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Abstract: Following the acute phase of SARS-CoV-2 infection, certain individuals experience per-
sistent symptoms referred to as long COVID. This study analyzed the patients categorized into
three distinct groups: (1) individuals presenting rheumatological symptoms associated with long
COVID, (2) patients who have successfully recovered from COVID-19, and (3) donors who have
never contracted COVID-19. A notable decline in the expression of miR-200c-3p, miR-766-3p, and
miR-142-3p was identified among patients exhibiting rheumatological symptoms of long COVID.
The highest concentration of miR-142-3p was found in healthy donors. One potential way to reduce
miRNA concentrations is through antibody-mediated hydrolysis. Not only can antibodies possessing
RNA-hydrolyzing activity recognize the miRNA substrate specifically, but they also catalyze its
hydrolysis. The analysis of the catalytic activity of plasma antibodies revealed that antibodies from
patients with long COVID demonstrated lower hydrolysis activity against five fluorescently labeled
oligonucleotide sequences corresponding to the Flu-miR-146b-5p, Flu-miR-766-3p, Flu-miR-4742-3p,
and Flu-miR-142-3p miRNAs and increased activity against the Flu-miR-378a-3p miRNA compared
to other patient groups. The changes in miRNA concentrations and antibody-mediated hydrolysis of
miRNAs are assumed to have a complex regulatory mechanism that is linked to gene pathways asso-
ciated with the immune system. We demonstrate that all six miRNAs under analysis are associated
with a large number of signaling pathways associated with immune response-associated pathways.

Keywords: miRNA; COVID-19; long COVID; antibodies; catalytic antibodies; SARS-CoV-2; miRNA;
RNA hydrolysis; miR-200c-3p; miR-766-3p; miR-142-3p; pathways; regulatory network; rheumatologically

1. Introduction

MiRNAs are a class of noncoding RNAs that regulate the expression of numerous
genes through degradation, translational repression, or activation of mRNAs [1] as they are
involved in various biological processes such as regulation of immune response, immune
cell differentiation, metabolism, apoptosis, cell cycle, and oncogenesis [2]. Numerous
studies have demonstrated that miRNAs can be released into extracellular fluids [3]. Hence,
extracellular miRNAs represent promising biomarkers for early diagnosis and prognosis
of various diseases, as well as targets for therapy [4]. Moreover, miRNA-based drugs
are expected to become the next generation of drugs for the treatment and prevention of
various human diseases [5].

Various diseases, including viral infections, cause significant changes in the expression
profile of miRNAs [6,7]. Currently, a large number of differentially expressed miRNAs
associated with COVID-19 have been identified [8,9]. These studies identify miRNAs asso-
ciated with severe COVID-19, and gene regulatory pathways to understand the underlying
biological processes associated with COVID-19 [10]. For example, Nicoletti et al. [11] identi-
fied 18 plasma miRNAs that are differentially expressed in COVID-19 patients and controls,
including miR-4433b-5p, miR-320b, and miR-16-2-3p. Expression of the miR-320 family
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(320a-3p, 320b, 320c, and 320d) is increased in patients with COVID-19 compared to healthy
controls [12], and lower miR-320 expression is associated with death in patients [11,13].
Changes in the expression level of some miRNAs, such as miR-142-3p, miR-146b-5p, miR-
148a-3p, miR-200c-3p, miR-370, miR-378a-3p, miR-483, miR-1246, and others, have been
described during the acute period of SARS-CoV-2 infection [14–16]. Several miRNAs, such
as miR-21, miR-143, miR-122, miR-133, miR-155, miR-208a, miR-499, miR-625, and others,
are associated with disease severity [8,16,17]. Data on the expression of some miRNAs
in COVID-19 are contradictory (e.g., miR-4433b-5p, miR-16-2-3p) [12,14,18,19], which is
probably due to differences in the patient sample.

MiRNAs regulating the expression of viral genes are interesting. Several studies
indicate that the interaction of host miRNAs with viral genes limits viral replication [20].
MiRNAs capable of targeting various regions of the SARS-CoV-2 genome, such as miR-197-
5p and miR-18b-5p, have been identified [21,22].

MiRNA-mediated regulation has been shown not only for higher eukaryotes. To date,
miRBase reports 30 viral miRNAs encoded by RNA viruses [23–26]. Several studies have
demonstrated miRNAs originating from the SARS-CoV-2 genome [27–29].

