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Abstract: Liver fibrosis is a significant contributor to liver-related disease mortality on a global
scale. Despite this, there remains a dearth of effective therapeutic interventions capable of reversing
this condition. Consequently, it is imperative that we gain a comprehensive understanding of
the underlying mechanisms driving liver fibrosis. In this regard, the activation of hepatic stellate
cells (HSCs) is recognized as a pivotal factor in the development and progression of liver fibrosis.
The role of noncoding RNAs (ncRNAs) in epigenetic regulation of HSCs transdifferentiation into
myofibroblasts has been established, providing new insights into gene expression changes during
HSCs activation. NcRNAs play a crucial role in mediating the epigenetics of HSCs, serving as novel
regulators in the pathogenesis of liver fibrosis. As research on epigenetics expands, the connection
between ncRNAs involved in HSCs activation and epigenetic mechanisms becomes more evident.
These changes in gene regulation have attracted considerable attention from researchers in the field.
Furthermore, epigenetics has contributed valuable insights to drug discovery and the identification
of therapeutic targets for individuals suffering from liver fibrosis and cirrhosis. As such, this review
offers a thorough discussion on the role of ncRNAs in the HSCs activation of liver fibrosis.
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1. Introduction

Liver fibrosis represents the final outcome of a range of chronic liver diseases, including
alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), autoimmune
hepatitis, virus B/C hepatitis, cholestatic liver diseases, and radiation or parasite infection-
induced liver injury [1–3]. The activation of hepatic stellate cells (HSCs) is a crucial event
in the development of liver fibrosis. This process is initiated by the exposure of the liver
to various pathogens, which subsequently results in hepatocellular injury, leading to
HSCs activation and the production of collagens that contribute to fibrosis. Although
fibrosis is a reparative process, failure to implement effective interventions may result in
the progression of fibrosis to irreversible cirrhosis, characterized by the reconstruction of
hepatic lobules that destroys the normal liver functions and structures [1].

The activation of HSCs is characterized by a phenotypic alteration [4]. In response to
chronic liver injury, HSCs undergo a transformation into myofibroblast-like cells, which
become the primary source of extracellular matrix (ECM), migrate from the space of Disse,
and have the capacity of proliferation. This process is referred to as myofibroblast transd-
ifferentiation (MTD) [5]. Activation of HSCs into proliferative, fibrogenic myofibroblasts
is well established as the central driver of hepatic fibrosis in cases of liver injury. Sev-
eral signaling pathways play a role in the transdifferentiation of HSCs into an activated,
myofibroblast-like phenotype. Important pathways involved in fibrosis progression include
transforming growth factor β (TGFβ), platelet-derived growth factor (PDGF), vascular
endothelial growth factor (VEGF), and connective tissue growth factor (CTGF) [6]. The acti-
vation of HSCs is also facilitated by the Hedgehog (Hh) ligand and its receptor smoothened
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homolog (SMO) [7], as well as various other regulatory factors including innate immune
signaling [8], adipocytokines involving leptin and adiponectin, nuclear receptors such as
liver X receptor (LXR) and farnesoid X receptor (FXR) [9], and epigenetic mechanisms. This
review focuses on the role of noncoding RNAs (ncRNAs) in mediating epigenetic changes
that drive HSCs activation.

Epigenetics refers to the persistent modifications of genes, which can be transmitted
through cell division in a relatively brief period. These modifications do not entail alter-
ations to the DNA sequence [10]. Increasing evidence indicates that epigenetics plays a
significant role in the development and progression of liver diseases [11]. The correla-
tion between epigenetics and liver disease has been established through the utilization of
genome-wide association and candidate genes [12]. The augmentation of epigenetic alter-
ations has captured the attention of academics, encompassing ncRNAs, DNA methylation,
and histone modifications, which, in conjunction with transcription factors, collectively
exert a significant impact on the regulation of specific gene expression. Increasing evidence
currently contends that ncRNAs are essential for the control of gene expression. In general,
ncRNAs can be divided into microRNAs (miRNAs), long noncoding RNAs (lncRNAs),
and circular RNAs (circRNAs). Figure 1 presents the biological pathways and interactions
of these three ncRNAs. The integration of ncRNAs with DNA modifications, histone
modifications, and transcription can significantly impact the epigenetics of HSCs activation.
The aim of this review is to furnish a thorough exposition of the involvement of ncRNAs in
the activation of HSCs in the context of liver fibrosis.
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Figure 1. The biological pathways and interactions of three ncRNAs. MiRNAs are produced from 
pri-miRNAs transcribed by RNA polymerase II from independent genes or introns of protein genes. 
The pri-miRNAs are processed by a complex involving Drosha and DiGeorge syndrome critical 
region 8 (DGCR8) to create pre-miRNAs, which are then exported to the cytoplasm by Exportin 5. 
In the cytoplasm, Dicer cleaves the pre-miRNA to form a miRNA duplex, with one strand being 
degraded and the other becoming the mature miRNA. The mature miRNA, along with Argonaute2 
(AGO2) and glycine-tryptophan repeat-containing protein of 182 KDa (GW182), binds to the 3′-un-
translated region (3′-UTR) of targeted mRNA to inhibit its translation. LncRNAs are transcribed by 
RNA polymerase II and have a structure similar to mRNA. They can be transported from the nu-
cleus to the cytoplasm by nuclear RNA export factor 1 (NXF1). Some lncRNAs act as competitive 
endogenous RNAs (ceRNAs), binding to miRNAs to affect gene expression. LncRNAs can also in-
teract with RBPs to stabilize and promote mRNA translation. CircRNAs are produced from pre-
mRNA through backsplicing and can regulate gene expression by acting as ceRNAs to inhibit 
miRNA and increase expression of targeted genes. 

