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Abstract: RNA plays important roles in the regulation of gene expression in response to environmental
stimuli. SVALKA, a long noncoding cis-natural antisense RNA, is a key component of regulating
the response to cold temperature in Arabidopsis thaliana. There are three mechanisms through
which SVALKA fine tunes the transcriptional response to cold temperatures. SVALKA regulates
the expression of the CBF1 (C-Repeat Dehydration Binding Factor 1) transcription factor through
a collisional transcription mechanism and a dsRNA and DICER mediated mechanism. SVALKA
also interacts with Polycomb Repressor Complex 2 to regulate the histone methylation of CBF3.
Both CBF1 and CBF3 are key components of the COLD REGULATED (COR) regulon that direct
the plant’s response to cold temperature over time, as well as plant drought adaptation, pathogen
responses, and growth regulation. The different isoforms of SVALKA and its potential to form
dynamic RNA conformations are important features in regulating a complex gene network in concert
with several other noncoding RNA. This review will summarize the three mechanisms through which
SVALKA participates in gene regulation, describe the ways that dynamic RNA structures support the
function of regulatory noncoding RNA, and explore the potential for improving agricultural genetic
engineering with a better understanding of the roles of noncoding RNA.

Keywords: environmental stress response; gene regulation; long noncoding RNA

1. Introduction

The proliferation of next-generation sequencing techniques has revealed many dif-
ferent functional classes of RNA [1,2]. The most recent Arabidopsis thaliana transcriptome
includes 14,880 non-protein coding genes, which is 8.8% of all annotated transcripts [2]. One
type of regulatory noncoding RNA is long noncoding RNA. Long noncoding RNAs (lncR-
NAs) have two key features [3–6]. lncRNAs have a length greater than 500 nucleotides and
are unlikely to be translated, as defined by the lncRNA community consensus statement [6].
lncRNAs are transcribed by RNA polymerase II (RNAPII) or RNA polymerase IV. lncRNAs
are often spliced, capped, and polyadenylated. lncRNAs can be further subdivided into
categories based on their major features, including genomic location and context, effect
on DNA sequences and transcription, and mechanism of functioning [5,7,8]. Examples
include intergenic lncRNAs (lincRNAs), natural antisense lncRNAs (NAT-lncRNAs), and
intronic lncRNAs (lincRNAs).

This review will focus on SVALKA, its mechanisms of action, potential for functional
RNA structure, and potential for improving crop stress tolerance. Many outstanding
reviews aptly summarize the current state of plant lncRNA research in response to envi-
ronmental stress, methods for lncRNA discovery, and the gene regulation pathways for
cold response [3,6,9–16]. Many reviews of the cold response in plants focus on protein
transcription factors. This review takes an RNA-centric view and focuses on SVALKA. First,
we describe the present knowledge of SVALKA mechanisms of action [17–19]. Second, we
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discuss possible RNA structure–function relationships regarding SVALKA. Dynamic RNA
structures can direct RNA function and protein binding interactions [20]. We summarize
how structure directs RNA function in other lncRNAs that mediate cold response, such
as COOLAIR, COLDAIR, and COLDWRAP. Next, we discuss the potential applications
of SVALKA to improve agricultural bioengineering. We highlight the plant cold response
framework within which SVALKA functions and discuss past research attempts to ge-
netically engineer more cold-resistant crops prior to the discovery of SVALKA. Finally,
we provide perspectives on how SVALKA might be leveraged to aid in the creation of
cold-tolerant plants in the future. Thus, the aim of this review is to connect molecular mech-
anisms of gene regulation, RNA structure, and agricultural applications in bioengineering
for SVALKA as a specific example of a lncRNA that contributes to environmental stress
response in plants.

