∼17% for TKE production, while for a fully rough regime Hantsis
and Piomelli [31] observed a reduction closer to 50% and 70% for Kθ and TKE, respectively.

While the scalar shear production, Ps
θ , increases with Pr, it quickly reaches saturation

near Pr ' 1, where the curves for increasing Pr collapse [32]; this is consistent with the
observation that the bulk contribution of the shear production is in the upper portion of
the roughness due to strong shear layers emanating from the crests, where the motions are
generally insensitive to Pr. The shear production term for both TKE and Kθ decreases with
k+s ; the two remain similar for Pr ≥ 1 across the range of k+s [31,32]. It is not known if the
shear production continues to decrease with k+s or eventually reaches saturation.
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Figure 11. (a) Comparison of TKE (lines) and scalar-variance (symbols) budgets at k+s = 485;
(b) scalar-variance FI production and diffusion term for k+s ranging from 70 to 485; Pr = 1.0 in all

cases. Lines: budget terms of K= 1
2

〈
u′ku′k

〉+
; symbols: budget terms for Kθ = 1

2

〈
θ′θ′

〉+
. In (a), the

various budget terms are indicated by colour: : shear production, Ps; : form-induced
production, Pf i; ∗ : convective transport, A; : turbulent transport, T; : diffusion,
D; : dissipation, −ε; : pressure work, Πkk, for TKE or source term, Qθ , for scalar. In
(b), different symbols indicate the equivalent sand-grain height: k+s =70; k+s =110; k+s =265;
k+s =485. All terms are in wall units. The vertical line identifies the top of the roughness. Figure
adapted from Hantsis [32].

In contrast, the scalar FI production, Pf i
θ , becomes increasingly dominant inside the

RSL as k+s increases, compared with the TKE counterpart, Pf i
kk ; the magnitude of P

f i
θ

increased with Pr and does not seem to saturate [31,32]. Furthermore, for a given Pr, the
P

f i
θ curves collapse as k+s increases [32], as seen in Figure 11b, which corresponds to the

geometry-conforming behaviour of the scalar field discussed in Section 3.1. Thus, it is the
FI portion that is responsible for the increased scalar fluctuations’ production. The bulk
contribution of Pf i

θ occurs in the lower portion of the roughness, and is small around the
crest. As k+s increases, the scalar variance budget becomes dominated by the FI production,
P

f i
θ , diffusion, and dissipation; both diffusion and FI production tend to saturate with
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increasing k+s [32]. A saturation in the shear production then implies saturation in the
dissipation as well, resulting in a budget that is insensitive to k+s . A more systematic study
is required to ascertain these trends at higher k+s , for a wider range of Pr and various
types of roughness. Asymptotic trends such as these are useful, in particular in the context
of modelling.

3.8. Turbulent Prandtl Number

The turbulent Prandtl number is the ratio between the eddy viscosity and the scalar eddy
diffusivity, PrT = νT/αT. It is used to model scalar transport [3] in analogy to momentum
transport. A direct consequence of the Reynolds analogy is that the turbulent Prandtl number,
PrT, needs to be constant and close to unity for Pr ≈ 1.0. Although many experimental studies
examined PrT, to properly calculate it, an accurate and simultaneous measurement of at least
four quantities (stochastic stress and flux, mean velocity, and scalar gradients) is required, at
multiple locations—which is extremely difficult experimentally [3,86]. This difficulty resulted in
a relatively large scatter between experimental results [3,29]; numerical simulations can compute
these quantities more accurately.

