Insights into the Electrocatalytic Activity of Fe,N-Glucose/Carbon Nanotube Hybrids for the Oxygen Reduction Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Electrocatalysts
2.3. Chemical and Textural Characterization
2.4. Electrochemical Characterization
3. Results and Discussion
3.1. Chemical Properties
3.2. Electrochemical Assessments
Oxygen Reduction Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirubakaran, A.; Jain, S.; Nema, R. A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev. 2009, 13, 2430–2440. [Google Scholar] [CrossRef]
- Stacy, J.; Regmi, Y.N.; Leonard, B.; Fan, M. The recent progress and future of oxygen reduction reaction catalysis: A review. Renew. Sustain. Energy Rev. 2017, 69, 401–414. [Google Scholar] [CrossRef]
- Goswami, C.; Hazarika, K.K.; Bharali, P. Transition metal oxide nanocatalysts for oxygen reduction reaction. Mater. Sci. Energy Technol. 2018, 1, 117–128. [Google Scholar] [CrossRef]
- Yang, J.; Toshimitsu, F.; Yang, Z.; Fujigaya, T.; Nakashima, N. Pristine carbon nanotube/iron phthalocyanine hybrids with a well-defined nanostructure show excellent efficiency and durability for the oxygen reduction reaction. J. Mater. Chem. A 2017, 5, 1184–1191. [Google Scholar] [CrossRef]
- Komba, N.; Zhang, G.; Wei, Q.; Yang, X.; Prakash, J.; Chenitz, R.; Rosei, F.; Sun, S. Iron (II) phthalocyanine/N-doped graphene: A highly efficient non-precious metal catalyst for oxygen reduction. Int. J. Hydrogen Energy 2019, 44, 18103–18114. [Google Scholar] [CrossRef]
- Hyun, K.; Ueno, T.; Panomsuwan, G.; Li, O.L.; Saito, N. Heterocarbon nanosheets incorporating iron phthalocyanine for oxygen reduction reaction in both alkaline and acidic media. Phys. Chem. Chem. Phys. 2016, 18, 10856–10863. [Google Scholar] [CrossRef]
- Han, S.; Hu, X.; Wang, J.; Fang, X.; Zhu, Y. Novel Route to Fe-Based Cathode as an Efficient Bifunctional Catalysts for Rechargeable Zn-Air Battery. Adv. Energy Mater. 2018, 8, 1800955. [Google Scholar] [CrossRef]
- Chung, H.T.; Cullen, D.A.; Higgins, D.; Sneed, B.T.; Holby, E.F.; More, K.L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479–484. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, D.; Amal, R.; Dai, L. Carbon-Based Metal-Free Catalysts for Key Reactions Involved in Energy Conversion and Storage. Adv. Mater. 2019, 31, e1801526. [Google Scholar]
- Figueiredo, J.L. Nanostructured porous carbons for electrochemical energy conversion and storage. Surf. Coat. Technol. 2018, 350, 307–312. [Google Scholar] [CrossRef]
- Wu, Z.; Song, M.; Wang, J.; Liu, X. Recent Progress in Nitrogen-Doped Metal-Free Electrocatalysts for Oxygen Reduction Reaction. Catalysts 2018, 8, 196. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Fan, Y. Techno-Economic Challenges of Fuel Cell Commercialization. Engineering 2018, 4, 352–360. [Google Scholar] [CrossRef]
- He, C.; Sankarasubramanian, S.; Matanovic, I.; Atanassov, P.; Ramani, V. Understanding the Oxygen Reduction Reaction Activity and Oxidative Stability of Pt Supported on Nb-Doped TiO2. ChemSusChem 2019, 12, 3468–3480. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, P.; Zhao, Y.; Jiang, W.; Zhao, B.; Chen, X.; Li, M. Ultradurable Pt-Based Catalysts for Oxygen Reduction Electrocatalysis. Catalysts 2024, 14, 57. [Google Scholar] [CrossRef]
- Lee, K.; Zhang, L.; Lui, H.; Hui, R.; Shi, Z.; Zhang, J. Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts. Electrochim. Acta 2009, 54, 4704–4711. [Google Scholar] [CrossRef]