SVALKA, Swedish for “cool”, is a cis-natural (cis-NAT) antisense transcript lncRNA
first identified in Arabidopsis thaliana. Cis-NAT lncRNAs overlap and are complementary
to the gene they regulate but are transcribed from the opposite DNA strand. SVALKA is
transcribed proximally and antisense to the genes it regulates, CBF1 and CBF3 (Figure 1).
Like all lncRNAs, SVALKA does not show appreciable levels of translation, and exists in
two main isoforms that are both larger than 500 nucleotides [17]. SVALKA exists as a long
isoform (SVK-L) of 2,102 nucleotides and a short isoform (SVK-S) of 696 nucleotides [17].
SVALKA is transcribed by Pol II. Transcriptional read through by Pol II from the SVALKA
transcription start site generates a cryptic antisense RNA (asCBF1) that overlaps the protein-
coding regions of CBF1 [17].
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Figure 1. Illustration of the relative locations of the CBF cluster and SVALKA genes to each other. 
The two SVALKA isoforms, SVK-L and SVK-S, are shown. The transcription start sites (TSSs) for 
CBF1 and SVALKA are given, and the numbers given are the nucleotides up/downstream of the TSS 
for CBF1, showing the location of the distal polyadenylation site (DPAS) and proximal polyadenyl-
ation site (PPAS) corresponding to SVK-L and SVK-S, respectively. The relative locations of the svk-
1 and uns-1 (uncoupling SVALKA 1) T-DNA inserts are indicated. Figure drawn approximately to 
scale. Created with BioRender.com. 
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SVALKA governs precise adjustments to CBF1 expression at a range of temperatures. 
Figure 1 shows the relative genomic positions of SVALKA to the two genes that it regu-
lates, CBF1 and CBF3. Two main isoforms make up the majority of SVALKA transcripts. 
SVK-L and SVK-S predominate at 4 and 22 °C, respectively. Both fine tune CBF1 expres-
sion but each isoform uses a different mechanism. Both isoforms of SVALKA are 

Figure 1. Illustration of the relative locations of the CBF cluster and SVALKA genes to each other. The
two SVALKA isoforms, SVK-L and SVK-S, are shown. The transcription start sites (TSSs) for CBF1
and SVALKA are given, and the numbers given are the nucleotides up/downstream of the TSS for
CBF1, showing the location of the distal polyadenylation site (DPAS) and proximal polyadenylation
site (PPAS) corresponding to SVK-L and SVK-S, respectively. The relative locations of the svk-1 and
uns-1 (uncoupling SVALKA 1) T-DNA inserts are indicated. Figure drawn approximately to scale.
Created with BioRender.com.

2. SVALKA, a Long Noncoding RNA, Regulates Gene Expression in Response to Cold
Using Three Distinct Mechanisms

SVALKA governs precise adjustments to CBF1 expression at a range of temperatures.
Figure 1 shows the relative genomic positions of SVALKA to the two genes that it regulates,
CBF1 and CBF3. Two main isoforms make up the majority of SVALKA transcripts. SVK-L
and SVK-S predominate at 4 and 22 ◦C, respectively. Both fine tune CBF1 expression but
each isoform uses a different mechanism. Both isoforms of SVALKA are polyadenylated,
with a different polyadenylation site associated with each isoform. At 4 ◦C, the proximal
poly(A) site dominates for SVK-S transcription. At 22 ◦C, the distal poly(A) site dominates
for SVK-L transcription.

At normal growth temperatures (22 ◦C), the SVK-L isoform makes up the majority of
SVALKA transcripts. After SVK-L transcription, the nascent RNA forms a double-stranded
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RNA complex with CBF1 mRNA. SVK-L forms a mRNA-cis-NAT dsRNA template, which
is recognized by DICER-LIKE (DCL) proteins as a substrate (Figure 2A). Recognition of this
dsRNA substrate results in the generation of short dsRNA fragments via cleavage. These
fragments are then stabilized via methylation from HUA ENHANCER 1 (HEN1). Then,
one of the dsRNA fragment guide strands is loaded onto ARGONAUTE1 (AGO1) [21],
forming the RNA-Induced Silencing Complex (RISC). Transcript abundance assays suggest
that the cleavage products generated by DCL are not amplified, supporting the conclusion
that SVK-L does not completely silence CBF1 expression but rather functions to calibrate
CBF1 expression. CBF1 and SVK-L are transcribed simultaneously. Thus, the half-life of the
CBF1 sense RNA is decreased but its transcription levels remain unchanged.
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Figure 2. The three different known mechanisms of SVALKA regulation. (A) Mechanism by which
SVK-L adopts a dsRNA (double-stranded RNA) conformation with CBF1 mRNA and regulates CBF1
expression at 22 degrees Celsius. (B) SVK-S RNAPII collision-based mechanism of regulating CBF1 in
response to cold stress (4–8 h after freezing exposure). Sense/antisense collision of CBF1/SVALKA
RNAPII occurs, resulting in premature transcript termination. Note that although they are shown on
the same strand here, SVALKA is antisense to CBF1. Prior to Polycomb Repressive Complex 2 (PRC2)
recruiting, CBF3 is transcribed regularly. SVALKA lies between CBF1 and CBF3, but antisense to them.
(C) SVALKA-PRC2 mechanism for methylation of CBF3 (24 h after freezing exposure). SVALKA RNA
recruits PRC2 to CBF3, where it methylates the gene, thereby making the chromatin inaccessible for
transcription. (D) Timeline of the regulators of the cold response in Arabidopsis at 4 ◦C. i: SVK-S
reaches a stable peak 8–12 h after initial cold exposure. ii: CBF1 expression peaks 4 h after initial
cold exposure (according to some studies). iii: CBF3 expression peaks 3 h after initial cold exposure,
then decreases. iv: Expression of ICE, a CBF1 activator, reaches a steady peak 1–3 h after initial cold
exposure. v: Expression of CBF2, a CBF1 repressor, peaks three hours after initial cold exposure, then
decreases to almost undetectable levels after 6 h. Created with BioRender.com.

