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Abstract: Prostate cancer (PCa) is a prevalent malignancy in men globally. Current diagnostic methods
like PSA testing have limitations, leading to overdiagnosis and unnecessary treatment. Castration-
resistant prostate cancer (CRPC) emerges in some patients receiving androgen deprivation therapy
(ADT). This study explores the potential of circulating microRNA-107 (miR-107) in liquid biopsies as
a prognosis tool to differentiate CRPC from non-castration-resistant PCa (NCRPC). We designed a
case-control study to evaluate circulating miR-107 in serum as a potential prognosis biomarker. We
analyzed miR-107 expression in liquid biopsies and found significantly higher levels (p < 0.005) in
CRPC patients, compared to NCRPC. Notably, miR-107 expression was statistically higher in the
advanced stage (clinical stage IV), compared to stages I–III. Furthermore, CRPC patients exhibited
significantly higher miR-107 levels (p < 0.05), compared to NCRPC. These findings suggest that miR-
107 holds promise as a non-invasive diagnostic biomarker for identifying potential CRPC patients.

Keywords: miR-107; prostate cancer; castration-resistant

1. Introduction

Prostate cancer (PCa) is the second most common malignancy in men globally, pos-
ing a significant health burden in Mexico [1,2]. In 2024, the Global Cancer Observatory
(GLOBOCAN) estimated over 1.4 million new PCa diagnoses worldwide, with nearly
400,000 deaths, and Mexico reported over 26,000 new cases and over 7000 fatalities from
PCa [1]. Late-stage diagnoses contribute to mortality rates, with approximately 60% of
cases identified in advanced stages [3,4]. The prostate-specific antigen (PSA) test, although
aiding early detection, can yield inconclusive results and has limited specificity, leading
to over-diagnosis and unnecessary treatment of indolent PCa [3,4]. Additionally, some
patients undergoing radical treatment for presumed localized PCa experience biochemical
relapses, suggesting an underestimation of cancer aggressiveness at diagnosis [5]. The
5-year survival rate is nearly 100%, but once PCa cells spread into distant organs, such as
bone, the overall survival rate of patients drops dramatically [6]. The median survival for
metastatic PCa among patients younger than 70 years is 40 months [7]. This grim prognosis
stems from factors such as the absence of initial symptoms, local invasiveness, and the
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potential for early-stage metastasis [5]. Androgen deprivation therapy (ADT), initially effec-
tive for many PCa patients, often leads to the development of metastatic castration-resistant
prostate cancer (CRPC) within two years. This form of the disease presents a diagnostic
challenge, despite the use of various proteomic and metabolomic biomarkers [8].

Recent discoveries highlight the potential of microRNAs (miRNAs) as diagnostic tools.
These small, non-coding RNAs play crucial roles in cellular processes like proliferation,
differentiation, and apoptosis, processes often disrupted in cancer [9–14]. Their unique
expression profiles in cancer tissues, compared to normal tissues, make them promising
biomarkers. Additionally, their stability in bodily fluids like serum (liquid biopsies) makes
them suitable for minimally invasive testing [15–19]. The discovery of miRNAs unveiled
their role in regulating fundamental cellular processes, and dysregulation in their expres-
sion has been linked to various human diseases, including cancer [16,17]. Advances have
been made in understanding miRNA stabilization and detection in blood, establishing
their presence in various bodily fluids [18,19]. Notably, circulating miRNAs are protected
from degradation by binding to proteins or being encapsulated within vesicles [19–22].
These features make blood-based miRNAs, including those investigated in this study,
attractive candidates for cancer detection, monitoring tumor dynamics, and assessing
prognosis [23–25].