Figure 1. The biological pathways and interactions of three ncRNAs. MiRNAs are produced from
pri-miRNAs transcribed by RNA polymerase II from independent genes or introns of protein genes.
The pri-miRNAs are processed by a complex involving Drosha and DiGeorge syndrome critical region
8 (DGCR8) to create pre-miRNAs, which are then exported to the cytoplasm by Exportin 5. In the
cytoplasm, Dicer cleaves the pre-miRNA to form a miRNA duplex, with one strand being degraded
and the other becoming the mature miRNA. The mature miRNA, along with Argonaute2 (AGO2)
and glycine-tryptophan repeat-containing protein of 182 KDa (GW182), binds to the 3′-untranslated
region (3′-UTR) of targeted mRNA to inhibit its translation. LncRNAs are transcribed by RNA
polymerase II and have a structure similar to mRNA. They can be transported from the nucleus to the
cytoplasm by nuclear RNA export factor 1 (NXF1). Some lncRNAs act as competitive endogenous
RNAs (ceRNAs), binding to miRNAs to affect gene expression. LncRNAs can also interact with
RBPs to stabilize and promote mRNA translation. CircRNAs are produced from pre-mRNA through
backsplicing and can regulate gene expression by acting as ceRNAs to inhibit miRNA and increase
expression of targeted genes.
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2. NcRNA-Mediated Epigenetic Regulation in HSCs Activation
2.1. Identified MiRNAs in HSCs Activation

MiRNAs, a type of small ncRNAs, are distinguished by their 20–24 nucleotides and
play a crucial role in regulating liver functions. The biogenesis of miRNAs is a com-
plex, multi-step process that involves transcription, cleavage, and maturation. Through
binding to the 3′-untranslated regions (3′-UTR) of target mRNAs, miRNAs can post-
transcriptionally regulate gene expression, leading to the degradation or inhibition of
translation of specific genes [13,14]. We focus on elucidating the roles of well-known miR-
NAs, including the miR-15 family, miR-21, miR-23, and miR-34, in the activation of HSCs
and the mechanisms through which they regulate HSCs in the context of liver fibrosis.

The miR-15 family, including miR-15a, miR-15b, miR-16, miR-195, miR-497, and miR-
322, demonstrates differential effects on the activation of HSCs, with miR-15a, miR-15b,
and miR-16 exhibiting inhibitory effects, while the remaining members exhibit stimulatory
effects. MiR-15a can directly target SRY-box transcription factor 9 (SOX9) to decrease its
expression; SOX9 downregulation can effectively attenuate HSCs activation [15]. MiR-
16 exerts a down-regulatory effect on guanine nucleotide-binding α-subunit 12 (Gα12),
a protein that is known to facilitate autophagy and promote HSCs activation [16–18].
However, miR-195 and miR-497 are positive regulators of the TGF-β1 pathway through
binding to the 3′-UTR of Smad7 mRNA, thereby inducing HSCs activation. MiR-195-3p
also facilitates HSCs transdifferentiation into myofibroblasts by directly suppressing PTEN
(phosphatase and tensin homology deleted on chromosome 10) expression [19–21].

MiR-21 has been identified as a potential biomarker for liver cirrhosis [22]. After
the Schistosomiasis japonica infection, the Schistoma eggs can produce IL-13 that would
stimulate HSCs Smad1/2 phosphorylation and elevate the level of miR-21 to suppress
Smad7 expression; finally, the series of changes could cause HSCs activation [23]. In
addition to inhibiting Smad7 expression, miR-21 overexpression in activated HSCs can
also directly bind to the 3′-UTR of Von Hippel–Lindau (VHL) to suppress its expression,
which can further activate NF-κB to promote HSCs to produce cytokines that can aggra-
vate liver inflammation and fibrosis [24]. The Hippo/YAP1 pathway has been shown to
involve the upregulation of miR-21, which can activate the Hippo pathway by inhibiting
Smad7 expression to promote YAP1 expression [25]. Additionally, miR-21 plays a crucial
role in hepatic cells beyond HSCs, as evidenced by its role in inhibiting autophagy in
activated HSCs through downregulation of autophagy-related gene 5 (ATG5), leading to
enhanced proliferation and reduced apoptosis of myofibroblast-like HSCs by activating the
PI3K/AKT/mTOR pathway. In activated HSCs, the downregulation of ATG5 by miR-21
results in the inhibition of autophagy, thereby promoting proliferation and suppressing
apoptosis of myofibroblast-like HSCs through the reduction in PTEN and subsequent
activation of the PI3K/AKT/mTOR pathway [26].