While Prt is generally obtained, in thin shear-layer flows, from the only non-zero
Reynolds shear stress (or scalar flux) and velocity (or scalar) gradient, a more general form
is obtained through a contraction with the strain rate or scalar gradient [87]:

PrT =
νT
αT

=

〈
u′iu
′
j

〉〈
Sij
〉

2
〈
Slm
〉〈

Slm
〉 ×

〈
∂θ
∂xk

〉〈
∂θ
∂xk

〉
〈

u′nθ′
〉〈

∂θ
∂xn

〉 . (21)

PrT decreases with wall-normal distance, starting from a value near one at the wall (e.g.,
PrT = 1.1 for Pr = 0.7 [88]) to 0.6− 0.8 away from the wall [89]. It tends to a roughly
constant value in the logarithmic layer, with reported values falling within the range of
0.8–1.0, where the most common values are around 0.85–0.9 (see [3] for comprehensive
discussion). In the context of modelling, however, it is often taken as a constant, usually
the logarithmic layer value.

All the terms comprising PrT are affected by roughness within the RSL, while away
from the wall, corresponding with Townsend’s outer-layer similarity hypothesis [25], the
various quantities collapse on the smooth-wall curves; the differences in PrT between
smooth- and rough-wall cases are limited to the RSL, where numerical simulations can
provide more information than experimental measurements.

In the presence of roughness, PrT is ill-behaved close to the bottom of the roughness,
as the denominator becomes small [29,34,46,52]; the magnitude of these changes increases
with k+s and seems to depend on the roughness geometry [52,60]. For Pr = 1, the rough-
wall PrT can be much greater than one; for example, [46] reported peak values of 5. A
higher peak indicates a decrease in the effective scalar diffusivity, resulting in a decreased
scalar flux/transfer (i.e., in thermal resistance). The erratic behaviour near the bottom can
be related to the difference in the behaviour of the stochastic stresses and fluxes in the
recirculation regions [33,34,46], as is demonstrated in Figure 9. In fact, it may be argued
that in the vicinity of the wall, where the Reynolds stress and turbulent scalar flux are
nearly damped out, PrT does not have physically meaningful values [33,46].

As the roughness crest is approached, a more predictable behaviour is observed, with PrT
peaking and then decreasing towards the smooth-wall value [29,34,46]. The peak magnitude
increases with k+s and seems to depend on the details of the geometry as well [46,52,60]. The
location of the peak may depend on the roughness geometry [29,34,46,52].

While PrT is a key element for modelling, it may be too sensitive to the details of
the roughness to be used effectively. The existence of additional dispersive stresses and
fluxes (discussed in Section 3.4) in the mean transport equations, which are neglected in
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the classical definition Equation (21), motivated the definition of an “effective” Prandtl
number [34,52]:

PrT,eff =
νT + ν̃T
αT + α̃T

=

(〈
u′iu
′
j

〉
+
〈
ũiũj

〉)〈
Sij
〉

2
〈
Slm
〉〈

Slm
〉 ×

〈
∂θ
∂xk

〉〈
∂θ
∂xk

〉
(〈

u′iθ
′
〉
+
〈

ũi θ̃
〉)〈

∂θ
∂xi

〉 . (22)

The expectation is that the inclusion of the dispersive stresses and fluxes will make PrT,eff
better behaved, even where the stochastic stresses and fluxes go to zero near the wall.
Furthermore, in the context of modelling, the dispersive stresses and fluxes are required for
the closure relations [83].

Hantsis and Piomelli [34] compared PrT,eff and PrT , and found them to be generally
similar in the RSL, collapsing above the roughness crest, where the dispersive stress
and fluxes vanish. PrT,eff is also ill-behaved near the bottom of the rough surface. For
Pr ' 1, ref. [34] found that PrT,eff is larger in magnitude than PrT . A peak, larger than
that observed in PrT , was also observed for PrT,eff, but occurred closer to the roughness
crest. Due to the scarcity of studies considering PrT,eff, and comparing PrT,eff to PrT under
comparable conditions, it is unclear if this behaviour is particular to this setup or has more
general validity.

