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Abstract: Our recently created RNA-sequence-based microRNA (miRNA) expression signature
in breast cancer clinical specimens revealed that some miR-30 family members were significantly
downregulated in cancer tissues. Based on TCGA database analyses, we observed that among the
miR-30 family members, miR-30a-3p (the passenger strand derived from pre-miR-30a) was significantly
downregulated in breast cancer (BC) clinical specimens, and its low expression predicted worse
prognoses. Ectopic expression assays showed that miR-30a-3p transfected cancer cells (MDA-MB-157
and MDA-MB-231) had their aggressive phenotypes significantly suppressed, e.g., their proliferation,
migration, and invasion abilities. These data indicated that miR-30a-3p acted as a tumor-suppressive
miRNA in BC cells. Our subsequent search for miR-30a-3p controlled molecular networks in BC cells
yielded a total of 189 genes. Notably, among those 189 genes, cell-cycle-related genes (ANLN, MKI67,
CCNB1, NCAPG, ZWINT, E2F7, PDS5A, RIF1, BIRC5, MAD2L1, CACUL1, KIF23, UBE2S, EML4,
SEPT10, CLTC, and PCNP) were enriched according to a GeneCodis 4 database analysis. Moreover,
the overexpression of four genes (ANLN, CCNB1, BIRC5, and KIF23) significantly predicted worse
prognoses for patients with BC according to TCGA analyses. Finally, our assays demonstrated that the
overexpression of ANLN had cancer-promoting functions in BC cells. The involvement of miR-30a-3p
(the passenger strand) in BC molecular pathogenesis is a new concept in cancer research, and the
outcomes of our study strongly indicate the importance of analyzing passenger strands of miRNAs
in BC cells.

Keywords: breast cancer; microRNA; miR-30a-3p; passenger strand; ANLN

1. Introduction

Breast cancer (BC) is the most common malignant cancer and the leading cause of
cancer-related deaths in women, with approximately 2.3 million new cases and 685,000 deaths
reported worldwide in 2020 [1]. It is important to note that the incidence of breast cancer
is rapidly increasing in Asian countries, including Japan [2]. The underlying reasons for
this are changes in the lifestyles of Asian women, such as low birth rates, an increased
prevalence of overweight and obesity, and decreased physical activity [3].

BC is histologically classified into four subtypes based on the expression levels of
the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2), i.e., luminal A, luminal B, triple-negative (TNBC), and HER2-
positive [4–6]. Essentially, treatment plans are created for BC patients based on these
classifications [4,6]. As a good example, the advent of anti-HER2 targeted therapy has

Non-Coding RNA 2024, 10, 60. https://doi.org/10.3390/ncrna10060060 https://www.mdpi.com/journal/ncrna

https://doi.org/10.3390/ncrna10060060
https://doi.org/10.3390/ncrna10060060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ncrna
https://www.mdpi.com
https://orcid.org/0009-0000-3708-7371
https://orcid.org/0000-0003-1221-5239
https://orcid.org/0000-0003-4731-7956
https://doi.org/10.3390/ncrna10060060
https://www.mdpi.com/journal/ncrna
https://www.mdpi.com/article/10.3390/ncrna10060060?type=check_update&version=1


Non-Coding RNA 2024, 10, 60 2 of 15

significantly improved the prognosis of HER2-positive breast cancer, which previously had
a poor prognosis [7,8].

Metastasis is an event that has a significant impact on the prognosis of BC patients.
Brain metastases are a common site of disease progression and represent a significant
challenge in the treatment of patients with metastatic BC [9]. It has been reported that
the probability of brain metastasis varies greatly depending on the patient’s subtype.
Approximately one-third of patients with metastatic HER2-positive BC or TNBC develop
brain metastases [10].

Several molecular assays based on multigene signatures, such as Oncotype DX,
MammaPrint, Prosigna, and EndoPredict, have been developed to predict the risk of
recurrence in early BC [7]. The search for genome-wide prognostic markers will accelerate
the molecular diagnosis of BC patients.