The miR-23b/27b/24-1 cluster has been demonstrated to mitigate liver fibrosis by
directly targeting the mRNAs of profibrotic genes. Additionally, miR-27-3p has the potential
to ameliorate liver fibrosis by reducing YAP expression, thereby inhibiting Lysyl oxidase-
like 2 (LOXL2) and subsequently suppressing HSCs activation [27]. This effect extends
to the downregulation of TGF-β1, Gremlin1, LOX (Lysyl oxidase), Itga2 (integrin 2), and
Itga5 (integrin 5) [28]. A previous investigation revealed that miR-23a accumulation in
CCL4-induced liver fibrosis in rats is mediated through the PTEN/PI3K/AKT/mTOR
signaling pathway, leading to HSCs activation [29]. Furthermore, the use of prostaglandin
E2 (PEG2) to induce apoptosis in HSCs can alleviate liver fibrosis by reducing miR-23a-5p
levels [30].

As a crucial target of miR-34c, ACSL1 (acyl-CoA synthetase long-chain family member
1) is involved in HSCs activation during liver fibrosis. The downregulation of ASCL1 has
been found to be associated with reduced lipid levels, leading to the transdifferentiation
of HSCs into myofibroblast-like cells and the promotion of liver fibrosis. Inhibition of
miR-34c can restore ACSL1 levels and potentially improve liver fibrosis by restoring lipid
metabolism and maintaining HSCs quiescence [31]. The involvement of miR-34 in liver
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fibrosis remains a topic of debate. One study has demonstrated that miR-34a-5p exerts
an anti-fibrotic effect by directly binding to the 3′-UTR of Smad4, thereby inhibiting the
TGF-β1/Smad pathway [32].

Up to now, an increasing number of miRNAs are being identified as key regulators
in the activation of HSCs through modulation of various signaling pathways, including
TGF-β1, Wnt/β-catenin, Hippo, and Hedgehog pathways. A comprehensive overview of
these miRNAs is presented in Supplementary Data—Table S1.

2.2. LncRNAs Involved in HSCs Activation

LncRNAs are RNA molecules that exceed 200 nucleotides in length and do not undergo
translation into proteins. An expanding body of research has elucidated the significant
role of lncRNAs in the pathogenesis of liver fibrosis, where they function as competing
endogenous RNAs (ceRNAs) by sequestering miRNAs implicated in fibrosis. Additionally,
lncRNAs can exert pivotal regulatory functions by interacting with various RNA-binding
proteins to enhance the stability of target mRNAs and subsequently augment their protein
expression. Recent investigations have identified numerous lncRNAs involved in diverse
cellular-level mechanisms governing the activation of HSCs, which are crucial in the
progression of liver fibrosis. This section explores the roles of lncRNAs, specifically lncRNA
nuclear enriched autosomal transcript 1 (NEAT1) and H19, in regulating HSCs, as well
as the impact of other lncRNAs in other liver cell types, including immune cells, on the
activation of HSCs.

NEAT1, which is required for paraspeckle formation and integrity, is located in the
interchromatin space and plays an important role in retaining RNA. The involvement of
NEAT1 in liver fibrosis is evident, as it inhibits miR-139-5p, leading to the upregulation of
β-catenin and subsequent promotion of SOX9 expression. This cascade of events initiates
the TGF-β1 pathway, ultimately activating HSCs [33]. Moreover, the therapeutic efficacy
of miR-122 in mitigating liver fibrosis is compromised by elevated NEAT1 levels, which
in turn increase KLF6 expression in HSCs, ultimately resulting in HSCs activation [34]. In
a previous study, it was found that NEAT1 targets miR-148-3p and miR-22-3p, leading to
a reduction in these miRNAs in fibrotic tissue. This downregulation of miR-148-3p and
miR-22-3p by NEAT1 results in increased expression of cytohesin 3, thereby promoting
activation of HSCs. Additionally, NEAT1 is shown to decrease the level of miR-29b, which
in turn increases Atg9 expression and enhances HSCs activation through the modulation of
autophagy [35,36]. Furthermore, NEAT1 directly downregulates miRNA-506, subsequently
upregulating the expression of its downstream gene GLI3, a component of the Hedgehog
signaling pathway [37].

H19, as a ceRNA, has been demonstrated to play a role in liver fibrosis in cholestatic
liver injury by modulating specific targets [38]. H19 promotes the transdifferentiation of
HSCs into myofibroblasts via the TGF-β1 pathway, while the downregulation of the an-
tifibrotic miR-148a in liver fibrosis inhibits HSCs activation by targeting ubiquitin-specific
protease 4 (USP4). A study has shown that H19 exacerbates liver fibrosis by interacting with
miR-148a to induce overexpression of USP4, leading to activation of HSCs by inhibiting
degradation of Smad4 or TGF-βRI and enhancing TGF-β signaling [39]. Additionally, hy-
poxia inducible factor-1α (HIF-1α) induces H19 expression, activating the AMPK pathway
to promote degradation of lipid droplets in HSCs, ultimately causing their activation and
worsening liver fibrosis [40].