The dependence on the details of the roughness is illustrated in Figure 12, showing
PrT,eff for different types of roughness and topologies, for Pr of unity. Four representative
roughness surfaces from [52] show the behaviour at different skewness (Sk) and effective-
slope (ES) values for an irregular roughness, while the sand-grain roughness of [34] shows
the change of roughness type. A common pattern of positive and negative peaks can be
noticed as the wall is approached. The magnitudes and locations of the peak values (where
the jumps occur), however, differ significantly between the various cases.
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Figure 12. Comparison of the effective turbulent Prandtl number, PrT,eff, between various roughness
types. Data collected from Kuwata [52] (KW2021, irregular roughness); Hantsis and Piomelli [34]
(HP2022, sandpaper). Wall distance is normalised by the crest height, ycrest; Pr = 1.0 for all cases.

Neither PrT nor PrT,eff seem to be effective modelling tools in generalised rough-wall
flows, and an alternative might be required for modelling. In the context of smooth-wall
flows, it was found that quantities such as the time-scale ratio, R (between the scalar
variance and the turbulent kinetic energy) are more useful in modelling, and can replace
the need for PrT Abe and Antonia [90]. While a similar observation was made for a rough-
wall case [34], only one case was considered, and further study would help in examining
the viability of this alternative.
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4. Open Issues
4.1. Boundary Conditions

The mixed-boundary condition proposed by Kasagi et al. [61] is commonly applied
for the uniform scalar isoflux condition, when periodic domains are used. Kasagi et al. [61]
derived this condition for a smooth-wall case, where, for a limited range of Pr around
unity, the fluctuations at the wall were negligible, and the wall could be assumed to be
locally isothermal [91]. As was discussed in Section 3.6, roughness tends to reduce scalar
fluctuations near the wall, which suggests the assumption is still valid for a rough-wall case;
indeed, many studies implemented this approach [5,30–32,34,44–46,51,54,55,57,59,60,92].

Two key issues arise from this setup: (1) the use of this condition is limited to a narrow
range of Pr, and (2) a proper validation of the locally isothermal assumption was not
conducted in the context of rough-wall flows (see [93] for a smooth-wall case comparison).
Thus, a boundary condition that allows for fluctuations at the wall is desirable.

Another issue arises from the use of the mean wall-scalar, Tw, in the case of a wall
flux condition: for a smooth wall, Tw has a constant streamwise gradient, equal to that of
the bulk scalar, Tb. For the rough-wall case, the spatial inhomogeneity of the roughness
implies that the streamwise gradient of Tw depends on the surface area of the roughness
[52], and a local spanwise gradient may also exist. Kuwata [52] suggested a correction by
considering the local time-averaged scalar budget at the roughness surface and relating Tw
to Tb; this yields

dTb
dx

=
qw

ρcpV̇
lyz (23)

where V̇ is the flow rate and lyz is the local roughness length scale. The source term Q then
becomes

Q =
qw

ρcpV̇

(
ulyz − α

dlyz

dx

)
(24)

For a sufficiently large roughness surface of a homogeneous and isotropic nature, lyz
can be approximated as lyz ≈ Ar/Lx, where Ar is the total roughness wetted area and Lx
is the streamwise domain length (assuming roughness covers the entire boundary). The
source term Q then can be approximated as

Q ≈ Ar

A
qw

ρcpδe

u
Ub

(25)

where δe is the effective half-channel height (δe = δ− d). While this formulation better
accounts for the local wall flux, there has not been a comparative study examining the
significance of this correction.

4.2. Limited Coverage of the Parameter Space

The study of flow over rough surfaces is a complex problem with a large parameter
space [16]. As discussed in earlier sections, the parameter space associated with scalar
transport is larger than that of momentum transport, at the very least by the addition of a
Prandtl number (or equivalent). The need to resolve all (for DNS) or most (for LES) of the
scales of motion becomes prohibitive as the Reynolds number increases. For Pr > 1, the
resolution requirements for the scalar are stricter than those for momentum, making the
calculations even more expensive.

The presence of roughness increases the parameter space further. Jiménez [28] recom-
mends δ/k > 40 and k+ > 100 to achieve the fully rough regime with negligible blockage
effects. Most present studies relax one or both of these requirements because of the costs
associated with them.