In the post-Human Genome Project era, the existence of large amounts of non-coding
RNAs in the human genome has become clear, and analyses and understanding that con-
sider non-coding RNAs have become essential for cancer research. MicroRNAs (miRNAs)
are small-length non-coding RNAs that bind 3′-untranslated regions of target messenger
RNAs (mRNAs) in a sequence-dependent manner and function as controllers of gene
expression at the post-transcriptional level [11].

The expression of most genes in human cells is controlled by miRNAs, and their
expression control is involved in a variety of biological processes, e.g., cell cycle control,
programmed cell death, differentiation, and invasiveness [12]. A single miRNA controls the
expression of a huge number of mRNAs within a cell. Therefore, the aberrant expression of
miRNAs leads to the disruption of tightly controlled intracellular RNA networks and is
closely related to the development of human cancer.

We generated an RNA-sequence-based miRNA expression signature of BC to identify
tumor-suppressive miRNAs and their controlled BC-promoting genes [13,14]. Notably,
our signature revealed that some passenger strand miRNAs derived from pre-miRNAs
were significantly downregulated in BC tissues [14,15]. According to the previous concept
of miRNA biogenesis, two types of mature miRNAs are derived from pre-miRNAs. One
strand (the guide strand) is selected for loading into the miRNA-Induced Silencing Complex
(miRISC). The miRISC (including the guide strand) targets mRNAs for silencing in a
sequence-dependent manner. On the contrary, the passenger strand miRNAs (the other
strand of pre-miRNA) are thought to be degraded in the cytoplasm and have previously
been considered nonfunctional [16]. However, accumulating evidence suggests that some
passenger strands of miRNAs act as oncogenes and tumor-suppressive miRNAs through
controlling their target genes [12,14].

Research into passenger strand-focused miRNAs can lead to the discovery of new
molecular pathways and therapeutic targets for BC. Based on our miRNA signature of
BC, we focused on the miR-30 family, whose expression was suppressed in BC tissues. We
have continued to explore the antitumor functions of miR-30 family members (miR-30c-1-3p
and miR-30c-2-3p) and their target molecules in BC [13,14]. In this study, miR-30a-3p (the
passenger strand derived from pre-miR-30a) was focused on, and its functional significance
and targets in BC cells were examined. Our present data demonstrate that miR-30a-3p
acts as a tumor-suppressive miRNA in BC cells through controlling the following cell-
cycle-related genes: ANLN, MKI67, CCNB1, NCAPG, ZWINT, E2F7, PDS5A, RIF1, BIRC5,
MAD2L1, CACUL1, KIF23, UBE2S, EML4, SEPT10, CLTC, and PCNP. Moreover, four genes
(ANLN, CCNB1, BIRC5, and KIF23) were good prognostic markers for BC patients and
therapeutic target molecules.
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2. Results
2.1. Genomic Structure of miR-30a-5p and miR-30a-3p, and Their Expression in BC Clinical
Specimens