The lncRNA HEIM, originating from monocytes, plays a significant role in promoting
activation of HSCs by inducing monocytes to produce increased levels of TGF-β, which
then binds to TGF-β receptors on HSCs to stimulate their activation [41]. Conversely,
the inhibition of highly upregulated liver cancer (HULC) lncRNA has been shown to
effectively mitigate liver fibrosis by preventing hepatocytes from releasing inflammatory
molecules upon cell death, thus inhibiting liver inflammation and HSCs activation through
suppression of the MAPK pathway [42]. Additionally, the lncRNA HOX transcript antisense
intergenic RNA (HOTAIR) has been found to have indirect effects on HSCs activation by
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directly influencing other hepatic cells. HOTAIR functions as a ceRNA for miR-17a-5p,
thereby regulating the transdifferentiation of CD4+T cells into Th17 cells by enhancing the
expression of retinoic acid receptor-related orphan receptor γt (RORγt). This upregulation
of RORγt leads to the overexpression of nuclear receptors, resulting in the secretion of IL-17
by Th17 cells to activate HSCs [43]. Supplementary Data—Table S2 offers a comprehensive
overview of the expression patterns, functional roles, and regulatory mechanisms of various
other identified lncRNAs in liver fibrosis.

2.3. CircRNAs Involved in HSCs Activation

CircRNAs have the capacity to function as ceRNAs by sequestering miRNAs, thereby
leading to an increase in the levels of miRNA targets and ultimately modulating gene
expression at the epigenetic level [44]. Interactions among circRNAs and mRNAs are
present in biological processes and contribute to the pathogenesis of multiple diseases, in-
cluding lymphocyte development regulation, cancer progression, and chronic diseases [45].
Specifically, circRNAs have been implicated in the advancement of chronic liver diseases
and hepatocellular carcinoma (HCC), with a notable association with liver fibrosis and
HSCs activation. The relationship between circRNAs and fibrosis has been extensively
validated through various studies in recent years.

CircMTO1 has been shown to inhibit liver fibrosis by downregulating miR-17-5p,
thereby upregulating Smad7 levels to inhibit the TGF-β1 pathway [46]. Additionally,
CircMTO1 increases PETN expression by interacting with miR-181-5p to suppress HSCs
activation and alleviate hepatic fibrosis [47].

CircRNAs are known to play crucial roles in epigenetics not only within HSCs but
also in other types of liver cells involved in hepatic fibrosis. Specifically, circRNAs have
been shown to directly stimulate Kupffer cells (KCs) to release various chemokines and
inflammatory cytokines, leading to the activation and proliferation of HSCs. One such
circRNA, circMcph1, exacerbates liver fibrosis through a similar mechanism by acting
as a sponge for miR-370-3p, thereby increasing interleukin-1 receptor-associated kinase
2 (Irak2) expression and intensifying KCs-mediated inflammatory damage and fibrosis
through indirect regulation of HSCs [48]. Additional circRNAs implicated in liver fibrosis
are detailed in Supplementary Data—Table S3.

As indicated previously, it is evident that ncRNAs play a significant role in regulating
HSCs epigenetics in the context of fibrosis, primarily through the TGF-β pathway. Figure 2
illustrates the involvement of identified ncRNAs in the activation of HSCs via the TGF-
β1/Smad pathway.
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on the mechanism of TGF-β1. The precursor form of TGF-β contains a latency-associated peptide
(LAP), which can be cleaved to allow binding to the mature TGF-β homodimer. This complex,
along with the latent TGF-β-binding protein (LTBP), forms the latent TGF-β/LAP/LTBP complex,
maintaining TGF-β in an inactive state unable to interact with TGF-βR I and TGF-βR II. Upon release
of the TGF-β homodimer from the complex, it becomes active and can interact with TGF receptor II
(TGFR II), leading to TGFR I activation and subsequent phosphorylation of Smad2 and Smad3. The
phosphorylated forms of Smad2 and Smad3 form a complex with Smad4, translocate to the nucleus,
and bind to the promoter regions of fibrotic genes, thereby inducing their transcription. Additionally,
Smad7, acting as an inhibitory Smad, competitively interacts with TGFR I to inhibit the binding
between TGFR I and Smad2/3, thereby suppressing the activation of the TGF-β1/Smad pathway.
Furthermore, Smad7 recruits E3 ubiquitin ligase and phosphatases to facilitate the degradation and
dephosphorylation of Smad2/3. Left–right determination factor 2 (LEFTY2) is a member of the
TGF-β protein superfamily, which can inhibit TGF-β1/Smad3 signaling. Follistatin-like 1 (FSTL1)
is an inducer of TGF-β1/Smad3 signaling through promoting the Smad3 phosphorylation. Some
identified ncRNAs can also regulate the TGF-β/Smad pathway by targeting various components of
this signaling cascade.