Although most patients with COVID-19 fully recover, some experience lingering
symptoms that may be related to previous SARS-CoV-2 infection (long COVID) [30]. The
clinical manifestations associated with long-term COVID are incredibly heterogeneous and
involve the respiratory system, gastrointestinal tract, joints, nervous system, endocrine
system, etc. [31,32]. During the course of COVID-19, an important proportion of cases
suffer from severe pneumonia and tend to have long-term sequelae [33]. Ongoing fibrosis
during the recovery period results in decreased diffusion capacity of the lung [34]. There
are a significant number of reports of patients with demyelinating pathologies such as
Guillain–Barré syndrome, Miller–Fisher syndrome and others [35]. There is growing pub-
lished data on a wide range of autoimmune diseases associated with SARS-CoV-2 [36,37].
To date, it has been confirmed that viral infections are associated with the development of
various rheumatological diseases [38,39]. Medical experts have provided detailed descrip-
tions and characterizations of certain cases, but the specific molecular mechanisms remain
insufficiently researched.

Dysregulation of some miRNAs was suggested to lead to long COVID [40]. For
example, miR-34a, contained in circulating extracellular vesicles, is associated with the risk
of diabetes after COVID-19 infection [41]. Some miRNAs are involved in the pathogenesis
of thromboembolic complications in COVID-19 [42]. For example, decreased expression
of miR-103a, miR-145, and miR-885 and increased expression of miR-424 and miR-320
were found in a group of patients with a high frequency of thrombotic and ischemic
events [43,44]. It has been shown that the concentration of exosomal miR-145 and miR-885
significantly correlates with D-dimer levels [45]. In some patients, SARS-CoV-2 causes an
excessive immune response, resulting in a cytokine storm [46]. Some miRNAs are involved
in the regulation of mediators associated with inflammation and appear to be important in
some inflammatory diseases [47]. Significantly decreased miRNA-106a and miRNA-20a
expression are associated with increased IL-10, TNF-α, INF-γ, and TLR-4 levels in COVID-
19 patients [12,14,48]. This is not surprising since these miRNAs target proinflammatory
cytokine genes (e.g., TNF, CCL2, CXCL9, IL10) and cytokine and chemokine receptors
(IL1R1, IL2RA, IFNAR2) [49].

In light of the COVID-19 pandemic, extensive research has been dedicated to studying
the immune response to the SARS-CoV-2 virus. Involved in the immune response to viral
infection are catalytically active antibodies. These antibodies exhibit a dual function of
antigen binding and catalyzing the hydrolysis of particular substrates, including proteins,
nucleic acids, and polysaccharides [50,51]. To illustrate, antibodies displaying proteolytic
activity were reported in several studies [52,53]. Additionally, there have been advance-
ments in the creation of monoclonal antibodies that can directly hydrolyze the RNA of
coronavirus and influenza virus [54–57]. Previous studies have described the capability
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of catalytically active antibodies to hydrolyze miRNAs in the context of autoimmune and
neurological diseases [58–61].

Our study focused on evaluating the expression patterns of ten miRNAs in the plasma
of COVID-19 patients, differentiating between those who had recovered without any
complaints and those who continued to experience lingering rheumatological symptoms
associated with long COVID. The focus of this study was to analyze the role of IgG in
miRNA hydrolysis among COVID-19 patients. We proposed the idea that the presence
of catalytically active antibodies with a specific affinity for particular miRNAs might lead
to changes in the plasma concentration of these miRNAs through their hydrolysis. Also,
among a large number of miRNA signaling pathways, pathways associated with the
immune response have been identified.

2. Results
2.1. General Characteristics of the Patient Groups

Following the acute phase of SARS-CoV-2 infection, certain individuals were found
to experience persistent symptoms referred to as long COVID [62]. Numerous respira-
tory, cardiovascular, autoimmune, neurological, and psychiatric diseases, along with their
associated symptoms, have been documented in relation to long COVID [63–68]. Ad-
ditionally, there are reports on the incidence of autoimmune diseases after SARS-CoV-2
infection [69–71]. The focus of this study was to identify and analyze a particular group of
patients who presented complaints related to rheumatological conditions, known as the
Lon group. We established a cohort of COVID-19 survivors who exhibited no post-recovery
symptoms (Cov) and a control group of healthy individuals who had not contracted
COVID-19 (Neg). The collection of blood plasma from COVID-19 patients occurred during
the circulation of the Wuhan strain of SARS-CoV-2. Between summer 2020 and spring
2021, the epidemic in Russia was characterized by the spread of three lineages: B.1.1.7,
B.1.1.317, and a sublineage of B.1.1 including B.1.1.397 [72]. The study did not include
subjects vaccinated against SARS-CoV-2.