We previously created an miRNA expression signature of BC based on RNA sequenc-
ing [13]. Our signature revealed that both strands of pre-miR-30a (miR-30a-5p: the guide
strand; miR-30a-3p: the passenger strand) were downregulated in BC tissues (Figure 1A).
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Figure 1. Expression levels of miR-30a-5p and miR-30a-3p in BC clinical specimens. (A) Volcano plot
of the miRNA expression signature based on RNA sequencing (GEO accession number: GSE118539).
The log2 fold change (FC) in the expression is plotted on the x-axis and the log10 p-value is on the
y-axis. Blue and red dots represent the downregulated (log2FC < −2.0 and p < 0.05) and upregulated
(log2FC > 2.0 and p < 0.05) miRNAs, respectively. (B) Chromosomal location of pre-miR-30 within the
human genome, showing mature sequences of miR-30a-5p (guide strand) and miR-30a-3p (passenger
strand). (C) Expression levels of miR-30a-5p and miR-30a-3p were validated in BC clinical specimens.
miR-30a-3p expression was significantly downregulated in cancer tissues (p < 0.001). (D) The 10-year
overall survival rate of breast cancer patients according to miRNA expression. Patients with a high
expression of miR-30a-5p and miR-30a-3p show a preferable prognosis. (E) A positive correlation
(Spearman’s rank test) between miR-30a-5p and miR-30a-3p expression levels in clinical specimens is
shown (r = 0.833, p < 0.001).
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The human genome database showed that pre-miR-30a was located on chromosome
6q13. Notably, two miRNAs (miR-30a and miR-30c-2) were located in close proximity in
this region (Figure 1B). Among these miRNAs, the downregulation of miR-30a-3p and
miR-30c-2-3p was detected via a TCGA-BRCA database analysis. The expression level
of miR-30a-3p was significantly reduced in BC tissues, whereas miR-30a-5p exhibited no
significant difference, as confirmed by the large amount of cohort data from the TCGA-
BRCA datasets (Figure 1C). However, low expression levels of miR-30a-5p and miR-30a-3p
were associated with a significantly lower 10-year overall survival rate than that associated
with high expression levels of these miRNAs (Figure 1D). A Spearman’s rank analysis
revealed a positive correlation between the expression levels of miR-30a-5p and miR-30a-3p
(r = 0.833, p < 0.001; Figure 1E).

Furthermore, we investigated the expression levels of miR-30a-5p and miR-30a-3p
according to BC subtypes, i.e., luminal, HER2-positive, and TNBC. The expression level of
miR-30a-5p was significantly decreased in HER2-positive BC and TNBC compared with
normal breast tissue (Figure S1). In contrast, a decreased expression of miR-30a-3p was
confirmed in all subtypes (Figure S1).

2.2. Antitumor Roles of miR-30a-3p in BC Cells

To evaluate the antitumor roles of miR-30a-3p, we applied ectopic expression assays to
BC cell lines (MDA-MB-157 and MDA-MB-231).

The expression of miR-30a-3p inhibited the proliferation of BC cells (Figure 2A), and
cancer cell invasion and migration abilities were markedly suppressed after miR-30a-3p
expression in BC cells (Figure 2B,C). Typical images of the invasion and migration assays
after miR-30a-3p expression are shown in Figure S2.
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Figure 2. Effects of ectopic expression of miR-30a-3p in BC cells (MDA-MB-157 and MDA-MB-231).
(A) Cell proliferation was assessed via the XTT assay 72 h after transient transfection of miRNAs.
(B) Cell invasion was evaluated using Matrigel invasion assays 48 h after miR-30a-3p-transfected cells
were seeded into the chambers. (C) Cell migration was evaluated using a membrane culture system
48 h after miR-30a-3p-transfected cells were seeded into chambers.
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Although there have been many reports published on the analysis of miR-30a-5p (the
guide strand of pre-miR-30a), there are few analyses of miR-30a-3p (the passenger strand) in
the literature. Therefore, we focused on miR-30a-3p and explored its tumor-suppressive
function and target genes in BC cells.

2.3. Identification of miR-30a-3p-Controlled Cancer-Promoting Genes in BC Cells

The next area of interest is determining which genes are controlled by antitumor
miR-30a-3p in BC cells.

To identify miR-30a-3p-controlled genes in BC cells, we created a new gene expres-
sion profile using miR-30a-3p-transfected MDA-MB-231 cells by RNA sequencing. This
profile revealed that 525 genes were downregulated (log 2-fold ratio < −0.7) in miR-30a-
3p-transfected cells compared with non-transfected cells. Among these genes, 189 genes
had the putative miR-30a-3p binding site in their 3′-untranslated region, as determined via
a TargetScan Human database (release 8.0) analysis. Our strategy for miR-30a-3p target
searching is shown in Figure 3.
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Figure 3. Flowchart of miR-30a-3p target identification in BC cells. To identify putative targets of
miR-30a-3p in BC cells, we integrated two datasets: the TargetScan Human database (release 8.0) and
our original mRNA expression profile (miR-30a-3p-transfected MDA-MB-231 cells; GEO accession
number: GSE118539). A total of 189 genes were identified as putative miR-30a-3p targets. According
to a GeneCodis 4 database analysis, 17 genes were most frequently associated with the cell cycle. Of
these 17 genes, 10 genes showed significant overexpression in BC specimens according to GEPIA2
(http://gepia2.cancer-pku.cn/#index, accessed on 13 March 2024), and 4 genes showed a significantly
low overall survival rate according to OncoLnc (http://www.oncolnc.org/, accessed on 13 March
2024). Finally, four oncogenic genes were selected as miR-30a-3p targets in BC.