- Paul, R.; Dai, Q.; Hu, C.; Dai, L. Ten years of carbon-based metal-free electrocatalysts. Carbon Energy 2019, 2, 151–152. [Google Scholar] [CrossRef]
- Yan, L.; Yu, J.; Houston, J.; Flores, N.; Luo, H. Biomass derived porous nitrogen doped carbon for electrochemical devices. Green Energy Environ. 2017, 2, 84–99. [Google Scholar] [CrossRef]
- Jain, A.; Balasubramanian, R.; Srinivasan, M.P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem. Eng. J. 2016, 283, 789–805. [Google Scholar] [CrossRef]
- Morais, R.G.; Rey-Raap, N.; Costa, R.S.; Pereira, C.; Guedes, A.; Figueiredo, J.L.; Pereira, M.F.R. Hydrothermal Carbon/Carbon Nanotube Composites as Electrocatalysts for the Oxygen Reduction Reaction. J. Compos. Sci. 2020, 4, 20. [Google Scholar] [CrossRef]
- Morais, R.G.; Rey-Raap, N.; Figueiredo, J.L.; Pereira, M.F.R. Glucose-derived carbon materials with tailored properties as electrocatalysts for the oxygen reduction reaction. Beilstein J. Nanotechnol. 2019, 10, 1089–1102. [Google Scholar] [CrossRef]
- John, K.I.; Omorogie, M.O. Biomass-based hydrothermal carbons for catalysis and environmental cleanup: A review. Green Chem. Lett. Rev. 2022, 15, 162–186. [Google Scholar] [CrossRef]
- Skorupska, M.; Ilnicka, A.; Lukaszewicz, J.P. Successful Manufacturing Protocols of N-Rich Carbon Electrodes Ensuring High ORR Activity: A Review. Processes 2022, 10, 643. [Google Scholar] [CrossRef]
- Sathiskumar, C.; Ramakrishnan, S.; Vinothkannan, M.; Kim, A.R.; Karthikeyan, S.; Yoo, D.J. Nitrogen-Doped Porous Carbon Derived from Biomass Used as Trifunctional Electrocatalyst toward Oxygen Reduction, Oxygen Evolution and Hydrogen Evolution Reactions. Nanomaterials 2020, 10, 76. [Google Scholar] [CrossRef]
- Choi, E.Y.; Kim, D.E.; Lee, S.Y.; Kim, C.K. Electrocatalytic activity of nitrogen-doped holey carbon nanotubes in oxygen reduction and evolution reactions and their application in rechargeable zinc–air batteries. Carbon 2020, 166, 245–255. [Google Scholar] [CrossRef]
- Liu, A.; Ma, M.; Zhang, X.; Ming, J.; Jiang, L.; Li, Y.; Zhang, Y.; Liu, S. A biomass derived nitrogen doped carbon fibers as efficient catalysts for the oxygen reduction reaction. J. Electroanal. Chem. 2018, 824, 60–66. [Google Scholar] [CrossRef]
- Barrera, D.; Florent, M.; Kulko, M.; Bandosz, T.J. Ultramicropore-influenced mechanism of oxygen electroreduction on metal-free carbon catalysts. J. Mater. Chem. A 2019, 7, 27110–27123. [Google Scholar] [CrossRef]
- Rey-Raap, N.; Enterría, M.; Martins, J.I.; Pereira, M.F.R.; Figueiredo, J.L. Influence of Multiwalled Carbon Nanotubes as Additives in Biomass-Derived Carbons for Supercapacitor Applications. ACS Appl. Mater. Interfaces 2019, 11, 6066–6077. [Google Scholar] [CrossRef]
- Wang, W.; Jia, Q.; Mukerjee, S.; Chen, S. Recent Insights into the Oxygen-Reduction Electrocatalysis of Fe/N/C Materials. ACS Catal. 2019, 9, 10126–10141. [Google Scholar] [CrossRef]
- Ma, Q.; Jin, H.; Zhu, J.; Li, Z.; Xu, H.; Liu, B.; Zhang, Z.; Ma, J.; Mu, S. Stabilizing Fe–N–C Catalysts as Model for Oxygen Reduction Reaction. Adv. Sci. 2021, 8, 2102209. [Google Scholar] [CrossRef]
- Mamtani, K.; Jain, D.; Co, A.C.; Ozkan, U.S. Nitrogen-Coordinated Iron−Carbon as Efficient Bifunctional Electrocatalysts for the Oxygen Reduction and Oxygen Evolution Reactions in Acidic Media. Energy Fuels 2017, 31, 6541–6547. [Google Scholar] [CrossRef]