Some studies [32,45] indicated the possibility that, with proper scaling at sufficiently
high k+s , various scalar statistics may become independent of Pr. A much wider range of
Pr is required to validate this conjecture, which could have repercussions on modelling of
these problems.
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The roughness geometry is arguably the parameter space that is most difficult to cover.
Beyond covering an immense spectrum of roughness types (i.e., regular, irregular, k-type,
d-type, etc.), it also includes different morphological characteristics of those roughness
types. To examine if any of the findings and trends have some level of universality, a wider
portion of this parameter space needs to be covered systematically. In most cases, a single
roughness type is considered, with varying the roughness height, usually by increasing Re,
and usually for a single value of Pr.

Since only near-wall phenomena are of interest, the minimal channel approach, proposed
by Jiménez and Moin [94], can be used to decrease the computational expense of channel-flow
calculations and facilitate sweeping across the parameter space. Chung et al. [95] demonstrated
the applicability of the approach to rough-wall flows; MacDonald et al. [44] extended it to also
include scalar transport. Limiting the width or length of the domain (see [95,96] for more details)
removes the larger motions while retaining many of the dynamically relevant scales within the
RSL [97], in particular at higher Re. This approach was used successfully to sweep across the
topological space of 3D sinusoidal roughness and k+s [45,57,84,95–98].

Relatively few studies ([51,55,80]) systematically cover a range of roughness types.
Thus, it is difficult to form conclusions on specific quantities across the parameter space
by mapping out results from various studies, and a more systematic approach is desir-
able. Forooghi et al. [51] performed a systematic study of several roughness types, and
several investigations consider variations of a single roughness type [30,44,45,57,92]. The
importance of the geometrical detail, however, remains an open question.

Because of the wide parameter space and its associated computational cost, only a
limited number of the studies mentioned here reached k+s above 500 (see Table 1 for a
non-exhaustive list), while some remained in the transitional regime. Most studies tend to
be in the range k+s = 200− 400. While the fully rough regime starts at k+s ≈ 100 [28], the
onset of the scalar “‘ultimate regime” seems to depend on both the roughness geometry
and Pr. For Pr = 0.7, MacDonald et al. [44] suggested the onset occurring beyond k+s = 250.
Hantsis [32] observed that as Pr the onset of the ultimate regime occurs at higher k+s (see
Figure 3a).

As such, much of the discussion around the ultimate regime (e.g., Section 3.2) and the
behaviour of various quantities such as ∆Θ+ requires a wider range of k+s to determine
if the trends and findings extend in their applicability beyond the limited scope of k+s
examined by these studies, leaving much room for speculation. This is particularly true for
higher Prandtl numbers.

The increase in Prandtl numbers also results in improved scalar transfer for both
smooth- and rough-wall cases, which is important for various applications. For example,
in the context of nuclear reactor cooling, Gowen and Smith [65] considered a Prandtl
number range of 0.7− 14.3. Most wall-resolved numerical studies remained in the vicinity
of Pr = 0.7− 1.0, with Pr = 0.7 being of particular interest. In some cases it was due to
the limitation computational cost, while in other cases it was either due to the relevance
to practical applications (e.g., Pr ≈ 0.7 for air) or existing experimental data to compare
against, or making the most direct comparison between the velocity and scalar (with
Pr = 1.0 providing this case). Furthermore, most studies only considered a single Pr,
while the few studies that examined a range of Pr were usually limited to a small range
around unity, say Pr = 0.5− 2.0 [31,32,45,48]. While the latter can be due to the increased
computational costs associated with higher Pr values, it is also (at least in part) due to the
limitation on the boundary conditions, as discussed in Section 4.1. Some studies [32,45]
indicated the possibility that at sufficiently high k+s various scalar statistics may become
independent of Pr when scaled accordingly. A much wider range of Pr is required, in
particular Pr � 1.0, to see if the various findings and trends, identified for the much more
limited range of Pr, are valid and applicable at much higher Pr.
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4.3. Effect of Blockage

Roughness generates drag and scalar flux, along with blockage of the flow [2]. As
mentioned above, Jiménez [28] recommends roughness no higher than 1/40 of the channel
half-height or boundary-layer thickness.