Furthermore, the molecular functions of 189 genes were investigated using GeneCodis
4 databases (Table S1). Notably, a total of 17 genes (ANLN, MKI67, CCNB1, NCAPG, ZWINT,
E2F7, PDS5A, RIF1, BIRC5, MAD2L1, CACUL1, KIF23, UBE2S, EML4, SEPT10, CLTC, and
PCNP) were found to be involved in the cell cycle (Table 1). Genes involved in cell cycle
regulation are suitable as therapeutic targets for cancer cells.

http://gepia2.cancer-pku.cn/#index
http://www.oncolnc.org/
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Table 1. Cell-cycle-related genes affected by miR-30a-3p regulation in BC cells.

Entrez
Gene ID

Gene
Symbol Gene Name

Total
Binding

Sites

Log2 Fold
Change

54443 ANLN anillin, actin binding protein 1 −1.7064619
4288 MKI67 antigen identified by monoclonal antibody Ki-67 1 −1.2917953
891 CCNB1 cyclin B1 1 −1.2548676

64151 NCAPG non-SMC condensin I complex, subunit G 1 −1.0997882
11130 ZWINT ZW10 interacting kinetochore protein 1 −1.0036101

144455 E2F7 E2F transcription factor 7 1 −0.9913907
23244 PDS5A PDS5, regulator of cohesion maintenance, homolog A (S. cerevisiae) 3 −0.9755006
55183 RIF1 RAP1 interacting factor homolog (yeast) 3 −0.9548717

332 BIRC5 baculoviral IAP repeat containing 5 1 −0.9173002
4085 MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast) 2 −0.9139371

143384 CACUL1 CDK2-associated, cullin domain 1 4 −0.8496602
9493 KIF23 kinesin family member 23 1 −0.8479867
27338 UBE2S ubiquitin-conjugating enzyme E2S 1 −0.8329787
27436 EML4 echinoderm microtubule associated protein like 4 1 −0.8073831

151011 SEPT10 septin 10 2 −0.7851834
1213 CLTC clathrin, heavy chain (Hc) 1 −0.755415
57092 PCNP PEST proteolytic signal-containing nuclear protein 3 −0.7289238

2.4. Clinical Significance of Cell-Cycle-Related Genes Determined via TCGA-BRCA Database
Analysis

Seventeen genes were subjected to clinicopathological analysis using the TCGA-BRCA
dataset. Among these genes, 10 genes were significantly overexpressed in BC tissues
(n = 1085) compared with normal tissues (n = 291; p < 0.01; Figure 4).
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Figure 4. The expression levels of 10 genes (ANLN, MKI67, CCNB1, NCAPG, ZWINT, BIRC5, MAD2L1,
KIF23, UBE2S, and CLTC) in BC clinical specimens were analyzed using TCGA-BRCA datasets. These
genes were upregulated in BC tissues (n = 1085) compared with normal tissues (n = 291) (p < 0.01).

In addition, four genes (ANLN, CCNB1, BIRC5, and KIF23) showed statistically signifi-
cant correlations with poor overall survival (10-year survival rate, p < 0.05; Figure 5).
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poorer prognosis in BC patients.