Several studies have reported associations between circulating miRNA levels and
PCa [26,27]. One such miRNA, miR-107, has been shown to outperform PSA in differentiat-
ing between control and PCa patients [28]. However, its role in PCa progression after ADT
remains unexplored. Other miRNAs, like miR-375, miR-378, and miR-141, are reported to
be overexpressed in the liquid biopsies of CRPC patients [29]. This study aims to evaluate
the expression levels of miR-107 in liquid biopsies from Mexican patients with confirmed
ADT PCa, categorized by both cancer stage and castration resistance. We investigate the
potential of circulating miR-107 levels as a potential biomarker for ADT PCa and CRPC

2. Results
2.1. Expression Profile of miR-107 in the Prostate Cancer Liquid Biopsies Dataset

To identify potential differentially expressed miRNAs (DEMs) in liquid biopsies from
PCa patients, we analyzed public data from the GEO Omnibus dataset, GSE112264. Follow-
ing the initial analysis, we filtered the identified DEMs to focus on those exhibiting similar
expression patterns between PCa and normal (CTRL) liquid biopsies. A total of 809 PCa
patients vs. 241 normal patients were found to consistently exhibit differential expression,
with miR-107 overexpressed in the PCa group (fold change of 1.5, p-value < 0.05) (Figure 1).
This allowed us to identify an overexpression of miR-107 in PCa liquid biopsies, suggesting
that miR-107 could be used as a potential biomarker for PCa. These miRNAs have been
previously implicated in PCa development and progression, and they could potentially be
used to improve diagnosis or prognosis, which is addressed in the present study.
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2.2. The miR-107 Expression Levels Are Higher in Liquid Biopsies from Cancer Patients with
Androgen Deprivation Therapy

To validate previous findings from publicly available data and to determine the clinical
utility of miR-107, we analyzed liquid biopsies from Mexican patients with PCa treated
with different ADTs (n = 63) and healthy controls (n = 42) who tested negative for PCa
(CTRL). qRT-PCR assays were performed to analyze the expression profile of miR-107 in
the liquid biopsies of PCa ADT patients and controls (Figure 2). These results revealed
significant differences in miR-107 expression levels between the CTRL group and the PCa
group, where the miR-107 expression level in the liquid biopsies of PCa patients had a
12-fold change, compared to the control group (p = 0.000012).
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Figure 2. Relative expression of miR-107 in liquid biopsies from CTRL and ADT PCa patients.
The relative levels of miR-107 that were determined by qRT-PCR and calculated using 2−∆∆Ct are
represented. The boxplot graph shows the median with quartile. Error bars represent the ±S.D. of
three technical replicas. Mean comparison using a t-test. ***: p < 0.001. RNU6 was used for the
normalization of the miR-107 levels.

2.3. Stratification of Androgen Privation Resistance Prostate Cancer Cases in Mexican Patients

To investigate the potential correlation between miR-107 expression and the clinical–
pathological features and aggressiveness of ADT PCa, the 63 patient cases were divided
into diagnosed clinical stages (CSI, CSII, CSIII, and CSIV), and the descriptive information
of the study groups is presented in Table 1.

Table 1. Clinical stage Gleason scores (GS) of ADT PCa cases.

Clinical Stage CS Cases (n) Cases (n) Gleason Score 1

CSI 13
6 6 (3 + 3)
4 7 (4 + 3)
3 8 (4 + 4)

CSII 10

1 6 (4 + 2)
6 7 (4 + 3)
1 8 (4 + 4)
2 9 (5 + 4)
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Table 1. Cont.

Clinical Stage CS Cases (n) Cases (n) Gleason Score 1

CSIII 20
12 7 (4 + 3)
5 6 (4 + 2)
3 8 (4 + 4)

CSIV 20

8 9
2 8
8 10
1 7
1 6

1 Results are reported as the GS, which indicates the aggressiveness of the cancer detected by the pathologist,
according to the AJCC Cancer Staging Manual (https://www.facs.org/media/j30havyf/ajcc_7thed_cancer_
staging_manual.pdf (accessed on 5 July 2024).

All ADT PCa patients (n = 63) were treated with abiraterone acetate (n = 23), leuprolide
acetate (n = 20), and goserelin (n = 20) distributed in all clinical stages and received
complementary treatment as indicated: radiotherapy, radical prostatectomy, or cryotherapy.
Only two patients were treated with surgery for symptom relief (prostate cryo-ablation).
The main treatment used for PCa cases was ADT, combined with radiotherapy and surgery
(prostatectomy and cryotherapy) (Figure 3).
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Figure 3. Correlation of additional treatment to ADT in PCa patients. The Venn diagram shows the
additional treatments for ADT of PCa patients including radiotherapy, prostatectomy, and prostatic
cryo-ablation. The numbers in the circles indicate the number of elements in the subsets based on
presence/absence data. The numbers in the overlapping regions indicate the quantity of elements
shared between subsets. The dataset indicates the size of each list analyzed.
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2.4. Correlation of the Expression of miR-107 with the Clinical Stages of Androgen Privation
Therapy Prostate Cancer and Liquid Biopsies