2.2. Analysis of miRNA Concentration in the Plasma of Patients

The concentrations of ten miRNAs (miR-l7f-5p, miR-146b-5p, miR-148a-3p, miR-200c-
3p, miR-378a-3p, miR-9-5p, miR-766-3p, miR-3125, miR-4742-3p, and miR-142-3p) were
studied in the blood plasma of patients in three groups. For this purpose, a reverse transcrip-
tion method using appropriate stem-loop (SL) primers followed by real-time PCR was used.
A calibration line was constructed using a standard with a known concentration to quantify
the miRNA concentration. A standard was prepared using synthetic miRNA miR-148a-3p
at concentrations of 10−1 ng/µL, 10−3 ng/µL, and 10−5 ng/µL. The quantification of cycle
(Cq) values were calculated based on the amplification curves for different concentrations
of synthetic miRNA. These values were used to create a calibration curve, and an equation
was derived to accurately calculate the concentration of the researched miRNAs.

Figure 1 demonstrates statistically significant differences in the concentrations of miR-
200c-3p, miR-766-3p, and miR-142-3p between patient groups. In the Lon group, there
was a significant reduction in the expression of miR-200c-3p, miR-766-3p, and miR-142-3p
compared to the other two groups. It was previously shown that in the acute phase of
COVID-19 infection, patients experience the decreased expression of miR-142-3p [14,15,73].
Decreased miR-142-3p expression is associated with the inflammatory process [74–76].
Our results demonstrate that miR-142-3p levels remain lower after recovery compared to
healthy patients. It is likely that normalization of miR-142-3p expression requires a longer
time than 3–6 months after recovery.
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pression of miR-200c-3p [78,79]. miR-200c-3p directly targets the 3′-untranslated region of 
ACE2 mRNA, resulting in decreased ACE2 expression [80]. miR-200c-3p expression is in-
duced via the NF-κB pathway during infection. In particular, the NF-κB signaling path-
way is hyperactivated during SARS-CoV-2 infection, leading to the overexpression of 
miR-200c-3p in COVID-19 patients with active disease. This leads to a decrease in ACE2 
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Figure 1. Examination of miRNA levels in the plasma of individuals within the three study cohorts:
Lon refers to patients who experienced persistent rheumatologic symptoms alongside COVID-19,
Cov denotes patients who successfully recovered from COVID-19 without any lingering complaints,
and Neg represents disease-free donors. *—p-value < 0.05; **—p-value < 0.01; ***—p-value < 0.001,
****—p-value < 0.0001, ns—not significant.

The highest concentration of miR-200c-3p and miR-766-3p was identified in the group
of patients with no complaints after COVID-19. In the post-recovery period, we observed a
reduced expression of these miRNAs. However, an increase in miR-200c-3p was reported
in studies undertaken during the acute period of SARS-CoV-2 infection [77]. Moreover,
the increase in the severity of the disease correlates with an increase in the expression
of miR-200c-3p [78,79]. miR-200c-3p directly targets the 3′-untranslated region of ACE2
mRNA, resulting in decreased ACE2 expression [80]. miR-200c-3p expression is induced
via the NF-κB pathway during infection. In particular, the NF-κB signaling pathway is
hyperactivated during SARS-CoV-2 infection, leading to the overexpression of miR-200c-
3p in COVID-19 patients with active disease. This leads to a decrease in ACE2 protein
levels [81]. Decreased ACE2 expression leads to decreased susceptibility to SARS-CoV-2
entry into the host cell [82]. Thus, miR-200c-3p during COVID-19 infection by regulating
ACE2 expression reduces further virus penetration into the cell, limits the spread of the
virus, and has a positive effect on the recovery process. It is logical to assume that after
recovery, normalization of ACE2 expression is necessary; therefore, miR-200c-3p expression
decreases, which leads to an increase in ACE2 protein production until normal levels are
reached. This is confirmed by our results of decreased miR-200c-3p expression in recovered
patients from 3–6 months after COVID-19.