2.5. Expression Control of Four Genes (ANLN, CCNB1, BIRC5, and KIF23) by miR-30a-3p in BC

We investigated whether four genes (ANLN, CCNB1, BIRC5, and KIF23) were con-
trolled by miR-30a-3p using miR-30a-3p-transfected BC cells. Our data revealed that the
mRNA expression levels of all genes were significantly reduced in miR-30a-3p-transfected
BC cells, i.e., MDA-MB-157 and MDA-MB-231 (Figure 6A).Non-Coding RNA 2024, 10, x FOR PEER REVIEW 8 of 16 
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Figure 6. Expression control of four genes (ANLN, CCNB1, BIRC5, and KIF23) by miR-30a-3p in BC
cells. (A) qRT-PCR showing significantly reduced expression of all four mRNAs 72 h after miR-30a-3p
transfection in MDA-MB-157 and MDA-MB-231 cells compared to the control group. (B) Correlation
analysis of four genes using TCGA-BRCA database. Expression levels of miR-30a-3p and four genes
(ANLN, CCNB1, BIRC5, and KIF23) in BC clinical samples are negatively correlated.
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Moreover, a large number of clinical specimens were analyzed using the TCGA-BRCA
database, and four genes were found to be controlled by miR-30a-3p. A Spearman’s rank
test confirmed negative correlations between all four genes’ expression and miR-30a-3p
expression (Figure 6B).

2.6. Direct Regulation of ANLN by miR-30a-3p in BC Cells

Using luciferase reporter assays, we demonstrated that miR-30a-3p directly binds
to the 3′UTR of the ANLN gene. The putative miR-30a-3p binding site on the 3′UTR of
the ANLN gene is shown in Figure 7. Luciferase activity was markedly decreased when
BC cells (MDA-MB-231) were co-transfected with miR-30a-3p and a vector containing a
miR-30a-3p binding sequence (Figure 7). In contrast, no decrease in luciferase activity was
observed when a vector lacking the miR-30a-3p binding sequence was used (Figure 7).
These results indicated that miR-30a-3p directly binds to the 3′UTR of ANLN and modulates
its expression in BC cells.
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Figure 7. TargetScan Human database (release 8.0) shows that the putative miR-30a-3p binding
site is mapped in the 3′UTR of the ANLN gene. Dual-luciferase reporter assays revealed reduced
luminescence activity after co-transfection of miR-30a-3p with a vector containing the miR-30a-3p
binding site (wild-type) in MDA-MB-231 cells. In contrast, no luminescence activity was observed
after co-transfection of miR-30a-3p with a vector lacking the miR-30a-3p binding site (deletion-type) in
MDA-MB-231 cells.

In addition, the expression level of ANLN protein was suppressed via the ectopic
expression of miR-30a-3p in BC tissues (Figure S3).

2.7. Functional Significance of ANLN in BC Cells

We investigated the oncogenic function of ANLN in BC cells using siRNA-mediated
ANLN knockdown assays. The expression levels of ANLN were significantly reduced by
two siRNAs (siANLN-1 and siANLN-2) in BC cells (Figure S4).

The knockdown of ANLN inhibited cell proliferation and markedly inhibited cell
invasion and migration (Figure 8A–C). Typical images of invasion and migration assays in
siRNA-transfected BC cells are shown in Figure S5.
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Matrigel invasion assays 48 h after siANLN-transfected cells were seeded into chambers. (C) Cell
migration was evaluated using a membrane culture system 48 h after siANLN-transfected cells were
seeded into chambers.

2.8. Clinical Significance of ANLN in BC Clinical Specimens

Immunostaining was performed to confirm the expression of ANLN in BC clinical
specimens. We observed stronger immunostaining of the ANLN protein in cancerous
tissues compared to normal breast tissues (Figure 9A).

A multivariate analysis revealed that ANLN expression is an independent prognostic
factor for BC, even when accounting for clinical prognostic factors including age, T-factor,
N-factor, and M-factor (Figure 9B). Specifically, higher levels of ANLN expression were
correlated with a poorer 10-year overall survival rate.