Once the miR-107 overexpression in liquid biopsies was determined, we investigated
a potential association between miR-107 expressions in the clinical stages of ADT PCa
cases at the moment of diagnosis (n = 63). Patient age at diagnosis ranged from 59 to
90 years (median 72), and body mass index had a median of 27.9. The ADT-treatment
PCa cases (n = 63) were categorized by a clinical stage (CS) from one to four (CSI-CSIV)
and healthy controls (n = 42). As shown in Figure 4, miR-107 expression in CSIV (n = 20)
was significantly higher (p < 0.005), compared to CSI (n = 1 3, p-value 0.011), CSII (n = 10,
p-value 0.032), and CSIII (n = 20, p-value 0.012). It is important to note that there was also a
differential expression of miR-107 in all clinical stages of CRPC, compared to the control
group (p < 0.001) (Figure 2). However, miR-107 exhibited a statistically significant pattern
of differential expression in CSIV, compared to the other three clinical stages of ADT PCa,
by mean comparison using ANOVA and the Tukey test. Nevertheless, further validation
with larger cohorts is necessary to fully understand this expression pattern in ADT, as
well as to elucidate the mechanisms by which miR-107 is regulated in the CSIV stage of
PCa. However, further validation with larger cohorts is necessary to fully understand this
expression pattern in ADT and is also needed to understand the mechanisms by which
miR-107 is regulated in the CSIV PCa stage.
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Figure 4. Relative expressions of miR-107 in liquid biopsies from ADT PCa patients and the clinical
stages. The relative levels of miR-107 in liquid biopsies from patients with ADT PCa (n = 63) in
different confirmed pathological clinical stages (CSI, CSII, CSIII, and CSIV) were measured by qRT-
PCR and calculated using 2−∆∆Ct. The boxplot graph shows the median with the quartile. Error bars
represent ±S.D. of the boxplot graph and displays the median with quartiles. Error bars represent
±S.D. from two independent experiments conducted in triplicate for each sample. Mean comparison
was made using ANOVA and the Tukey test. ***: p < 0.001. RNU6 was used for the normalization of
the miR-107 levels.

2.5. Circulating miR-107 as a Potential Biomarker for Castration-Resistant Prostate Cancer

We analyzed the specific miR-107 expression profiles in 33 CRPC patient samples
and 30 NCRPC patient samples, previously shown to have higher overall miR-107 expres-
sion levels, compared to the CTRL group (Figure 1), to evaluate their potential as CRPC
biomarkers. The distribution of clinical stages among CRPC patients is presented in Table 2.
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Table 2. Clinical stages and Gleason scores of CRPC patients used in this study.

Clinical Stage Number of Patients (n) Gleason Score (n)

CSI 10 6 (6), 7 (4)
CSII 2 9 (2)
CSIII 3 8 (3)
CSIV 18. 9 (8), 10 (8), 7 (2)
Total 33 33

CS: Clinical stage.

As depicted in Figure 5, miR-107 liquid biopsy expression level in CRPC patients was
14.1 ± 9.0, compared to 4.97 ± 2.19 in non-castration-resistant prostate cancer (NCRPC)
(p = 5.9 × 10−8) patients and the control group (p < 0.001). This significantly higher miR-107
level in CRPC, compared with NCRPC patients and the CTRL group, suggests a possible
role of miR-107 in the evolution of carcinoma biology. The high abundance of miR-107 in
CRPC suggests its involvement in the pathogenetic mechanisms driving PCa progression
toward castration-resistant disease. In this context, miR-107 could be considered a highly
expressed miRNA in PCa, particularly in CRPC patients. Its potential application lies in
CRPC late-stages detection, offering a novel miRNA biomarker to improve survival rates
of PCa patients at risk of failing the standard ADT. This could allow for early intervention
and the implementation of the most effective therapeutic methods for prevention.

Non-Coding RNA 2024, 10, x FOR PEER REVIEW 6 of 15 
 

 

expression levels, compared to the CTRL group (Figure 1), to evaluate their potential as 
CRPC biomarkers. The distribution of clinical stages among CRPC patients is presented 
in Table 2. 