Data in the literature on the role of miR-766-3p in COVID-19 are scarce. Downregula-
tion of this miRNA has been described in acute respiratory distress syndrome patients [19].
Our results demonstrate that miR-766-3p levels remain reduced 3–6 months after recovery.

2.3. Analysis of the Catalytic Activity of Antibodies in the Hydrolysis of miRNAs

The affinity chromatography method utilizing immobilized G-protein allows for the
extraction of antibody preparations from different biological fluids, guaranteeing the
absence of any protein or enzyme impurities [83]. In this study, IgG preparations were
isolated from the blood plasma of the patients of the three study groups. To substantiate the
specific catalytic function attributed to immunoglobulins, we employed the methodologies
proposed by C. Paul [84] and further developed by the group of G. A. Nevinsky [50], in a
similar way as described in [53].
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The examination of miRNA hydrolyzing activity involved the utilization of oligonu-
cleotide sequences labeled with fluorescent tags, specifically designed to correspond to
the tested miRNAs and distinguished by the prefix “Flu”. Oligonucleotide hydrolysis
products were subjected to separation via a 20% polyacrylamide gel electrophoresis. Anti-
body activity in substrate hydrolysis was calculated by the decrease in the relative amount
of the initial substrate in the reaction mixture compared to the control without IgG. The
plasma antibodies of the patients were subjected to incubation with Flu-miRNAs. The
nonparametric Kruskal–Wallis test (Figure 2) was utilized to evaluate the differentiation
among the three patient groups.
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Figure 2. The comparative activity of Flu-miRNA hydrolysis by plasma IgG preparations of patients
in the three study groups. Lon refers to patients who experienced persistent rheumatologic symptoms
alongside COVID-19, Cov denotes patients who successfully recovered from COVID-19 without any
lingering complaints, and Neg represents disease-free donors. *—p-value < 0.05; **—p-value < 0.01;
***—p-value < 0.001, ns—not significant.

The IgG preparations of the Lon group patients demonstrated higher Flu-miR-378a-
3p (p < 0.05) and lower Flu-miR-146b-5p, Flu-miR-148a-3p (p < 0.001), and Flu-miR-
766-3p (p < 0.0001) hydrolysis activity compared to the control group of patients. An-
tibody preparations from Cov patients hydrolyzed Flu-miR-4742-3p and Flu-miR-142-3p
(p < 0.001) with higher activity and hydrolyzed Flu-miR-148a-3p (p < 0.0001) with lower
activity compared to the control group of patients.

3. Discussion

Although miRNAs have attracted attention as potential biomarkers, their practical
use in diagnostics has faced obstacles. With miRNAs being short sequences that exhibit
a significant degree of similarity [85], a high-specificity method is required for accurately
quantifying each miRNA. Currently, the RT-qPCR method is considered the most reliable
technique for detecting miRNA. The sensitivity of RT-qPCR is remarkable, allowing for the
detection of miRNA molecules at the single nucleotide level, even when present in very low
concentrations in the attomolar range [86,87]. Typically, the quantitative analysis of RNA by
RT-qPCR involves a two-step procedure: (i) Reverse transcription (RT) employed to create
complementary DNA from the initial RNA and (ii) subsequent amplification of the DNA
by PCR. The amplification process is monitored in real time using a specific dye (e.g., SYBR
Green I) or a specific fluorescent probe. RT-qPCR was initially developed to quantitatively
analyze long RNA sequences. This involved using PCR primers that are typically 20 bases
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long, equivalent to the size of a full-length miRNA. The issue was effectively addressed
through the implementation of stem-loop (SL) primers [87]. SL primers enable reliable
analysis of miRNAs at low concentrations, enhance result accuracy by ensuring sequence
specificity, and mitigate the influence of genomic DNA contaminants. The accuracy of
the method is greatly enhanced by its resistance to contaminants [87,88]. In this study, we
used this method to determine the concentrations of miRNAs in the plasma of patients,
with the focus on convalescent individuals. Throughout the period of recovery, a complex
mechanism is implemented to control inflammatory processes, with miRNA serving as
a single component of the overall puzzle. We detected an alteration in the expression of
three miRNAs out of 10 miRNAs, namely, miR-200c-3p, miR-766-3p, and miR-142-3p. It is
worth mentioning that among the patients experiencing rheumatologic complications of
long COVID, a notable decrease in the expression of these miRNAs was observed.