To identify ANLN-mediated molecular pathways in BC patients, we conducted a gene
set enrichment analysis with TCGA-BRCA data. The “E2F targets”, “G2M checkpoint”,
and “MYC target” pathways were enriched in patients with high ANLN expression rather
than low ANLN expression (Table 2, Figure 9C).
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Figure 9. Clinical significance of ANLN expression in BC. (A) Expression of ANLN in BC tissues.
Immunohistochemical staining of ANLN was confined to cancer tissues, whereas weak staining
was observed in the noncancerous area. Upper: 50-year-old woman, T1N0M0 invasive papillary
carcinoma. Lower: 78-year-old woman, T4N0M0 invasive breast ductal carcinoma. (B) Forest plot
showing the result of multivariate Cox proportional hazards regression analysis of the 10-year overall
survival rate. Patients with high ANLN expression had a significantly lower overall survival rate.
These data were obtained from TCGA-BRCA datasets. (C) Gene set enrichment analysis (GSEA)
was applied to explore molecular pathways mediated by ANLN in BC cells. The top three pathways
enriched in BC patients with high ANLN expression were E2F targets, G2M checkpoint, and Myc
targets.

Table 2. ANLN-mediated pathways via gene set enrichment analysis (GSEA).

Pathway Enrichment Score Normalized
Enrichment Score p-Value FDR

HALLMARK_E2F_TARGETS 0.81 3.39 <0.001 <0.001
HALLMARK_G2M_CHECKPOINT 0.79 3.31 <0.001 <0.001
HALLMARK_MYC_TARGETS_V1 0.65 2.72 <0.001 <0.001
HALLMARK_MITOTIC_SPINDLE 0.6 2.5 <0.001 <0.001
HALLMARK_MTORC1/SIGNALING 0.59 2.48 <0.001 <0.001

3. Discussion

In the human genome, the miR-30 family comprises six miRNA members (miR-30a,
miR-30b, miR-30c-1, miR-30c-2, miR-30d, and miR-30e).

Two miRNAs (the guide strand and the passenger strand) are derived from each
miRNA; i.e., 12 mature miRNAs are formed from the miR-30 family [17]. Notably, all guide
strands derived from the miR-30 family have the same seed sequences. In contrast, the seed
sequences of the passenger strands are divided into two groups (miR-30a-3p, miR-30d-3p and
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miR-30e-3p; and miR-30b-3p, miR-30c-1-3p, and miR-30c-2-3p) [17]. The tumor-suppressive
function of the guide strands derived from the miR-30 family has previously been reported
in many types of cancers including BC, and various cancer-promoting genes regulated
by these miRNAs have been identified [18–20]. Compared with the analysis of the guide
strands of the miR-30 family, the involvement of the passenger strands of the miR-30 family
in the molecular pathogenesis of BC has not been thoroughly investigated.

Based on our miRNA signature of BC, we recently investigated the miR-30c-1-3p and
miR-30c-2-3p family members in BC cells [14]. A TCGA analysis showed that the low
expression of these miRNAs significantly impacts the prognosis of BC patients. Functional
assays demonstrated that two miRNAs acted as tumor-suppressive miRNAs in BC cells by
targeting cell-cycle-related genes (e.g., TRIP13, CCNB1, RAD51, PSPH, CENPN, KPNA2,
and MXRA5) [14]. Recently, the tumor-suppressive functions of miR-30c-1-3p and miR-30c-
2-3p have been reported in multiple types of cancer, e.g., lung cancer, brain tumor, and
pancreatic ductal adenocarcinoma [21–23].