Table 2. Clinical stages and Gleason scores of CRPC patients used in this study. 

Clinical Stage Number of Patients (n) Gleason Score (n) 
CSI 10 6 (6), 7 (4) 
CSII 2 9 (2) 
CSIII 3 8 (3) 
CSIV 18. 9 (8), 10 (8), 7 (2) 
Total 33 33 

CS: Clinical stage. 

As depicted in Figure 5, miR-107 liquid biopsy expression level in CRPC patients was 
14.1 ± 9.0, compared to 4.97 ± 2.19 in non-castration-resistant prostate cancer (NCRPC) (p 
= 5.9 × 10−8) patients and the control group (p < 0.001). This significantly higher miR-107 
level in CRPC, compared with NCRPC patients and the CTRL group, suggests a possible 
role of miR-107 in the evolution of carcinoma biology. The high abundance of miR-107 in 
CRPC suggests its involvement in the pathogenetic mechanisms driving PCa progression 
toward castration-resistant disease. In this context, miR-107 could be considered a highly 
expressed miRNA in PCa, particularly in CRPC patients. Its potential application lies in 
CRPC late-stages detection, offering a novel miRNA biomarker to improve survival rates 
of PCa patients at risk of failing the standard ADT. This could allow for early intervention 
and the implementation of the most effective therapeutic methods for prevention. 

 
Figure 5. Relative expressions of miR-107 in liquid biopsies from CRPC in comparison with non-
CRPC. The relative levels of miR-107 in liquid biopsies from patients with PCa CRPC and NCRPC 
by ADT were measured by qRT-PCR and calculated using 2−ΔΔCt. The boxplot graph displays the 
median with quartiles. Error bars represent ±S.D. from two independent experiments conducted in 
triplicate for each sample. Mean comparison was made using ANOVA and the Tukey test. ***: p < 
0.001. RNU6 was used for the normalization of the miR-107 levels. 

Figure 5. Relative expressions of miR-107 in liquid biopsies from CRPC in comparison with non-CRPC.
The relative levels of miR-107 in liquid biopsies from patients with PCa CRPC and NCRPC by ADT
were measured by qRT-PCR and calculated using 2−∆∆Ct. The boxplot graph displays the median
with quartiles. Error bars represent ±S.D. from two independent experiments conducted in triplicate
for each sample. Mean comparison was made using ANOVA and the Tukey test. ***: p < 0.001. RNU6
was used for the normalization of the miR-107 levels.

To investigate the potential correlation between circulating and tissue miR-107 in PCa
patients, compared to benign prostatic hyperplasia (BPH), considered as normal tissues,
and CRPC patients, we employed a multi-step approach. Initially, we utilized the TCGA
Prostate Adenocarcinoma (TCGA-PRAD) database through the Xena Browser to analyze
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miR-107 expression in PCa and normal tissue samples. Interestingly, we observed no
significant differences in miR-107 expression between BPH and PCa samples (p = 0.71)
(Figure 6A). To further validate findings in androgen therapy, we retrieved public data
on miR-107 expression in NCRPC and CRPC tissues (GSE55829). Remarkably, these data
revealed a significant overexpression of miR-107 in CRPC tissue (p = 0.033) (Figure 6B).
These findings support the notion that miR-107 could serve as a prognostic biomarker for
CRPC patients, due to increased miR-107 levels in liquid biopsies, potentially originating
from the primary tumor and influencing its development and progression to an advanced
disease stage, and could be detected as a circulating marker for CRPC.
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2.6. Evaluation of miR-107 as a Potential CRPC Diagnostic Biomarker

To assess the diagnostic power of miR-107, we analyzed the expression of miR-107 to
determine optimal cut-off points for differentiating advanced cancer patients with CRPC
from those with NCRPC (Figure 7). We employed a receiver operating characteristic (ROC)
curve, plotting sensitivity against the false positive rate (1-specificity) at various threshold
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levels of miR-107 and PSA. The area under the curve (AUC) for miR-107 was calculated as
0.85 (Figure 7A), indicating a good ability of miR-107 to discriminate between CRPC and
NCRPC, compared with 0.56 for PSA (Figure 7B). At this threshold, the assay demonstrated
a sensitivity of 89.0%, a specificity of 68.8%, and an overall accuracy of 89.0%. These
findings suggest that miR-107 serum levels hold promise as a potential biomarker for
distinguishing CRPC patients from NCRPC with high accuracy and significance. Com-
pared to conventional prostate cancer markers, miR-107 offers clinically relevant detection
capabilities. However, it is important to consider the positive predictive value (PPV) of
this test in the context of overall disease prevalence. Further studies with larger patient
populations are needed to determine the PPV and establish miR-107 as a reliable diagnostic
tool for CRPC.