In addition to the TGF-β pathway, the Hippo and Hedgehog pathways also play a
significant role in mediating the activation of HSCs in the context of fibrosis, controlled
by ncRNAs. Figure 3 provides insight into the involvement of these two pathways in the
regulation of HSCs activation through ncRNAs.
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Figure 3. Hippo and Hedgehog pathways mediated by identified ncRNAs. The Hippo pathway
is activated by TAO kinase, which subsequently phosphorylates mammalian Ste20-like kinase 1/2
(MST1/2). Phosphorylated MST1/2 then phosphorylates scaffold proteins SAV1 and MOB1A/B,
facilitating the recruitment and phosphorylation of the large tumor suppressor 1/2 (LATS1/2). Phos-
phorylated LATS1/2 facilitates the phosphorylation of transcriptional co-activators Yes-associated
protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), leading to their cyto-
plasmic retention mediated by 14-3-3 and subsequent degradation. In the absence of Hippo pathway
activation, the kinase cascades are not initiated, allowing YAP/TAZ co-activators to translocate into
the nucleus and interact with the TEAD transcription factor family to modulate gene expression. In
the absence of Hedgehog ligands, the twelve-pass transmembrane receptor Ptched (Ptch) is able to
inhibit the activity of the seven-pass transmembrane receptor Smoothene (Smo). This inhibition of
Smo leads to the inactivation of glioma-associated oncogene transcription factors (Glis) through the
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formation of a complex with suppressor of Fused (SuFu) and Kif7. This complex then promotes the
phosphorylation of Glis by protein kinase (PKA), casein kinaseIα (CK1α), and glycogen synthase
kinase-3β (GSK3β), resulting in the repression of subsequent transcription. When the Hh protein
binds to the Ptch receptor, it leads to a reduction in the inhibition of Smo, allowing for the phospho-
rylation of Smo by CK1 family kinase and GRK2. This phosphorylation event induces the release
of Gli from the complex, enabling its translocation into the nucleus to regulate the expression of
targeted genes. Additionally, the regulation of these pathways is influenced by ncRNAs, as depicted
in this figure.

3. DNA Modifications Mediated by ncRNAs in HSCs Activation
3.1. DNA Methylation in HSCs

DNA methylation is linked to gene silencing, with increased methylation of gene
promoters typically leading to reduced or absent gene expression. There are some details
about DNA methylation in Figure 4. A recent investigation into the genome-wide epigenetic
control of liver fibrosis has unveiled a correlation between hepatic fibrosis and aberrant
DNA methylation [49]. Hypermethylation and hypomethylation of genes can promote or
inhibit HSCs transdifferentiating into myofibroblasts by inhibiting or inducing the access
of transcription factors to DNA for transcription initiation [50,51].
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Figure 4. DNA methylation usually occurs in the region enrichment with cytosine–phosphate–
guanine (CpG) dinucleotides that are also called CpG islands. DNMTs catalyze the methyl group
transference from S-adenyl methionine (SAM) to the fifth carbon of cytosine residue to form 5-
methylcytosine (5mc). DNMT3a and DNMT3b catalyze the de novo methylation, namely, add the
5mc to the DNA directly. DNMT1 plays a role in maintaining methylation in DNA replication. A
family of TET enzymes can superinduce a hydroxyl group to the 5mc; this process converts the 5mc to
5-hydroxymethylcytosine (5hmc). MecP2 can bind with methylated CpG to suppress or enhance gene
expression. The regulation of these processes is influenced by ncRNAs, as depicted in this figure.

DNA methyltransferases, specifically DNMT1, DNMT3a, and DNMT3b, are respon-
sible for DNA methylation and are associated with de novo methylation processes [52].
Several studies have demonstrated that the above DNA methyltransferases play a role in
promoting fibrosis [53,54]. DNMT1 is implicated in DNA methylation maintenance post-
replication, with increased expression observed in liver fibrosis and a key role in driving
the transformation of HSCs into myofibroblast-like cells [55]. MiR-152 has been shown
to downregulate DNMT1 expression, thereby reducing HSCs activation and ameliorating
liver fibrosis by inhibiting PTCH1 methylation to enhance its expression and subsequently
suppress the Hedgehog pathway [56].