This limitation seems to be less strict in the transitionally rough regime; Thakkar et al. [78]
demonstrated that k/δ ≈ 1/6 hardly altered the flow in the outer layer by using 17 different
irregular surfaces. Even if the outer flow remains mostly unaffected, a large blockage ratio
will modify the effective boundary-layer height (δeff < δ), impact k+s /k+, and/or modify uτ,
etc. [28,57].

For a given roughness topology, increasing k+s can be achieved by either increasing
Re or by increasing the physical roughness height, k. The former is associated with higher
computational costs, leading authors to opt for the latter option. The latter option, however,
increases the blockage; if the flow is significantly constricted, it should be considered flow
over obstacles rather than roughness.

The limits on the blockage ratio are acknowledged by the various studies but
it is not uncommon for numerical simulations to reach a blockage factor, k/δ, of 0.2
or more, which is significant. In contrast, the work performed on minimal channels
by MacDonald et al. [30], Zhong et al. [45], Rowin et al. [57] achieves better blockage
ratios, with k/δ between 0.015 and 0.05. The sand-grain roughness of Hantsis and
Piomelli [31], Hantsis [32], Hantsis and Piomelli [34] also maintained k/δ = 0.04.

4.4. Virtual Origin

In a smooth-wall case, the outer turbulent flow “perceives” its origin to be at y = 0,
where the no-slip condition is applied. This is not the case when the wall is rough, and
the “virtual origin” of the flow is located somewhere between the base and the crest of the
roughness [23,99]. The virtual origin is sometimes referred to as “wall offset” or “zero-plane
displacement”, and is commonly denoted by d or hm. This is equivalent to the “canopy
penetration depth” concept used in atmospheric flows and dense vegetation flows.

To obtain robust measures of the logarithmic intercepts, the wall distance need to be
measured relative to this virtual origin [23,28,99]. The wall distance thus modified, ye, yields
the required collapse of various rough-wall statistics on the corresponding smooth-wall
ones in the outer region, satisfying Townsend’s outer-layer similarity [45].

While the concept is widely recognised, there is debate over the proper choice of the
virtual origin, which manifests itself in various definitions of d. Two of the most common
ones are based either on the roughness geometry or on the center of drag. The former
commonly defines d as the geometrical mean of the roughness, and is insensitive to the
conditions of the flow. The latter usually defines the virtual origin as the displacement that
situates the centre of drag acting on the rough surface [99]. Both definitions are common
throughout the literature and generally result in similar values. However, this creates
uncertainty, which propagates into the results and statistics, in particular when comparing
studies that use different definitions for d.

One limitation of the centroid method suggested by Jackson [99] is that it assumes
a zero pressure gradient and fully developed flow. This was partially amended by [100],
who suggested an extension to include pressure gradients, which seems promising.

Zhong et al. [45] studied the variation of d/k, and concluded that the influence of
the uncertainty in d is largely inconsequential when measuring the logarithmic intercept,
which translates into small variations in the roughness functions for velocity, ∆U+, and
scalar, ∆Θ+. Thus, while there is a level of unreliability when comparing between studies
that use different definitions of d, it is not significant enough to affect the conclusions.

Another geometry-based approach to define the centroid-shifted coordinate was
suggested by [33] and used by [52,60,101]. The effective wall-normal distance from the
rough surface is introduced as

ye =
∫ y

0
φdy (26)



Fluids 2024, 9, 159 25 of 30

where the plane porosity φ = A f /A0, and A f is the plane area occupied by the fluid. While
this formulation produces the same shifted coordinate, y− d, outside the rough wall, its
origin remains at zero. This is in contrast to the previously mentioned simple shifting,
whose origin becomes negative (i.e., ye = y− d < 0).