Non-Coding RNA 2024, 10, x FOR PEER REVIEW 8 of 15 
 

 

To assess the diagnostic power of miR-107, we analyzed the expression of miR-107 to 
determine optimal cut-off points for differentiating advanced cancer patients with CRPC 
from those with NCRPC (Figure 7). We employed a receiver operating characteristic 
(ROC) curve, plotting sensitivity against the false positive rate (1-specificity) at various 
threshold levels of miR-107 and PSA. The area under the curve (AUC) for miR-107 was 
calculated as 0.85 (Figure 7A), indicating a good ability of miR-107 to discriminate be-
tween CRPC and NCRPC, compared with 0.56 for PSA (Figure 7B). At this threshold, the 
assay demonstrated a sensitivity of 89.0%, a specificity of 68.8%, and an overall accuracy 
of 89.0%. These findings suggest that miR-107 serum levels hold promise as a potential 
biomarker for distinguishing CRPC patients from NCRPC with high accuracy and signif-
icance. Compared to conventional prostate cancer markers, miR-107 offers clinically rele-
vant detection capabilities. However, it is important to consider the positive predictive 
value (PPV) of this test in the context of overall disease prevalence. Further studies with 
larger patient populations are needed to determine the PPV and establish miR-107 as a 
reliable diagnostic tool for CRPC. 

 
Figure 7. Evaluation of receiver operating characteristic (ROC) curves and area under the curve 
(AUC) in CRPC and NCRPC patients. (A) ROC and AUC values were calculated to assess the feasi-
bility of using liquid biopsy miR-107 levels from CRPC and NCRPC patients as a potential diagnos-
tic tool. (B) The AUC value was calculated for PSA. 

3. Discussion 
Some of the currently used biomarkers for PCa remain highly invasive. For example, 

the prostate cancer antigen 3 (PCA3) is a biomarker only expressed in the prostate and 
can be detected in urine and prostatic fluid. While this does not require blood collection, 
it is considered more invasive than blood-based tests, as it requires a digital massage of 
the prostate before urine collection [9]. Due to this, the search for new biomarkers ob-
tained through less invasive methods with faster and more specific results has recently 
generated interest. Most studied miRNAs play an important role in tumor development 
and cancer progression and, as shown here, are attractive for PCa detection and treatment. 
In the present study, we focused on the potential biomarker role of circulating miR-107 to 
evaluate its efficacy and accuracy in the detection of PCa progression stages, mainly in 
CRPC. The miR-107 has been linked to multiple cellular processes and pathways, 

Figure 7. Evaluation of receiver operating characteristic (ROC) curves and area under the curve (AUC)
in CRPC and NCRPC patients. (A) ROC and AUC values were calculated to assess the feasibility of
using liquid biopsy miR-107 levels from CRPC and NCRPC patients as a potential diagnostic tool.
(B) The AUC value was calculated for PSA.

3. Discussion

Some of the currently used biomarkers for PCa remain highly invasive. For example,
the prostate cancer antigen 3 (PCA3) is a biomarker only expressed in the prostate and can
be detected in urine and prostatic fluid. While this does not require blood collection, it is con-
sidered more invasive than blood-based tests, as it requires a digital massage of the prostate
before urine collection [9]. Due to this, the search for new biomarkers obtained through less
invasive methods with faster and more specific results has recently generated interest. Most
studied miRNAs play an important role in tumor development and cancer progression
and, as shown here, are attractive for PCa detection and treatment. In the present study,
we focused on the potential biomarker role of circulating miR-107 to evaluate its efficacy
and accuracy in the detection of PCa progression stages, mainly in CRPC. The miR-107
has been linked to multiple cellular processes and pathways, especially those that regulate
cell survival, such as autophagy, necrosis, ER stress, and cancer progression [30–33]. In this
work, we reported that miR-107 is significantly overexpressed (p < 0.05) in ADT PCa patient
liquid biopsies, compared to healthy control volunteers. Other studies have investigated
the expression of miRNAs as potential biomarkers, such as Herrero-Aguayo et al. (2022),
who reported 12 miRNAs differentially expressed in PCa patient plasma, compared to
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controls, and correlated with metastases. However, whether miR-107 could be used as a
marker of PCa progression or treatment was not investigated [28]. In the context of the
use of this miRNA as a potential biomarker, an analysis of urine samples indicated that
miR-107 and miR-574-3p were significantly associated with PCa risk [26].