DNMT1 suppresses the expression of lncRNA H19 by enhancing methylation on the
promoter region of H19 to downregulate its level, which can further promote the ERK
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pathway to activate HSCs, although H19 was identified as a fibrotic lncRNA by other
research [39,57]. MiR-29a directly targets the mRNA of DNMT1 and DNMT3b to impede
the expression of methyltransferases, resulting in PTEN hypomethylation and upregulation,
thereby suppressing HSCs activation [58]. Conversely, the lncRNA HOTAIR promotes
HSCs activation by inhibiting miR-29a, leading to increased PTEN methylation and reduced
PTEN expression [59]. The upregulation of LncRNA Small nucleolar RNA host gene 7
(SNHG7) in activated HSCs leads to its binding with miR-29b, resulting in the enhancement
of DNMT3a expression and exacerbation of fibrosis through potential hypermethylation of
antifibrotic genes [60]. Elevated levels of DNMT3a are observed in fibrotic liver tissue, and
its overexpression is shown to significantly reduce the expression of the lncRNA antisense
noncoding RNA in the INK4 locus (ANRIL), possibly by increasing the methylation levels
of lncRNA ANRIL to suppress its expression [61]. DNMT3a has been identified as a target
of miR-143 in liver tissue and various other organs [62,63]. Additionally, miR-143-3p has
been shown to mitigate hepatic fibrosis in autoimmune hepatitis, leading to speculation that
miR-143-3p targets DNMT3a to uphold HSCs quiescence [64]. Methyl-CpG binding protein
2 (MeCP2) binds to CpG dinucleotides and serves as a regulator of gene expression, playing
a crucial role in HSCs proliferation [65]. MeCP2 plays a role in promoting the conversion
of quiescent HSCs into myofibroblasts. Silencing of MeCP2 effectively suppresses this
conversion process, while miR-132 inhibits MeCP2 expression, leading to repression of
HSCs activation [66]. Additionally, the upregulation of miR-29 reduces MeCP2 expression
and suppresses HSCs activation [67]. The lncRNA H19 has its expression mediated by
MeCP2. Knockdown of MeCP2 can increase the levels of H19 in HSCs, helping to maintain
their quiescent state [68].

3.2. DNA Demethylation in HSCs

DNA demethylation is facilitated by the Ten Eleven Translocation (TET) enzyme
family, comprising TET1, TET2, and TET3, which are involved in active DNA demethy-
lation linked to the DNA damage response and cell fate determination [69]. The TET
family enzymes catalyze the removal of methyl groups by oxidizing 5-methylcytosine to
5-hydroxymethylcytosine [70,71].

While there is no direct evidence suggesting that TET1 plays a role in liver fibrosis,
studies have shown its association with fibrosis in other organs. The induction of lung
fibrosis by TET1 is mitigated by miR-302a-3p and miR-30a through the downregulation of
TET1 expression via binding to the 3′-UTR of its mRNA. This downregulation subsequently
inhibits TGF-β1 signaling and prevents mitochondrial fission by suppressing dynamin-
related protein 1 expression [72,73]. Conversely, TET3 is implicated in the pathogenesis
of liver fibrosis, with its increased expression potentially exacerbating the progression of
liver fibrosis. Furthermore, a correlation exists between TET3 and the TGF-β1 pathway.
Mir-488-5p inhibits the transdifferentiation of HSCs into myofibroblasts by downregulating
TET3 expression, thereby suppressing TGF-β1/Smad signaling [74].

4. Histone Modifications Mediated by ncRNAs in HSCs Activation
4.1. Histone Acetylation in HSCs

Histone acetylation serves to neutralize the positive charge of histones, thereby dimin-
ishing the electrostatic interactions between DNA and histones, resulting in a more relaxed
chromatin structure. This relaxed chromatin structure facilitates the access of transcription
factors to genes, ultimately influencing the activation or repression of transcription [75].

P300 functions as a co-activator in the TGF-β signaling pathway and possesses acetyl-
transferase activity, thereby playing a crucial role in the regulation of myofibroblast trans-
formation in HSCs through targeted enhancement of acetylation at histone 3, lysine 18,
and lysine 27 (H3K18 and H3K27) [76]. Furthermore, H3K27 at key genes implicated in
fibrosis, such as a-SMA, COL1A1, and COL VI, has been linked to the development of
fibrosis [77,78]. Previous studies have demonstrated the ability of P300 to induce HSCs
activation [79]. Beyond its epigenetic impact on HSCs activation, P300 facilitates the nuclear-
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cytoplasmic translocation of Smad2/3 and TAZ, ultimately leading to the transcription of
fibrotic genes [80].

LncRNA ACTA2-AS1 interacts with P300 in the context of biliary disease-induced
fibrosis, serving as a scaffold for the recruitment of the P300/p-ELK1 (a member of the E26
transcription-specific family with the binding sites of P300) complex to the promoter regions
of fibrotic genes, thereby promoting their expression [81]. In the setting of liver fibrosis,
acetyltransferase 2A (KAT2A) modulates the level of H3K9 acetylation at the promoters of
fibrotic genes, potentially through interaction with Smad4, leading to the upregulation of
genes associated with HSCs activation, such as fibronectin (FN) and plasminogen activator
inhibitor 1 (PAI1) [82].

4.2. Histone Deacetylation in HSCs

Histone deacetylases (HDACs) are categorized into four groups: class I, class II, class
III (also known as the sirtuin family), and class IV. The regulation of HDACs is closely linked
to the fibrosis process. Class I HDACs share similarities with class II HDACs, with the
latter being more prevalent in activated HSCs, and inhibiting them can potentially mitigate
liver fibrosis. In contrast, class III HDACs, belonging to the Sirtuin family, exhibit distinct
protective properties in liver fibrosis compared to the aforementioned classes. NcRNAs
have the ability to modulate histone deacetylases, either exacerbating or ameliorating
liver fibrosis.