In this study, we focused on miR-30a-3p and investigated its functional significance
and its control of cancer-promoting genes in BC cells. Although the downregulation of
miR-30a-3p expression was previously reported in BC tissues [24], little functional analysis
of miR-30a-3p has been performed in BC cells. Our functional analysis demonstrated that
miR-30a-3p is a tumor-suppressive miRNA in BC cells, similar to miR-30c-1-3p and miR-
30c-2-3p. Previous reports have demonstrated that miR-30a-3p has antitumor functions in
several types of cancer, e.g., gastric cancer, renal cell carcinoma, bladder cancer, pancreatic
ductal adenocarcinoma, and lung adenocarcinoma [25–28]. We recently created an miRNA
expression signature of small-cell lung cancer (SCLC), and this signature showed the
downregulation of both strands of pre-miR-30a [29]. Our gain-of-function assays indicated
that miR-30a-3p inhibited aggressive phenotypes of SCLC cells, e.g., cell proliferation and
induced cell cycle arrest and apoptosis [29]. Previous studies and our present data have
revealed that miR-30a-3p acts as an antitumor miRNA in various cancers, including BC.
Many studies have been performed on miR-30a-5p (the guide strand) to date, and there is a
consensus that miR-30a-5p has antitumor functions in BC cells [18]. In other words, it was
shown that two types of miRNAs (miR-30a-5p and miR-30a-3p) derived from pre-miR-30a
regulate various genes and are deeply involved in the molecular pathogenesis of BC.

Our next focus of interest was to identify cancer-promoting genes that are regulated
by the antitumor effects of miR-30a-3p in BC cells. A notable feature of this analysis was
that many of the genes regulated by miR-30a-3p in BC cells were cell-cycle-related genes.
In particular, the high expression of four genes (ANLN, CCNB1, BIRC5, and KIF23) could
predict the prognosis of BC patients.

Anillin (ANLN) functions as a scaffolding protein in coordination with actin and
cytoskeletal filaments at various steps of the cell cycle [30]. ANLN is also known to regulate
intracellular signaling cascades by controlling the activity of members of the Rho family of
GTPases, e.g., RhoA, RhoG, and Rac1 [31]. Recent studies have demonstrated that ANLN
is involved in events other than cell division, such as regulating cell–cell and cell–matrix
adhesion [30,32].

Our siRNA-mediated knockdown assays demonstrated that the downregulation of
ANLN significantly inhibited cancer cell proliferation, invasion, and migration abilities,
and is strongly suggested as a cancer-promoting gene in BC cells.

A large number of studies showed that the overexpression of ANLN was detected
in various types of cancers, e.g., pancreatic ductal adenocarcinoma, colon, lung, gastric,
and hepatocellular carcinoma [33–35]. In BC, the inhibition of ANLN expression was
reported to attenuate the motility and proliferation of BC cells [36,37]. Furthermore, ANLN
knockout of BC cells induced dramatic transcriptional reprogramming, and resulted in
the suppression of cancer cell stemness and trans-differentiation from mesenchymal to
epithelial lineages [36]. Transcriptome reprogramming is the critical event deeply involved
in cancer cell progression, metastasis, and drug resistance [38]. Notably, ANLN has been
reported to be a gene regulated by the formation of TNBC-specific super-enhancers [39]. We
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believe that genes transcribed by super-enhancers play an important role in the malignant
progression of BC, and that the use of ANLN and ANLN-mediated genes as therapeutic
targets for BC, as well as therapeutic strategies to control these molecules, is required.

4. Materials and Methods
4.1. Cell Lines and BC Clinical Specimens

In this study, two TNBC cell lines (MDA-MB-157 and MDA-MB-231) were used. Both
cell lines were obtained from Public Health England (Salisbury, UK).

This study was conducted in accordance with the guidelines of the Declaration of
Helsinki and was approved by the Ethics Committee of Kagoshima University (approval
number 160038 28-65; date of approval: 19 March 2021).

4.2. Analysis of BC Clinical Specimens Using TCGA-BRCA Database

The selection of downregulated miRNAs was based on the miRNA signature we
previously created in BC clinical specimens [13].

The expression data of miRNA in BC were obtained from the following database: The
Cancer Genome Atlas (TCGA) (https://www.cancer.gov/tcga, accessed on 13 March 2024),
Subio Platform v1.24 (Subio Inc., Aichi, Japan).

The expression data of miRNA target genes in BC clinical specimens were obtained
from the following database: GEPIA2 (http://gepia2.cancer-pku.cn/#index, accessed on 13
March 2024) [40]. The clinical significance of genes in BC was obtained from the OncoLnc
database (http://www.oncolnc.org/ (accessed on 13 March 2024) [41].