One potential method for reducing miRNA concentrations is antibody-mediated
hydrolysis. In addition to their ability to recognize specific substrates, antibodies with
catalytic functions can also hydrolyze the substrate [89]. Hence, the isolation of IgG from
the blood plasma of patients was followed by an assessment of their catalytic activity in
the degradation of fluorescently labeled oligonucleotides corresponding to ten miRNAs.
The analysis of antibody catalytic activity revealed that patients in the Lon group exhib-
ited reduced activity in hydrolyzing Flu-miR-146b-5p, Flu-miR-766-3p, Flu-miR-4742-3p,
and Flu-miR-142-3p sequences, but increased activity against Flu-miR-378a-3p compared
to other patient groups. Lower concentrations of miRNAs correspond to lower activity
of antibodies in miRNA degradation. Thus, changes in miRNA concentrations are not
associated with their hydrolysis by antibodies, but are regulated by more intricate mecha-
nisms. There is reason to believe that a decrease in the concentration of miRNAs in blood
plasma is associated with a decrease in the concentration of corresponding antibodies with
miRNA-hydrolyzing activity.

We hypothesized that changes in miRNA concentrations and antibody-mediated hy-
drolysis of miRNAs have a complex regulatory mechanism associated with gene pathways
concerned with the immune system. Consequently, we conducted a more in-depth analysis
of the target genes and pathways related to miR-200c-3p, miR-766-3p, miR-142-3p, miR-
146b-5p, miR-4742-3p, and miR-378a-3p. The analysis framework is outlined in Figure S1
(Supplementary Materials). We searched for specific miRNA genes in the miRTarBase [90]
and TargetScan [91] databases (accessed on 16 June 2024). Interactions between six specific
miRNAs were observed with 1621 genes in the miRTarBase database and 1702 genes in the
TargetScan database. Further analysis was conducted on a set of 338 common target genes,
which were selected based on their association with six miRNAs. Then, gene-pathway
associations were analyzed using the WikiPathways database [92,93] and pathways related
to immune response regulation were selected (Figure 3).

Figure 3 clearly demonstrates the impact of all miRNAs on pathways related to the
immune response. To illustrate, miR-200c-3p effectively targets 18 genes that are associated
with a wide range of signaling pathways, including IL-1, IL-2, IL-3, IL-4, IL-6, IL-7, IL-18,
IL-19, interferon type I, chemokine, T-cell, B-cell, and toll-like receptors signaling pathways.
Consequently, the scientific literature has noted an increase in the expression of miR-
200c-3p in viral infections, including influenza A [94]. miR-200c-3p is involved in the
regulation of angiotensin-converting enzyme II (ACE2). ACE2 has many physiological
functions in lung tissue, among which it physiologically hydrolyzes angiotensin II [95–97].
Overexpression of miR-200c-3p leads to increased angiotensin II concentrations [98]. It
has proinflammatory and pro-oxidant effects, which causes vasoconstriction, increased
inflammation, thrombosis, and increased collagen synthesis in lung fibroblasts [99,100].
This leads to acute lung injury, alveolar edema, and increased incidence of pulmonary
fibrosis [101,102]. Pulmonary fibrosis is a well-known long-term complication of COVID-19,
which may be caused by the same mechanism. It was shown that miR-200c-3p expression
level increases with increasing disease severity in COVID-19 patients [78,79].
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miR-142-3p is associated with 11 genes that influence the immune response through
IL-1, IL-7, IL-11, IL-18, chemokine, T- and B-cell, toll-like receptor signaling pathways.
miR-142-3p is an evolutionarily conserved vertebrate miRNA that exhibits expression
in a variety of hematopoietic cells, including dendritic cells, monocytes, T cells, and B
cells [103,104]. miR-142-3p plays an important role in the modulation of immune re-
sponses [105,106]. It was shown that miR-142-3p is part of a detrimental regulatory axis
with proinflammatory cytokines IL-1β [107,108] and IL-6 [109] in COVID-19 patients, in-
ducing a response associated with respiratory failure and death. miR-142 regulates the
expression of occludin, which affects endothelial permeability [110–112], contributing to en-
dothelial dysfunction [113–115]. This leads to thromboembolic events [116,117] in patients
with severe COVID-19 [118–120].