SVK-S is the dominant isoform at 4 ◦C. Maximal SVK-S expression begins at 4 h and
reaches a steady peak 8–12 h after initial cold exposure. Transcription that is antisense
to proximal poly(A) site results in sense/antisense RNAPII competition and collision
on both strands. Incoming antisense RNAPII collides with sense RNAPII, resulting in
premature CBF1 transcription termination (Figure 2B). Following the collision event, both
the premature CBF1 mRNA and SKV-S transcripts are degraded via a HEN2/exosome
mediated mechanism [18].
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SVK-S has a negative effect on the expression of CBF1 in response to cold temperatures,
which was determined by examining CBF1 expression changes in Arabidopsis T-DNA
insertion lines svk-1, uns-1 (uncoupling SVALKA 1), and svk OE (overexpression). In svk-1,
SVK-S expression is disrupted, and there is a corresponding increase in CBF1 expression
following cold exposure. The same increase in CBF1 expression occurred in the uns-1
mutants. In uns-1 mutants, the insertion increases the distance of SVALKA transcription
from CBF1. Finally, SVK OE mutants show decreased CBF1 levels [17].

SVK-S has also been shown to play a role in regulating CBF3 during the cold response
at longer times post-exposure to cold temperature. After SVALKA expression peaks 8–12
h after initial exposure to cold stimuli, the Polycomb Repressive Complex 2 (PRC2) is
recruited by SVK-S to the coding region of the CBF3 gene. SVK-S binds to the CURLY
LEAF (CLF) methyltransferase subunit of PRC2 [22]. PRC2 promotes the deposition of the
repressive histone mark H3K27me3, silencing CBF3 gene expression [19] (Figure 2C). This
results in CBF3 transcript levels within the cell decreasing to low levels after approximately
24 h at low temperature conditions. Both CBF1 and CBF3 exhibit rapid upregulation in
response to cold stress, followed by induction of the CBF regulon, which boosts freezing
tolerance in Arabidopsis [23,24]. Thus, SVALKA negatively regulates both CBF1 and CBF3
by inducing the epigenetic silencing of CBF3 and regulating CBF1 transcript levels after
initial induction.

The timing of lncRNA expression is controlled and employs different mechanisms
of gene regulation in response to external environmental cues such as temperature [6,14].
SVALKA, for example, employs a DICER based mechanism at normal growth tempera-
tures [18]; at cold temperatures, SVALKA employs a PRC2 mediated DNA methylation
silencing mechanism after 8 h of initial cold exposure [17] and a transcriptional collision
mechanism 8–12 h after exposure [19]. Figure 2D shows a timeline of these mechanisms in
the context of the overall plant response to cold stimuli.

SVALKA is one of several lncRNAs that participate in the regulation of cold response
genes using PRC2 mechanisms. COOLAIR [25–27], COLDAIR [28,29], and COLDWRAP [30]
are lncRNAs known to regulate flowering locus C (FLC) gene expression in response to
cold temperatures. COLDAIR has a transient interaction with Curly Leaf (CLF) component
of PRC2 [29]. COLDWRAP has a long, stable association with PRC2 and continues to
be transcribed during and after the full period of cold exposure [30]. COLDWRAP and
COLDAIR coordinate and together form a chromatin loop in the process of silencing through
H3K27me3. COOLAIR interacts directly with FLOWERING LOCUS A (FCA), which then
interacts with PRC2 [31]. FCA has two WW protein interaction domains and two RNA
recognition motifs (RRMs) that preferentially bind GU-rich RNA sequences. Thus, through
multiple different interactions with PRC2, the time-dependent expression of these lncRNAs
regulates the transcriptional response to external cold temperature.