The PCa management has relied on the fundamental trio of PSA, histological Gleason
score (GS), and clinical stage. However, this triad presents challenges in terms of sensitivity
and specificity; discovering less invasive biomarkers specific to progression is essential to
avoid overdiagnosis and overtreatment. In our study, statistically significant differences
(p < 0.05) were found between ADT PCa clinical stages CSI, CSII, and CSIII and clinical stage
CSIV, which showed higher levels ofmiR-107 in liquid biopsies. The miR-107 family has
been linked to tumor progression from initial to advanced PCa stages, and our results are
consistent with these reports [34–37]. miR-107 was significantly overexpressed (p < 0.001)
in CRPC liquid biopsies, compared to NCRPC, in both ADT patients. In the CRPC context,
other studies have proposed prognostic values of both miR-141 and miR-375, with a trend
of increasing plasma levels at disease progression from low-risk PCa, high-risk PCa, and
metastatic CRPC [38]. To our knowledge, this is the first report of miR-107 association with
CRPC, which is the end stage of a multifactorial and heterogeneous disease process [39–41].
Significant progress has been made in characterizing the molecular basis of CRPC in
recent years. However, despite these advances, resistance to PCa therapies remains poorly
understood [42,43]. The heterogeneity of CRPC is a well-established clinical challenge;
therefore, basing patient stratification on metastatic tissue biopsies is currently not a valid
option, since the methods are invasive [44].

To gain accurate and novel insight into the role of miR-107 in PCa and its possible
use as a biomarker for CRPC, we also evaluated the ROC curve and determined the AUC
value. Our data indicate an AUC of 0.85, with an optimal relative expression cut-off point
of about 1.2, a high sensitivity of 89.0%, and a specificity of 68.8%. Our study provides
89.0% accuracy in measuring miR-107 serum levels to detect CRPC. This high accuracy
demonstrates that this method is a potentially viable option for the early diagnosis of
CRPC. The measurement of miR-107 can also be used to identify additional prognostic
factors in the initial stage of CRPC development. In this context, miR-107 levels could
potentially be determined at the time of diagnosis to identify patients with aggressive
disease/micrometastases and/or to predict recurrence following primary ADT. However,
one of the limitations of this study is the relatively small sample size; although the results
are consistent, confirmation with larger cohorts would be necessary before considering
translational application in a clinical setting to improve stage diagnostic accuracy and to
potentially guide personalized treatment strategies for PCa patients.

The AUC values of miR-107 obtained in our study compared to the PSA of PCa
patients after ADT reflect data from our specific sample and could vary in studies with
larger cohorts. While studies such as the one by Catalona et al. (1994), which involved a
larger cohort, reported an AUC of 0.72 for PSA in non-treated PCa patients [45], our cohort
is significantly smaller but specific to ADT samples. Generally, an extremely high PSA
level can potentially indicate metastatic prostatic adenocarcinoma, but it is not a definitive
sign [46]. Understanding these variations is crucial for evaluating miR-107’s potential as a
treatment-resistance biomarker.