MiR-133a has been found to be downregulated during HSCs activation [83], with
HDAC1 and HDAC2 accumulating at enhancer regions of miR-133a to suppress its ex-
pression in cardiac fibrosis [84]. However, the validity of this finding in liver fibrosis
remains unconfirmed. MiR-455-3p has been shown to decrease in fibrotic HSCs due to
hypermethylation of its promoter. Nevertheless, miR-455-3p is capable of downregulating
HDAC2 by directly binding to the 3′-UTR of HDAC2 mRNA, thereby inhibiting HSCs
proliferation induced by the TGF-β/Smad pathway [85]. Decreasing miR-19b expression
has been shown to facilitate the transdifferentiation of HSCs into myofibroblasts [86], while
the removal of HDAC3 has been found to alleviate fibrosis through the interaction of
miR-19b-3p with the 3′-UTR of HDAC3 in renal fibrosis [87]. This regulatory relationship
may also be present in liver fibrosis, as miR-29a has been demonstrated to significantly
reduce liver fibrosis by inhibiting HDAC4 activity, leading to increased histone H3 lysine 9
acetylation at the miR-29a promoter and subsequent upregulation of miR-29a expression,
thereby exerting an antifibrotic effect [88]. MiR-378 has been shown to indirectly decrease
SIRT1 expression by directly stimulating the NF-κB pathway, leading to liver impairment
and fibrosis [89]. Additionally, miR-200 has been found to bind to the 3′-UTR of SIRT1,
resulting in decreased expression and worsening of liver fibrosis [90].

4.3. Histone Methylation and Demethylation

Histone methylation exhibits dual effects on gene transcription, with the ability to
either promote or repress gene expression depending on the specific positions at which
histone lysine residues are modified. In the context of liver fibrosis, histone methylation on
the TGF-β1 promoter, specifically H3K4me1, H3K4me2, and H3K4me3, has been implicated.
These modifications have been shown to increase in levels during liver fibrosis, while
H3K9me2 and H3K9me3 levels decrease [91]. Additionally, the histone methyltransferase
enhancer of zeste homolog 2 (EZH2) is known to mediate H3K27 methylation and has
been extensively studied in this context [92]. EZH2 plays a critical role in the activation
of HSCs through the methylation of H3K27, resulting in decreased expression of KLF14
and exacerbation of liver fibrosis [93]. Inhibition of EZH2 and overexpression of histone
demethylase jumonji domain-containing protein 3 (JMJD3) have been shown to effectively
attenuate HSCs activation by reducing H3K27me3 levels on the promoters or gene bodies
of profibrotic genes, thereby inhibiting their expression [94]. Additionally, EZH2 is a pivotal
regulator of the TGF-β signaling pathway, and downregulation of EZH2 expression has
been demonstrated to mitigate liver fibrosis induced by TGF-β [95]. Furthermore, EZH2
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plays a role in the Wnt/β-catenin signaling pathway by inhibiting the expression of DKK1,
an antagonist of Wnt signaling, thus activating the Wnt/β-catenin pathway and inducing
HSCs activation [96].

Certain ncRNAs have the ability to directly regulate the expression of histone methyl-
transferases, impacting the activation of HSCs. EZH2 is identified as a target of miR-29a,
and its overexpression leads to the downregulation of EZH2, thereby mitigating the transfor-
mation of HSCs into myofibroblasts [67]. LncRNA H19 binds to EZH2, and this interaction
promotes tri-methylation of H3K27, which could induce HSCs activation [97]. LncRNA
HOTAIR has the ability to bind directly to miR-148a, thereby increasing the expression of
the downstream target DNMT1. This, in turn, leads to an increase in H3K27me3 levels
on the promoter of lncRNA MEG3, resulting in decreased expression and subsequent
activation of HSCs [98]. Treatment of activated HSCs with the EZH2 inhibitor DZNeP has
been shown to alleviate liver fibrosis by downregulating miR-199a-5p expression, a process
that may be modulated by EZH2 [99].

5. N6-Methyladenosine Mediated by ncRNAs in HSCs Activation

N6-methyladenosine (m6A) is a prevalent posttranscriptional modification occurring
at the N6 position of adenosine within mRNA molecules, playing a significant role in gene
expression regulation. Emerging research indicates a correlation between m6A modification
and HSCs activation. In the context of renal fibrosis, upregulation of METTL3 has been
shown to elevate levels of m6A in pri-miR-21, leading to the maturation of miR-21-5p.
Subsequently, miR-21-5p exacerbates renal fibrosis through the SPRY1/ERK/NF-KB sig-
naling pathway [100]. It is plausible to hypothesize that a regulatory relationship exists
between m6A and pri-miR-21 in the context of liver fibrosis. Acid-sensitive ion channel 1a
(ASIC1a) has been shown to enhance METTL3 expression, leading to an increase in m6A
levels in pri-miR-350. This modification facilitates the binding of pri-miR-350 to DGCR8,
a component of the microprocessor complex responsible for maturing pri-miRNAs into
mature miRNAs. Furthermore, miR-350 has been found to directly target the downstream
gene SPRY2, thereby promoting liver fibrosis [101]. The decreased expression of circIRF2 in
liver fibrosis is associated with fibrosis resolution. This decrease is attributed to the m6A
modification of circIRF2, which enhances the recruitment of the epigenetic reader YTHDF2,
leading to the destabilization of circIRF2 and subsequent downregulation of its expression.
This downregulation results in the loss of inhibition on miR-29b-1-5p, ultimately leading to
the suppression of FOXO3 expression [102].