miR-146b-5p, miR-378a-3p, and miR-766-3p are found to be associated with 7, 7, and
3 genes, respectively, and are known to be connected to diverse pathways involved in
the immune response. Although miR-4742-3p is associated with just one gene, it shares
common associations with IL-1, IL-18, IL-19, interferon type I, T- and B-cell, and toll-like
receptor signaling pathways, just like the other miRNAs being considered. MiR-146b-
5p and miR-378a-3p have been described as a tumor suppressor and anti-inflammatory
effector [121,122]. Furthermore, the computational analysis determined the capacity of miR-
4742-3p to bind to the RNA of SARS-CoV-2 and hinder the production of viral proteins [123].

In conclusion, our findings have revealed the changes in the expression of three
specific miRNAs (miR-200c-3p, miR-766-3p, miR-142-3p) among COVID-19 survivors
and individuals with long-COVID-related rheumatologic issues. These patients exhibited
changes in the antibody-mediated hydrolysis activity of five specific miRNAs (Flu-miR-
146b-5p, Flu-miR-378a-3p, Flu-miR-766-3p, Flu-miR-4742-3p, and Flu-miR-142-3p). Viral
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infection activates or represses the expression of cellular miRNAs, which in turn modulate
the host response to infections [124]. MiRNAs are post-transcriptional regulators of gene
expression. They target specific mRNA sequences and control protein production by
binding to the untranslated region of the mRNA [125]. Many miRNAs are associated with
the regulation of a large number of pathways. The bioinformatics methods allow us to
identify the genes that miRNAs influence. In this work, we have shown that all miRNAs
participate in a complex network of interactions. Numerous signaling pathways related to
the immune system function have been associated with all these miRNAs. The study of
the interplay between miRNAs and immune reactions in organisms holds significance in
the field of modern biomedicine. It has the potential to greatly enhance our understanding
of pathogenesis mechanisms, facilitate the development of diagnostic biomarkers, and
inform treatment strategies for the consequences of not only COVID-19 but also other
viral infections.

4. Materials and Methods
4.1. Donors and Patients

This study protocol underwent a thorough review and received approval from the local
ethical committee at the ICBFM SB RAS, (the protocol of 15 August 2021). In accordance
with the Helsinki Ethics Committee’s recommendations, patients and healthy donors were
duly informed and gave consent for their blood donation for scientific purposes.

Venous blood was collected on an empty stomach using vacuum tubes that contained
coagulation activators. The blood samples in the tubes underwent centrifugation at 3000× g
for 10 min using a refrigerated Centrifuge 5810. The resulting plasma, which had been
separated from red blood cells, was divided into 1 mL aliquots and stored at a temperature
of −70 ◦C.

The patients involved in this study were categorized into 3 study groups:
Cov refers to patients who successfully recovered from COVID-19 without any com-

plaints, with a total number of 24 donors. The blood plasma of the Cov group patients was
collected in 2020–2021.

Lon refers to patients who experienced persistent rheumatologic symptoms alongside
COVID-19. The Lon group was formed in 2021, with a total number of 16 donors. The
patients were examined by a rheumatologist in dynamics, with most patients in this group
complaining of joint and muscle pain (n = 16), fever to subfebrile digits (n = 15), fatigue
and weakness (n = 13), shooting pains in the body (n = 7), increased anxiety related to their
condition (n = 6), and numbness of extremities (n = 5).

Neg refers to conditionally healthy donors who did not have COVID-19, with a total
number of 18 donors.

The characteristics of the study groups of patients are presented in Table S1. The
composition of the groups was adjusted to ensure gender and age parity. ELISA was used
to confirm the presence of persistent SARS-CoV-2 infection and the absence of infection in
the control group, targeting the S- and N-proteins of the virus [53,126].

4.2. Isolation of miRNAs

MiRNA isolation from blood plasma samples was performed using the reagents from
the “Total RNA and miRNA isolation kit” (LRU-100-50, Biolabmix, Russia, Novosibirsk)
according to the manufacturer’s instructions. The isolated miRNA pool was stored in low
sorption tubes at −20 ◦C. The RNA concentration was determined spectrophotometrically
by measuring the absorbance at 260 nm.