3. Dynamic RNA Conformations Mediate lncRNA Function

COOLAIR adopts multiple dynamic RNA conformations to regulate FLC [27]. SVALKA
and the other lncRNAs that participate in regulating the response to cold temperatures
may similarly adopt dynamic RNA conformations. COOLAIR has been studied by single-
molecule chemical probing experiments in vivo [27]. Pac Bio single-molecule sequencing
techniques revealed at least three different patterns of nucleotides that were accessible to
solvent and chemical reagents that modify nucleotides, such as SHAPE reagents, in the
main polyadenylated isoform of COOLAIR. The secondary structures were generated using
DaVinci, a computational method that emphasizes the results from SHAPE mutational
profiles rather than thermodynamic parameters. Three secondary structure models describe
conformational ensembles for the main COOLAIR isoform. Interestingly, the abundance of
each structural model in the ensemble is different at 22 ◦C and 4 ◦C. In the shift to lower tem-
peratures, an alternatively spliced isoform of COOLAIR predominates and demonstrates
evidence of conformational dynamics and structural heterogeneity. The multiple dynamic
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conformations of COOLAIR facilitate its interactions with different protein partners at
different stages in its mechanisms of gene regulation.

SVALKA may adopt multiple dynamic conformations similarly to COOLAIR. SVALKA
participates in three types of regulatory mechanisms and may employ different RNA
conformations in each mechanism. The dsRNA- and DICER-mediated mechanism and
the transcriptional collision mechanism do not necessarily require any higher order RNA
structure. However, the switch between the two mechanisms with a change in response to
temperature indicates the involvement of other cellular factors and a possible conforma-
tional change in SVALKA. RNA secondary structure elements in SVALKA could facilitate
interactions with proteins that mediate this transition in response to low temperature. The
most thermodynamically stable conformation for an RNA sequence occurs when it is fully
base-paired to its complementary sequence. However, the DICER mediated mechanism
in which SVALKA forms dsRNA does not occur at 4 ◦C but rather at 22 ◦C. A secondary
structure that binds protein partners could form a complex that is more thermodynamically
stable than the fully base-paired dsRNA conformation. We hypothesize that SVALKA binds
protein, nucleic acid, or small-molecule partners at lower temperatures and thus increases
stability, and that this stable conformation plays a role in the regulation of the cold response
of Arabidopsis.

Another SVALKA regulatory mechanism involves binding to PRC2. The secondary
structure of COLDWRAP is important for its interactions with CLF [30]. XIST and HOTAIR
lncRNA also adopt dynamic RNA structures to bind and inhibit EZH2, the mammalian
homolog to CLF methyltransferase [30,32,33]. G quadruplex structures in RNA bind PRC2
and regulate its activity [34–36]. There are multiple different ways for lncRNA to interact
with PRC2 and CLF, each of which may employ different RNA structural motifs. Thus,
SVALKA may similarly adopt dynamic structural conformations that mediate its interactions
with CLF and PRC2.

4. Potential for SVALKA Gene Regulation in Agricultural Engineering

SVALKA, CBF1, and CBF3 are part of a larger network of factors that regulate plant
response to environmental stresses. CBF1 is part of the ICE/COR pathway that is highly
conserved across many plant species [37–39]. Figure 3 shows the ICE-CBF-COR pathway
and the points where SVALKA negatively regulates CBF expression. CBF2 also negatively
regulates CBF1 and CBF3 [40,41], as do the 14–3–3 genes whose protein products desta-
bilize CBF proteins after phosphorylation. Cold stress is detected by receptor proteins
in the cell membrane that release calcium and trigger a MAPK cascade. The resulting
signal transduction activates OST11, which turns on Inducer of CBF Expression (ICE) genes.
ICEs in turn upregulate CBF (C-repeat/Dehydration Response) genes, producing CBF
protein [42–44] and initializing the cold response [38,45–47]. Post-transcriptional and/or
post-translational modifications (PTMs) increase the binding efficiency and stability of
ICE proteins to downstream genes, playing an important role in regulating the ICE-CBF
signaling pathway during stress response [47–50]. Further post-translational modification
of ICE-CBF proteins, in the form of ubiquitination, improves protein turnover and cold
stress tolerance [51]. ICE-CBF proteins are regulated hormonally too. They are regulated by
the hormonal responses of brassinosteroids (BR), ethylene, gibberellin, and salicylic acid
(SA) [52,53]. These hormones regulate basal cold tolerance by controlling the level of CBF
transcripts. GA in particular also regulates the level of CBF transcripts by stimulating the
degradation of the DELLA family of local nuclear growth repressive proteins [54–56]. The
biochemical pathways responding to cold stress utilize protein, plant hormones, and RNA
regulatory elements, such as SVALKA.