- Yan, Z.; Dai, C.; Zhang, M.; Lv, X.; Zhao, X.; Xie, J. Nitrogen doped porous carbon with iron promotion for oxygen reduction reaction in alkaline and acidic media. Int. J. Hydrogen Energy 2019, 44, 4090–4101. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, B.; Zhang, X.; Huang, X.; Xie, Z. In-situ fabrication of nitrogen-doped carbon nanosheets containing highly dispersed single iron atoms for oxygen reduction reaction. J. Power Sources 2019, 412, 125–133. [Google Scholar] [CrossRef]
- Abdelwahab, A.; Farghali, A.A.; Allah, A.E. Synergy between iron oxide sites and nitrogen-doped carbon xerogel/diamond matrix for boosting the oxygen reduction reaction. Nanoscale Adv. 2022, 4, 837–848. [Google Scholar] [CrossRef]
- Xia, J.; Li, K.; Zhao, G.-L. Electric Field Polarization to Increase Bifunctional Oxygen Electrocatalyst Performance of Nitrogen–Iron Functionalized Carbon Nanomaterials. ACS Appl. Energy Mater. 2020, 3, 1484–1495. [Google Scholar] [CrossRef]
- Canal-Rodríguez, M.; Rey-Raap, N.; Menéndez, J.Á.; Montes-Morán, M.A.; Figueiredo, J.L.; Pereira, M.F.R.; Arenillas, A. Effect of porous structure on doping and the catalytic performance of carbon xerogels towards the oxygen reduction reaction. Micropor. Mesopor. Mater. 2020, 293, 109811. [Google Scholar] [CrossRef]
- Morais, R.; Rey-Raap, N.; Figueiredo, J.; Pereira, M. Highly electroactive N–Fe hydrothermal carbons and carbon nanotubes for the oxygen reduction reaction. J. Energy Chem. 2020, 50, 260–270. [Google Scholar] [CrossRef]
- Ba, H.; Duong-Viet, C.; Liu, Y.; Nhut, J.-M.; Granger, P.; Ledoux, M.J.; Pham-Huu, C. Pham-Huu, Nitrogen-doped carbon nanotube spheres as metal-free catalysts for the partial oxidation of H2S. Comptes Rendus Chim. 2016, 19, 1303–1309. [Google Scholar] [CrossRef]
- Enterría, M.; Figueiredo, J.L. Nanostructured mesoporous carbons: Tuning texture and surface chemistry. Carbon 2016, 108, 79–102. [Google Scholar] [CrossRef]
- Lai, L.; Potts, J.R.; Zhan, D.; Wang, L.; Poh, C.K.; Tang, C.; Gong, H.; Shen, Z.; Lin, J.; Ruoff, R.S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 7936–7942. [Google Scholar] [CrossRef]
- Kecili, R.; Hussain, C.M. Chapter 4—Mechanism of Adsorption on Nanomaterials. In Nanomaterials in Chromatography; Hussain, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 89–115. [Google Scholar]
- Chang, S.-S.; Clair, B.; Ruelle, J.; Beauchêne, J.; Di Renzo, F.; Quignard, F.; Zhao, G.-J.; Yamamoto, H.; Gril, J. Mesoporosity as a new parameter for understanding tension stress generation in trees. J. Exp. Bot. 2009, 60, 3023–3030. [Google Scholar] [CrossRef]
- Yurdakal, S.; Garlisi, C.; Özcan, L.; Bellardita, M.; Palmisano, G. Chapter 4—(Photo)catalyst Characterization Techniques: Adsorption Isotherms, SEM, FTIR, UV-VIS, Photoluminescence and Electrochemical Characterizations. In Heterogeneous Photocatalysis; Marcì, G., Palmisano, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 87–152. [Google Scholar]
- Bedia, J.; Monsalvo, V.; Rodriguez, J.; Mohedano, A. Iron catalysts by chemical activation of sewage sludge with FeCl3 for CWPO. Chem. Eng. J. 2017, 318, 224–230. [Google Scholar] [CrossRef]
- Falco, C.; Marco-Lozar, J.; Salinas-Torres, D.; Morallón, E.; Cazorla-Amorós, D.; Titirici, M.; Lozano-Castelló, D. Tailoring the porosity of chemically activated hydrothermal carbons: Influence of the precursor and hydrothermal carbonization temperature. Carbon 2013, 62, 346–355. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides. Chem.-A Eur. J. 2009, 15, 4195–4203. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Schroeder, M.; Kluge, S.; Balducci, A.; Hagemann, U.; Schulz, C.; Wiggers, H. Direct self-assembly of Fe2O3/reduced graphene oxide nanocomposite for high-performance lithium-ion batteries. J. Mater. Chem. A 2015, 3, 11566–11574. [Google Scholar] [CrossRef]