4.3. Reverse Transcription Using SL-Primers

The reverse transcription reaction was performed using the OT kit M-MuLV-RH
(Biolabmix, Novosibirsk, Russia) in combination with a specific SL-primer (Table 1). The
reaction mixture comprised 2 µL of SL-primer (1 µM), 2 µL of the miRNA being tested,
and 8 µL of DEPC pretreated water. The mixture was heated at 70 ◦C for 3 min to disrupt
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secondary structures and immediately cooled in ice. The subsequent addition involved
a reaction mixture composed of 4 µL of 5 × OT buffer, 1 µL of M-MuLV-RH revertase
(concentration: 10 units/µL), and 3 µL of DEPK-pretreated water.

Reverse transcription was performed in 45 cycles according to the following protocol:
1. 30 min at 16 ◦C;
2. (30 s at 30 ◦C, 30 s at 42 ◦C, 1 s at 50 ◦C) × 45;
3. 5 min at 85 ◦C.

Table 1. SL-primers used in the study.

Name Nucleotide Sequence

let–7f–5p SL 5′–GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACAACTAT–3′

146b–5p SL 5′–GTTGGCTCTGGTGCGGGTCCGAGGTATTGCACCAAGAGCCAACCAGCCT–3′

148a–3p SL 5′–GTTGGCTCTGGTGCGGGTCCGAGGTATTGCACCAAGAGCCAACACAAAG–3′

200c–3p SL 5′–GTTGGCTCTGGTGCGGGTCCGAGGTATTGCACCAAGAGCCAACCTCCATC–3′

378a–3p SL 5′–GTTGGCTCTGGTGCGGGTCCGAGGTATTGCACCAAGAGCCAACGCCTTC–3′

9–5p SL 5′–GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACTCATAC–3′

766–3p SL 5′–GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACGCTGAG–3′

3125 SL 5′–GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACTCTCTC–3′

4742–3p SL 5′–GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACCTGCAG–3′

142–3p SL 5′–GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACTCCATA–3′

4.4. Real-Time PCR

The cDNA generated by reverse transcription was analyzed using the BioMaster
HS-qPCR PCR kit (Biolabmix, Novosibirsk, Russia). The reaction mixture (20 µL) contained
10 µL of BioMaster HS-qPCR (2×), 0.4 µL of forward primer (10 µM), 0.4 µL of universal
reverse primer SL_rev (Table 2), 0.2 µL of universal probe with FAM dye (10 µM), 2 µL of
cDNA (SL-OT product), and 7 µL of sterile water.

Table 2. Primers used in the study.

Name Nucleotide Sequence Length in Nucleotides Melting Point (◦C)

let–7f–5p for 5′–GTTTGGTGAGGTAGTAGATTGT–3′ 22 51

146b–5p for 5′–GTTTTTCGTGAGAACTGAATTCCAT–3′ 25 52.8

148a–3p for 5′–GTTTTGGTCAGTGCACTACAGAA–3′ 23 53.5

200c–3p for 5′–GTTTGGTAATACTGCCGGGTAAT–3′ 23 53.5

378a–3p for 5′–GTTTTTGACTGGACTTGGAGTCA–3′ 23 53.5

9–5p for 5′–GUGGAAGACUUCGAGGCCUUG–3′ 22 56.3

766–3p for 5′–GAGCUUGGGAUAGAGGGCUUA–3′ 22 54.4

3125 for 5′–GCCAGCUGGAAGUUGAGGAAG–3′ 22 56.3

4742–3p for 5′–GCUUAGCUCGUGGUCCCGGAC–3′ 21 60.2

142–3p for 5′–UGGAGGAAGAGGUGGAGGAAG–3′ 21 56.3

Un rev primer 5′–GTGCAGGGTCCGAGGT–3′ 16 51.1

The amplification procedure included the following steps: 5 min at 95 ◦C, 45 cycles
(20 s at 95 ◦C and 1 min at 55 ◦C). The fluorescent signal detection was performed through
the FAM at the end of each cycle.