ICE is a protein in the Basic Helix–Loop–Helix (bHLH) family of transcription factors.
They contain conserved bHLH domains at their C-terminus [47]. The bHLHs are responsi-
ble for regulating the expression of COR genes, many of which are a part of the CBF/COR
regulon. The ICE bHLH domain binds to the CBF3 promoter, leading to induction of the
CBF regulon [57,58]. Many different ICE-like genes across plant species [59,60] have been
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investigated in transgenic Arabidopsis to determine their ability to facilitate tolerance to
cold stress. ICE homologs have been demonstrated to have conserved motifs and domains
that bind to CRT/DRE motifs of CBFs which leads to the induction of downstream COR
genes [61–64]. Therefore, the ICE and ICE-like proteins are a crucial first step in the CBF-
COR regulon and thereby in establishing cold tolerance across multiple species of plants.
Upon cold exposure, ICE is induced, with significant expression 1–3 h after the initial cold
stimulus [65]. In contrast, SVALKA expression begins around 4 h after initial cold exposure
and reaches a stable peak 8–12 h later [17]. Thus, CBF overexpression is both turned on and
turned off at the appropriate time through regulation by both protein and RNA.
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CBF expression activates the COR regulon as part of many stress response pathways,
and thus the regulation of its expression through SVALKA and CBF2 has far-reaching impli-
cations. The CBFs belong to the APETALA2/Ethylene Responsive (AP2/ERF) superfamily
of transcription factors [66], which are essential for cold acclimation and response to several
other environmental stresses. CBF transcription is responsible for 12–20% of freezing-
induced transcription changes in Arabidopsis [42]. CBFs also regulate the stress response
to other biotic and abiotic stressors [63,67–72] (Figure 4). Members of the CBF/DREB1 pro-
tein are characterized by the DSAWR and PKK/KPAGARxKFxETRHP sequences, and an
LSWY motif [47]. CBF transcription factors recognize and bind to a cis-regulatory element,
the CRT/DRE (C-repeat/dehydration response element) present in the promoters of the
Cold-Regulated (COR) family of genes. The DRE is a 9 bp conserved sequence TACCGACAT
which contains the 5 bp CRT core sequence-CCGAC. DRE helps modulate gene expression
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in response to low temperature, dehydration, and viral stress [45,69,73]. The COR genes are
part of the larger CBF regulon, a family of over 100 genes whose expression is regulated by
CBF transcription factors [23,74]. The expression of COR genes increases freezing tolerance
through multiple mechanisms, such as the synthesis of cryoprotective peptides and the
accumulation of solutes such as proline and soluble sugars [45,75]. In addition to the CBF
regulon, CBF genes in Arabidopsis are known to increase cold tolerance through accumu-
lating DELLAs, a family of growth-repressing proteins localized to the nucleus. This is
accomplished by decreasing the amount of bioactive gibberellin (GA) in Arabidopsis cells.
Gibberellin is a phytohormone which plays an important role in many plant developmental
processes and which stimulates the degradation of DELLAs [54]. Therefore, the CBFs are
hub transcriptions factors that participate in multiple stress responses.
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Because CBFs activate numerous genes and respond to many stresses, the strategies
for improving plant resilience through bioengineering CBF1 overexpression must con-
sider a complex network of genes. CBFs respond to drought, temperature, light, and
pathogens (Figure 4). Successful strategies must therefore consider the appropriate timing
and regulation of expression within the gene networks. Fine-tuning the expression of CBF
transcription factors is critical because overexpression of CBFs causes fitness penalties
such as decreased biomass, fruit, and seed numbers. Under-expression of CBFs results
in a diminished cold response and leads to crop loss [70,71,76,77]. As shown in Figure 4,
CBF1 negatively regulates biomass production; thus, simple constitutive overexpression
of CBF1 results in cold tolerance but also low biomass production [72,78–85]. Therefore,
the timing of turning on and also turning off genes for plant resilience is an important factor
for successful bioengineering strategies. We will describe three examples of conditional
expression of CBF1 regulated by gibberellin (GA), abscisic acid (ABA), or dexamethasone
(DEX) that found a better balance between enhancing cold tolerance and maintaining
biomass production.