The uncertainty of d also influences the ratio of ks/δ [57], which may cause difficul-
ties properly determining k+s . Not only does the choice of virtual origin tend to have
more significant impact especially for larger k+s [16,45], but also there is no reason for
the scalar virtual origin, dθ , to correspond with the momentum one [57] (despite it being
common practice).

While these differences may not change trends and conclusions, they can affect the
resulting values. For example, both MacDonald et al. [30] and Rowin et al. [57] used
the same 3D sinusoidal roughness at Pr = 0.71 and identified a flattening of ∆Θ+ at the
ultimate regime. Using different approaches to determine the virtual origin (assuming
dθ = d in both studies), [30] reported ∆Θ+

FR ≈ 4.4, while [57] reported ∆Θ+
FR ≈ 3.8—a

difference of approximately 13%, which is not insignificant. This may cause discrepancies
between studies that are not physical, but rather due to a methodological choice.

A similar problem also exists with respect to experimental studies. Therefore, a more
universal and consistent method of determining d and dθ is desirable.

5. Conclusions

Roughness is known to have significant effects on the transport of momentum and
scalar quantities. Despite significant research, our understanding of the latter lags behind
that of the former. Wall-resolved numerical simulations provide unfettered access to
details of the flow, both for momentum and scalar; this is particularly important when
experimental measurements are difficult to obtain (e.g., dense roughness). This provides a
tool to study the physics of the flow inside the roughness sublayer (RSL) and examine the
physical assumptions taken by various phenomenological modes. Moreover, numerical
simulations provide an effective technique for systematic studies and sweeping across the
parameter spectrum. Here we summarise the progress in the study of passive scalars in
flows over rough surfaces, thanks to recent numerical simulations.

Wall-resolved numerical simulations provided a high-fidelity description of the in-
stantaneous scalar field, showing that the scalar field exhibits a diffusive sublayer that
increasingly conforms to the roughness surface as k+s or Pr increase. The diffusive sublayer
is thinnest on the windward roughness surface and around the crest, resulting in sharp
gradients that enhance the scalar wall flux. The Reynolds analogy was found to hold locally
on the exposed portion of the windward slope; it breaks on the sheltered portion and in the
recirculation regions behind the roughness elements, where the scalar wall flux is attenu-
ated. The differences between the velocity and scalar fields are focused on the leeward side
of the roughness elements and in the recirculation region behind them. On the windward
side, the rough-wall diffusive sublayer is analogous to a contorted, smooth-wall diffusive
sublayer (at sufficiently high k+s ); a similar analogy cannot be made on the leeward side.

The downwards shift of the logarithmic region between the smooth- and rough-
wall profiles of the mean scalar is quantified by the scalar roughness function, ∆Θ+,
which is equivalent to the Clauser–Hama roughness function, ∆U+. It was observed that
∆U+ < ∆Θ+ for sufficiently large k+s , regardless of the Prandtl number, Pr. For Pr > 1.0,
there exists a finite range of k+s for which the opposite is true; the value of k+s for which ∆Θ+

intersects the velocity asymptote increases with Pr. Various numerical studies observed
a flattening of ∆Θ+ as k+s → ∞, suggesting the possibility that an “ultimate regime”, a
scalar equivalent of the fully rough regime, exists. This regime is characterised by a finite
asymptotic value ∆Θ+

FR, which depends strongly on the Prandtl number, Pr, and weakly
on the roughness geometry. While this behaviour deviates from experimental findings,
it is consistent with the observed topography-conforming behaviour for the scalar field.
Further investigations are required to clarify the issue.
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The scalar roughness function, ∆Θ+, is related to the total scalar wall flux and the
Stanton number, St. As such, St also depends on Pr and the roughness parameters such as
the frontal solidity, λ f . A peak in St was found for 0.1 < λ f < 0.3, usually corresponding
to the maximum of the skin-friction coefficient, c f . This is a result of an interplay between
the impingement of bulk fluid and the sheltering by upstream roughness elements; the
earlier enhances St, while the latter attenuates it. The rough-wall St is greater than the
smooth-wall case, St0, and approaches it in the limit of infinite roughness density. The
existence of an ultimate regime implies that the enhancement of the scalar transport will
saturate and will be accompanied by increasing drag, resulting in the Reynolds analogy
factor RA < 1.