Additionally, it is necessary to understand the molecular mechanisms by which miR-
107 could contribute to the development and progression of CRPC. Recently, Liang et al.
reported that miR-107 induces chemoresistance in colorectal cancer (CRC) through the
CAB39–AMPK–mTOR pathway, promoting metastasis [47]. Contrary to our findings,
Mihelich et al. found that miR-107 was downregulated in high-grade PCa serum. This
divergence underscores the complexity of miR-107’s role in PCa, ADT, and CRPC, neces-
sitating further research to clarify its function. These discrepancies in expression profiles
could be due to differences in specific molecular contexts, technical variations in detection
and normalization methods, patient populations, experimental conditions, or stages of
PCa [48]. At least in vitro, miR-107 overexpression altered aggressiveness in PCa cells,
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inhibiting proliferation by the G1/S phase arrest targeting cyclin E1, migration, and tumor-
sphere formation, but did not affect apoptosis or cell motility, modulating the expressions
of genes involved in disease pathophysiology and acting as a tumor suppressor [28,49].
The carcinogenic or cancer-suppressor effects of miR-107 and its functions can be used
as potential diagnostic and prognostic biomarkers or targets for therapeutic intervention,
even in conjunction with other pathologies, such as obesity [28]. In our TCGA analyses,
we found no significant differences in miR-107 expression levels between normal and PCa
tissues, but miR-107 was reported to be downregulated in PCa tissue, compared with
normal prostate cells and peritumoral tissues [49].

The discrepancy between TCGA-PRAD data and our results in liquid biopsies could
be attributed to treatment status, as treatment may influence miR-107 levels in tissue
samples; also, there are reports in metastatic PCa cohorts where there was a significant
negative correlation of miRNAs between tumor tissue expression and plasma levels [50].
These findings support the notion that miR-107 could serve as a prognostic biomarker for
CRPC patients. Elevated miR-107 levels, potentially originating from the primary tumor
and influencing its development and progression to a late stage, could be detected as a
circulating marker for treated PCa. Previous studies have demonstrated the prognostic
value of other miRNAs, among which are miR-141 and miR-221, which have been associated
with lower overall survival (OS) in patients treated with abiraterone [38].

Taken together, this study provides preliminary evidence supporting the potential
of miR-107 as a biomarker for CRPC after ADT. Broader investigations are needed to
validate these findings and to elucidate the role of miR-107 in the biology of PCa and
treatment resistance.

4. Materials and Methods
4.1. Data Acquisition of PCa and CRPC from Liquid Biopsies and Tissue

Microarray data for PCa and normal liquid biopsy samples were obtained from the
GEO Omnibus database. The following dataset was used: GSE112264 for miRNA expres-
sion. Limma package in the R statistical environment was used to identify differentially
expressed miRNAs (DEMs) within each dataset.

To evaluate miR-107 expression in prostate PCa tissue samples, we utilized the TCGA
Prostate Adenocarcinoma (TCGA-PRAD) database through the Xena Browser (accessed
on 1 July 2024). This allowed us to compare miR-107 expression levels between PCa and
normal tissue samples to identify any significant differences. Additionally, we retrieved
public data on miR-107 expression in benign prostatic hyperplasia (BPH) tissues (GSE14392),
treatment-naïve PCa tissues (GSE59156), and castration-resistant PCa xenograft tissues
(GSE55829). We then analyzed miR-107 expression levels in each of these groups and
compared them to the TCGA-PRAD data. Limma package in the R statistical environment
was used to identify DEMs within each dataset. A fold-change threshold of 1.5 (absolute
value) and a p-value cut-off of less than 0.05 were used to define statistically significant
differences in miRNA expression.

4.2. Liquid Biopsies from NCRPC, CRPC Patients, and Controls

Liquid biopsies from NCRPC patients (n = 30), CRPC patients (n = 33) (total PCa ADT
n = 63), and the healthy control (n = 42) were obtained from recruited volunteers who met
the inclusion criteria at Hospital Central Militar of Mexico City and Hospital Juárez de
México. The study was approved by the ethics and research committees (AEEI-79020 and
HJM 009/23-I, respectively). After signed informed consent, 4–6 mL blood samples (liquid
biopsies) were collected in BD Vacutainer® serum tubes (Beckton-Dickinson, Franklin
Lakes, NJ, USA), centrifuged at room temperature (300× g for 5 min) to separate the serum,
aliquoted, and frozen at −80 ◦C within 24 h of sampling. Inclusion criteria for cases were:
males over 40 years old with a confirmed diagnostis of PCa with ADT, PSA > 4 ng/mL−1,
and Gleason score ≥ 6. Exclusion criteria for cases were: male patients under 40 years old,
males with a family history of PCa, males with a PSA diagnosis < 4 ng/mL, and patients
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with a previous diagnosis of another type of cancer or catastrophic diseases. Controls were
healthy males over 40 years old, with PSA < 4 ng/mL−1 and no family history of PCa or
catastrophic diseases. Hemolyzed serum samples were excluded from both groups (cases
and controls). The samples were frozen at −80 ◦C until use.