A 2002 study attempted to increase cold resistance in tomato via transformation with
AtCBF1 driven by the potent cauliflower mosaic virus 35S promoter (CaMV) [86]. The
expression of A. thaliana CBF transcription factors under the control of the cauliflower
mosaic virus promoter in transgenic plants leads to strong constitutive expression of the
CBF regulon and therefore increases freezing tolerance [70,76,77]. The transgenic plants
showed dramatically improved cold hardiness compared to the wild type. During normal
temperature conditions, the transgenic tomato plants saw decreased fruit set and seed
numbers per fruit and exhibited a dwarf phenotype. Normal growth was restored upon
exogenous treatment with gibberellic acid (GA). These results demonstrated that strong
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CBF1 expression increases cold hardiness but results in decreased crop yield at normal
temperature. In contrast to strong constitutive CBF1 expression, nuanced CBF1 induction
can increase cold tolerance and maintain growth at normal conditions.

A 2003 study used the approach of transforming tomato with AtCBF1 driven by a stress-
responsive promoter complex to ameliorate the dwarf phenotype. Transgenic tomato plants
expressed AtCBF1, which was governed by three copies of the ABA-responsive complex
(ABRC1), a promoter unit which is induced upon binding the stress hormone abscisic acid
(ABA) [87]. The result was increased cold tolerance when compared to wild type and nearly
identical crop yield. At normal temperatures, the transgenic tomato plants had growth
restored to wild-type levels. Therefore, the stress-inducible expression of the AtCBF1 gene
can increase cold tolerance while maintaining growth at normal temperatures [88].

In addition to studying the effects of AtCBF1 overexpression on cold tolerance, there
have been attempts to ameliorate drought stress and postharvest chilling disorder (PCI) via
AtCBF overexpression. PCI is a physiological condition which leads to global vegetable and
fruit crop loss via AtCBF1 overexpression. In a 2023 study, researchers created transgenic
tomato plants with AtCBF1 under a dexamethasone (DEX)-inducible promoter [89]. Treat-
ment with DEX resulted in a 5- to 11-fold upregulation of AtCBF1 after 12 h, depending on
the concentration of DEX. This DEX chemical inducible system allows for the induction of
high levels of AtCBF1 mRNA in a highly tissue-specific manner. In this study, postharvest
chilling disorder was somewhat eased in response to AtCBF1 expression. Full crop color
and volume, however, were not rescued.

The discovery of CBF1 and its mechanisms of regulation through proteins and plant
hormones preceded the discovery of SVALKA and mechanisms of negative regulation of
CBF1 and CBF3 through lncRNA. To our knowledge, no bioengineering strategies have
yet used SVALKA or any lncRNA to regulate the timing of CBF expression. The use of
lncRNA rather than externally applied plant hormones has potential advantages. For
example, lncRNA can be encoded within the inserted expression vector so that the design
includes both the gene for overexpression and its regulatory lncRNA. lncRNA regulation
mechanisms do not require additional chemical application and may also avoid potential
negative indirect consequences of externally manipulating plant hormone levels. Thus,
SVALKA and other lncRNAs have the potential for further improving bioengineering
designs for improving crop environmental stress resilience.

5. Conclusions and Future Possibilities

Cold stress is responsible for over USD 2 billion worth of crop loss globally [90]. There-
fore, understanding the natural mechanisms of cold stress response and employing this
knowledge to bioengineer crops is important for agriculture improvements during climate
change. SVALKA negatively regulates CBF1 and CBF3 genes, which are central transcription
factors for cold response. Because CBF1 also regulates growth and biomass production,
turning off CBF1 expression at the right time is just as important as overexpressing CBF1.
SVALKA utilizes three mechanisms of negatively regulating CBF1: a dicer-based mecha-
nism, a collisional transcription mechanism, and a PRC2 epigenetic mechanism. These
mechanisms have not yet been adopted into strategies for bioengineering cold tolerance.
The use of lncRNA and SVALKA in bioengineering has the potential to fine-tune the timing
of gene expression to maximize biomass production, cold acclimation, and adaptation to
other environmental stresses. Thus, adding lncRNA to the bioengineering toolkit may
advance agriculture and RNA biology in the future.
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