MiRNAs were quantified in the blood plasma using a synthetic miR-148a-3p with
known concentration as normalization. A calibration curve was generated using synthetic
miRNA at concentrations of 10–1 ng/µL, 10–3 ng/µL, and 10–5 ng/µL. Subsequently, OT-
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PCR and real-time PCR reactions were conducted. The construction of calibration curves
involved the utilization of Microsoft Excel 2016 software and the analysis of four repeated
measurements. The equation for the calibration curve was derived using CFX Maestro soft-
ware version 2.3 (BioRad, Singapore, Tower): y = −2.384 ln(x) − 1.983, with y representing
the Cq value obtained post-amplification, and x denoting the concentration.

4.5. Identification of IgG Activity in the miRNA Hydrolysis Reaction

IgGs were isolated from the blood plasma of patients using affinity chromatography
on Protein-G-Sepharose similar to [127]. The efficiency of miRNA cleavage in 20% PAAG
was used to determine the relative catalytic activity of IgG, as described in [58,59]. The
reaction mixture (10 µL) contained 20 mM tris–HCl, pH 7.5; IgG preparation (0.1 mg/mL),
and fluorescently labeled synthetic miRNA (Table 3), with a concentration from 0.09 to
0.39 f.u./mL (depending on the miRNA). The reaction mixture was incubated for 1 h at
37 ◦C. A reaction mixture without IgG was used as a control. Following the incubation,
the reaction mixture was supplemented with 10 µL of denaturing buffer containing 8 M
urea and 0.025% xylenecyanol. The marker (Leader) was procured via a process of limited
alkaline hydrolysis, employing a bicarbonate buffer with a concentration of 0.05 M and
miRNA concentrations ranging from 0.08 to 0.35 f.u./mL. The mixture was incubated for
15 min at 90 ◦C. After that, 10 µL of denaturing buffer was added. The hydrolysis products
were analyzed using electrophoresis under denaturing conditions (20% acrylamide, 8 M
urea, 1× TBE pH 8.3) at 800 V, 40 mA, for 2 h. The hydrolysis products were visualized
using the iBright™ CL1500 Imaging System (Invitrogen™, Waltham, MA, USA), and the
analysis was performed using the GelAnalyzer 23.1 software.

Table 3. 5′-Flu-labeled oligoribonucleotides used as substrates in this study.

Flu-miR Nucleotide Sequence Length in Nucleotides

Flu-let–7f–5p 5′–Flu–UGAGGUAGUAGAUUGUAUAGUU 22

Flu-146b–5p 5′–Flu–UGAGAACUGAAUUCCAUAGCCUG 23

Flu-148a–3p 5′–Flu–UCAGUGCACUACAGAACUUUGU 22

Flu-200c–3p 5′–Flu–UAAUACUGCCGGGUAAUGAUGGA 23

Flu-378a–3p 5′–Flu–ACUGGACUUGGAGUCAGAAGGC 22

Flu-9–5p 5′–Flu–UCUUUGGUUAUCUAGCUGUAUGA 23

Flu-766–3p 5′–Flu–ACUCCAGCCCCACAGCCUCAGC 22

Flu-3125 5′–Flu–UAGAGGAAGCUGUGGAGAGA 20

Flu-4742–3p 5′–Flu–UCUGUAUUCUCCUUUGCCUGCAG 23

Flu-142–3p 5′–Flu–UGUAGUGUUUCCUACUUUAUGGA 23

4.6. Statistical Analysis

The calculation of the significance of differences between patient groups was per-
formed utilizing the Mann–Whitney U-test from the Python library SciPy v 1.11.4 [128] and
the Kruskal–Wallis criterion from the standard R package v 4.3.2. The correlation coeffi-
cients between groups were computed using the nonparametric Spearman rank correlation
method available in the Python library SciPy. The p-value was used to determine statistical
significance, with a minimum threshold set at 0.05.

4.7. Target Predictions of the miRNAs Analyzed

The miRTarBase [90] and TargetScan [91] databases were utilized to search for target
miRNA genes. This was performed through the CyTargetLinker 4.0.0+ application [129]
(accessed on 15 June 2024). Subsequently, we utilized the WikiPathways database [92,93] to
perform pathway analysis on the identified genes. Genes associated with the control of the
immune response were specifically selected. The interaction network was visualized using
Cytoscape 3.10.2.
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