4.3. RNA Isolation from Liquid Biopsies

Total RNA for miR-107 expression analysis was extracted from 200 µL of liquid
biopsies of the analyzed groups. Trizol (1 mL) was added and mixed thoroughly by
pipetting, and then the lysate was transferred to a 1.5 mL microcentrifuge tube. The
mixture was incubated at room temperature for 5 min, followed by the addition of 200 µL
of chloroform per mL of Trizol reagent, and shaken vigorously for 15 s. After a 3 min
incubation at room temperature, the tube was centrifuged at 12,500 rpm for 25 min at
4 ◦C. The aqueous phase was carefully collected into a fresh 1.5 mL microcentrifuge tube.
RNA precipitation was then carried out by adding 500 µL of isopropanol, with the pellet
incubated on ice for 20 min. The sample was centrifuged again at 12,500 rpm for 25 min
at 4 ◦C. After removing the supernatant, the pellet was washed with 1 mL of 75% ethanol
and allowed to air dry for 5 min. Finally, the RNA pellet was resuspended in 20 µL of
nuclease-free water. The RNA concentration was measured using spectrophotometry, and
the RNA was subsequently used for cDNA synthesis.

4.4. cDNA Synthesis and qRT-PCR

Complementary DNA (cDNA) was obtained from isolated RNA from liquid biop-
sies using the MicroRNA Reverse Transcription Kit (Applied Biosystems, Foster City,
CA, USA). All reactions were performed according to the manufacturer’s recommenda-
tions. cDNA samples were kept at −80 ◦C until the application of quantitative real-time
polymerase chain reaction (qRT-PCR) with specific primers for miR-107 (forward primer
5′-GCTTCTTTACAGTGTTGCC-3′ and reverse primer 5′-TCTGTGCTTTGATAGCCCTGT-3′)
and U6 snRNA (RNU6) (forward primer 5′-CTCGCTTCGGCAGCACA.3′ and reverse
primer 5′-AACGCTTCACGAATTTGCGT-3′) using SYBR Green assay (Applied Biosys-
tems), according to the supplier instruction for using the Applied Biosystems 7500 Real-
Time PCR system. All the assays were performed in duplicate with three technical replicas.

4.5. Statistical Analysis

To identify DEMs within each dataset, the limma package in the R statistical environ-
ment was employed. A fold-change threshold of 1.5 (absolute value) and a p-value cut-off of
less than 0.05 were used to define statistically significant differences in miR-107 expression.
Differences in miRNA expression between the case and control groups were assessed using
an ANOVA, a post hoc test (Tukey), and t-test, with p < 0.001 being considered statistically
significant. Differences in miR-107 expression were estimated using the 2−∆∆Ct equation
and expressed as fold changes, normalized to snRNU6 (endogenous control) in liquid
biopsies [51–53]. The diagnostic power of miR-107 expression was evaluated based on
sensitivity, specificity, and cut-off values obtained from receiver operating characteristic
(ROC) curves. The scores showing statistical significance are indicated in the figures with
asterisks. The corresponding values are indicated in the figure legends. Statistical analyses
were performed using GraphPad software (v9.3.0).

5. Conclusions

Our findings support the growing evidence suggesting that non-coding RNAs, such
as miRNAs, hold promise as non-invasive biomarkers for PCa diagnosis. This study
demonstrates that circulating miR-107 has a higher expression in CRPC patients’ liquid
biopsies, compared to NCRPC and healthy controls. Furthermore, our data suggest that
miR-107 may be differentially expressed in the progression of primary tumors to metastatic
disease in PCa with ADT. These results are consistent with the established role of miR-
107 in cancer-associated signaling pathways and its potential contribution to aggressive
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CRPC development. Importantly, our research indicates that miR-107 measurement has
the potential to accurately detect androgen-resistant prostate cancer for treatment. This
non-invasive approach could significantly improve diagnostic strategies and contribute to
the growing clinical utility of miRNAs in PCa treatment management.
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