The rough-to-smooth ratio of the Reynolds analogy factor, η, is an efficiency parameter
indicating the augmentation to St relative to the augmentation to c f . Roughness results
in η < 1, which tends to decrease with k+s until reaching saturation; it was shown to be a
convex function of the roughness density and λ f . Predicting the λ f value of the minimum
for different types of roughness is still an open question.

The wake velocity, ũ, and scalar, θ̃, fields are overall similar throughout the RSL, with
differences observed in the troughs between roughness elements, where ũ and θ̃ tend
to have opposite signs. The mean vertical scalar dispersive flux,

〈
θ̃ṽ
〉

s
, is larger than

〈ũṽ〉s for Pr ≥ 1.0. It can account for a significant portion of the mean vertical scalar flux
inside the RSL and is also important for the production of turbulent fluxes. Overall, the
dispersive stresses, 〈ũiũk j〉s, fluxes,

〈
θ̃ũj

〉
s
, are not well studied and may be a very useful

avenue of numerical exploration, since they are very difficult to measure experimentally.
Additionally, they seem to be less sensitive to k+s and even reach saturation with either
k+s or Pr. Dispersive fluxes are also needed for closing models that are based on the
discrete-element method or the double-averaged NS equations (DANS).

When scaled in inner units, both the velocity and scalar fluctuations are attenuated
by roughness; the former is attenuated more significantly than the latter. This may be
due to the meaningful difference in the production of the velocity and scalar fluctuations,
particularly in the form-induced (FI) production term, which produces fluctuations at a
scale comparable to the roughness scale, k. As k+s increases, the scalar FI production, Pf i

θ ,
becomes dominant in the RSL and is much more significant than the corresponding FI
production of TKE, Pf i

kk . P
f i
θ increases with Pr and does not seem to saturate; however,

for a fixed Pr, the P
f i
θ curves collapse as k+s increases. The shear production component

remains similar between the TKE and scalar variance; it continually decreases with k+s and
may reach saturation. A possible result is that for a fixed Pr the scalar variance budget
becomes insensitive to k+s . Asymptotic trends such as these are useful, in particular in
the context of modelling. A more systematic study is required to ascertain these trends at
higher k+s , and for a wider range of Pr and various types of roughness.

Both the turbulent Prandtl number, PrT , and the effective turbulent Prandtl number,
PrT,eff, are ill-behaved near the bottom of the rough surface. Neither seem to be an effective
modelling tool in generalised rough-wall flows and an alternative might be required
for modelling.

Several key issues, however, remain open. Despite providing an effective technique
for systematic studies and sweeping across the parameter spectrum, the computational cost
associated with higher Reynolds and Prandtl numbers has limited the parameter range
covered by numerical simulations. One way to circumvent this limitation and reach higher
k+s is to increase the roughness height, k, at relatively low Re. This approach, however,
results in excessive blockage, which can have a detrimental effect on the simulation, turning
it effectively to a flow over obstacles with significant acceleration.

The boundary conditions commonly used to implement constant scalar flux at
the wall assume negligible fluctuations at the wall surface. These assumptions are
only valid for relatively low Prandtl numbers, say Pr < 5; these may also be invalid at
sufficiently high Reynolds numbers.
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Finally, a common problem with numerical and experimental studies is the definition
of the virtual origin, d, or the location of the zero-plane displacement, which is where the
outer turbulent flow “perceives” its origin to be. Various definitions of d are employed,
such as the geometric average or the location where the center of drag is acting on the rough
surface; the latter is sensitive to the flow conditions, while the former is not. Both definitions
are common throughout the literature and all the statistical quantities are measured with
respect to the displaced coordinate. This creates uncertainty, which propagates into the
results and statistics, in particular when comparing studies that use different definitions
for d.
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