6. The Therapeutic Implications of Noncoding RNAs in Liver Fibrosis

As a non-invasive approach, to test the serum levels of some noncoding RNAs have
been biomarkers of liver fibrosis [103]. There are chemical substances that can be implied
to attenuate HSCs activation through targeting noncoding RNAs. Sodium–glucose cotrans-
porter inhibitor (SGLT2i) significantly decreases miR-34a-5p expression to inhibit HSCs
activation [104]. Dastinib can attenuate liver fibrosis via downregulating miR-17 expression
to suppress HSCs activation [105]. Danhongqing formula (DHQ) and salvianolic acid B (Sal
B) target lncRNA H19 and lncRNA ROR, respectively, to restrain HSCs activation [106,107].
Exsomes (Exo) derived from different types of cells containing noncoding RNAs, which
play an important role in the treatment of liver fibrosis, especially the exosomes derived
from mesenchymal stem cells (Msc) [108]. Msc-exos delivering miR-27b-3p and circDIDO1
repress HSCs activation [27,109].

7. Conclusions and Perspectives

The activation of HSCs is a complex process that involves various epigenetic modifi-
cations, with ncRNAs playing a significant role in driving HSCs to transdifferentiate into
myofibroblasts. Additionally, HSCs activation is primarily mediated through four distinct
pathways, namely the TGF-β1, Wnt/β-catenin, Hedgehog, and Hippo pathways [110,111].
The figures presented above depict the biological processes and roles of certain identified



Non-Coding RNA 2024, 10, 44 11 of 19

ncRNAs within the TGF-β1, Hedgehog, and Hippo pathways. Additionally, Figure 5
includes the Wnt/β-catenin pathway and associated ncRNAs that mediate this pathway.
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Figure 5. Wnt/β-catenin pathway and associated ncRNAs. When the Wnt signaling pathway
is not effectively inhibited by Dickkopf (DKK) or Wnt inhibitory protein (WIF), which interact
with lipoprotein receptor-related 5/6 (LRP5/6) to disrupt LRP5/6 and Frizzled (FZD) receptor
dimers, Wnt proteins are able to bind to their FZD receptors, leading to dimerization of FZD and
LRP5/6 receptors. The formation of FZD/LRP heterodimers induces a conformational change in
the receptors, leading to the binding of the cytoplasmic portion of FZD to disheveled (DVL) and
phosphorylation of the LRP5/6 tail by GSK3. This phosphorylation event facilitates the recruitment
of the scaffold protein Axin. DVL serves as a platform for enhanced interaction between Axin and
the LRP5/6 tail. The interaction between Axin, LRP5/6, and DVL disrupts the Destructive Complex
(DC), releasing β-catenin. Subsequently, β-catenin translocates into the nucleus, where it displaces
corepressor Groucho/transducin with TCF/LEF to form a complex that mediates gene expression.
The destruction complex (DC), composed of Axin, adenomatous polyposis (APC), glycogen synthase
kinase 3β (GSK3β), and casein kinase 1α (CK1α), functions to maintain β-catenin in an inactive
state through phosphorylation by CK1α, facilitating GSK3β-mediated phosphorylation of β-catenin.
Subsequent phosphorylation of β-catenin leads to recruitment of β-transducin repeat containing
protein (β-Trcp), an E3 ubiquitin ligase that promotes ubiquitination of β-catenin for degradation.
The Wnt/β-catenin pathway is also regulated by various ncRNAs.

NcRNAs play a role in mediating the aforementioned pathways involved in the activa-
tion of HSCs during liver fibrosis. The regulatory mechanism of ncRNAs primarily involves
modulating key enzymes responsible for the aforementioned modifications, thereby in-
fluencing the expression of genes associated with HSCs activation. Studies on ncRNAs,
including miRNAs, lncRNAs, and circRNAs, have demonstrated their ability to form
regulatory axes that impact the expression of targeted genes.

Merely focusing on one type of ncRNA is insufficient; it is advisable to investigate
the upstream or downstream factors that may influence these RNAs, potentially aiding in
therapeutic advancements. Some noncoding RNAs have a dual role in HSCs activation,
such as lncRNA H19. Studies think that it has a profibrotic effect, while others hold
to the contrary. The mechanisms leading to this phenomenon are currently unclear, so
it is worth further study. Furthermore, in addition to the ncRNA-targeted genes axis,
an increasing number of studies have revealed that ncRNAs play a role in modulating
DNA modifications and post-translational modifications, such as DNA methylation and
demethylation, histone acetylation, and deacetylation. The ability of ncRNAs to target
multiple genes and signaling pathways suggests a novel approach where manipulating the
transcription of one gene may lead to a cascade effect on other genes or pathways, offering
potential therapeutic implications.
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