4.3. RT-qPCR and Functional Assays of miRNAs and miRNA Target Genes in BC Cells

The procedures for RNA extraction and RT-qPCR were described in our previous
studies [13,33]. The sequences of primers for SYBR Green assays are summarized in
Table S2.

Functional assays (e.g., proliferation, invasion, and migration) were performed for the
transient transfection of small RNAs (miRNAs and siRNAs) into BC cell lines. The analysis
procedures have been described in our previous studies [13,33]. The siRNAs and miRNAs
used in the experiments are shown in Table S3.

4.4. Identification of Oncogenic Targets Controlled by miR-30a-3p in BC Cells

To identify oncogenic targets controlled by miR-30a-3p in BC cells, we created a gene
expression profile using miR-30a-3p-transfected MDA-MB-231 cells. We used the TargetScan
Human database (https://www.targetscan.org/vert_80/ (accessed on 13 March 2024)) to
identify genes that have an miR-30a-3p binding site in their 3′UTR.

We used the GeneCodis 4 software platform (https://genecodis.genyo.es/, accessed
on 13 March 2024) to infer the molecular functions of the miR-30a-3p target genes [42]. Gene
set enrichment analysis (GSEA) software program 4.3.2 was used to infer the molecular
pathways controlled by these genes [43,44].

4.5. Western Blotting and Immunohistochemistry

Western blotting and immunohistochemical analysis were performed according to
our previous studies [13,14]. Anti-ANLN human/mouse monoclonal IgG was used as a
primary antibody. The antibodies used in this study are listed in Table S3. A BC tissue
array, BRC711 (Quickarrays Inc., CA, USA), was used for immunohistochemistry.

4.6. Plasmid Construction and Dual-Luciferase Reporter Assay

Vector construction and dual-luciferase reporter assays were performed as described
in our previous studies [14]. The vector insertion sequences are shown in Figure S6.

https://www.cancer.gov/tcga
http://gepia2.cancer-pku.cn/#index
http://www.oncolnc.org/
https://www.targetscan.org/vert_80/
https://genecodis.genyo.es/
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4.7. Statistical Analysis

Statistical analyses were performed using JMP Pro 16 (SAS Institute Inc., Cary, NC,
USA) and GraphPad Prism 8 (GraphPad Software, CA, USA). Differences between two
groups were analyzed using Welch’s t-test, and differences between multiple groups were
analyzed using Dunnett’s test. Survival rates were analyzed using Kaplan–Meier survival
curves and log-rank tests.

5. Conclusions

Our miRNA signature and TCGA-BRCA database analysis revealed that miR-30a-3p
(the passenger strand) was significantly downregulated in BC clinical specimens. The
ectopic expression of miR-30a-3p attenuated the malignant phenotypes of BC cells, sug-
gesting that this miRNA acted as an antitumor miRNA in BC cells. In total, four genes
(ANLN, CCNB1, BIRC5, and KIF23) were identified as therapeutic targets via miR-30a-3p
regulation in BC cells. ANLN was directly regulated by miR-30a-3p, and its overexpression
facilitated BC cell aggressiveness. It has been suggested that ANLN or ANLN-mediated
molecular pathways may be therapeutic targets for BC. Studying the involvement of the
passenger strand in the molecular pathogenesis of BC and searching for its regulatory genes
are effective strategies for discovering therapeutic targets for BC.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ncrna10060060/s1, Figure S1: The expression levels of miR-30a-
5p and miR-30a-3p according to subtype; Figure S2: Typical images of BC cells during invasion
and migration assays by miR-30a-3p expression; Figure S3: Full size image of WB; Figure S4: The
expression levels of siANLN transfected BC cells; Figure S5: Typical images of BC cells during
invasion and migration assays by siANLN expression; Figure S6: The vector insertion sequences by
luciferase reporter assay; Table S1: Significantly enriched pathways regulated by miR-30a-3p; Table
S2: The sequences of primers used for SYBR Green assays; Table S3: Reagents used in this study.
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