- Chen, W.; Xiang, Q.; Peng, T.; Song, C.; Shang, W.; Deng, T.; Wu, J. Reconsidering the Benchmarking Evaluation of Catalytic Activity in Oxygen Reduction Reaction. iScience 2020, 23, 101532. [Google Scholar] [CrossRef] [PubMed]
- Shinagawa, T.; Garcia-Esparza, A.T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801. [Google Scholar] [CrossRef]
- Ma, R.; Lin, G.; Zhou, Y.; Liu, Q.; Zhang, T.; Shan, G.; Yang, M.; Wang, J. A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. NPJ Comput. Mater. 2019, 5, 78. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, H. Effects of Oxidation by Hydrogen Peroxide on the Structures of Multiwalled Carbon Nanotubes. Ind. Eng. Chem. Res. 2006, 45, 6483–6488. [Google Scholar] [CrossRef]
- Singh, H.; Zhuang, S.; Ingis, B.; Nunna, B.B.; Lee, E.S. Carbon-based catalysts for oxygen reduction reaction: A review on degradation mechanisms. Carbon 2019, 151, 160–174. [Google Scholar] [CrossRef]
- Morais, R.; Rey-Raap, N.; Figueiredo, J.; Pereira, M. Fe, Co, N-doped carbon nanotubes as bifunctional oxygen electrocatalysts. Appl. Surf. Sci. 2022, 572, 151459. [Google Scholar] [CrossRef]
Sample | C [wt.%] | H [wt.%] | O [wt.%] | N [wt.%] | Fe [wt.%] |
---|---|---|---|---|---|
CG | 90.8 | 1.7 | 7.5 | - | - |
CG/CNTO | 92.7 | 0.8 | 6.5 | - | - |
CG0.5Fe | 93.4 | 1.3 | 5.0 | - | 0.3 |
CG1Fe | 92.2 | 1.0 | 5.4 | - | 1.4 |
CG5Fe | 87.4 | 1.3 | 6.2 | - | 5.1 |
CG/CNTO,5Fe | 90.6 | 0.8 | 3.7 | - | 4.9 |
N-CG5Fe | 81.9 | 1.3 | 8.1 | 3.3 | 5.4 |
N-CG/CNTO,5Fe | 83.4 | 1.1 | 6.4 | 5.1 | 4.0 |
CG5Fe,N | 82.2 | 1.4 | 8.6 | 2.0 | 5.8 |
CG/CNTO,5Fe,N | 85.4 | 1.0 | 7.2 | 2.2 | 4.2 |
Sample | SBET (m2 g−1) | Vp (cm3 g−1) | Vmicro (cm3 g−1) |
---|---|---|---|
CG | 468 | 0.20 | 0.18 |
CG/CNTO | 418 | 0.27 | 0.15 |
CG0.5Fe | 549 | 0.22 | 0.21 |
CG1Fe | 517 | 0.21 | 0.19 |
CG5Fe | 530 | 0.22 | 0.20 |
CG/CNTO,5Fe | 441 | 0.31 | 0.16 |
N-CG5Fe | 396 | 0.18 | 0.14 |
N-CG/CNTO,5Fe | 59 | 0.12 | 0.01 |
CG5Fe,N | 440 | 0.19 | 0.16 |
CG/CNTO,5Fe,N | 316 | 0.26 | 0.11 |
Sample | Eonset (V) | J0.4 (mA cm−2) a | HO2− (%) a | nea | Tafel Slope (mV dec−1) |
---|---|---|---|---|---|
CG | 0.70 | 1.77 | 69 | 2.6 | 117 |
CG/CNTO | 0.73 | 1.87 | 64 | 2.7 | 77 |
CG0.5Fe | 0.71 | 1.92 | 53 | 2.9 | 97 |
CG1Fe | 0.72 | 1.97 | 50 | 3.0 | 67 |
CG5Fe | 0.75 | 2.47 | 27 | 3.5 | 64 |
CG/CNTO,5Fe | 0.74 | 2.29 | 49 | 3.0 | 45 |
N-CG5Fe | 0.81 | 2.50 | 33 | 3.3 | 52 |
N-CG/CNTO,5Fe | 0.83 | 2.95 | 37 | 3.3 | 63 |
CG5Fe,N | 0.79 | 2.67 | 25 | 3.5 | 62 |
CG/CNTO,5Fe,N | 0.81 | 2.79 | 27 | 3.5 | 61 |
Pt/C | 0.98 | 5.41 | 3 | 3.9 | 62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, R.G.; Rey-Raap, N.; Figueiredo, J.L.; Pereira, M.F.R. Insights into the Electrocatalytic Activity of Fe,N-Glucose/Carbon Nanotube Hybrids for the Oxygen Reduction Reaction. C 2024, 10, 47. https://doi.org/10.3390/c10020047
Morais RG, Rey-Raap N, Figueiredo JL, Pereira MFR. Insights into the Electrocatalytic Activity of Fe,N-Glucose/Carbon Nanotube Hybrids for the Oxygen Reduction Reaction. C. 2024; 10(2):47. https://doi.org/10.3390/c10020047
Chicago/Turabian StyleMorais, Rafael G., Natalia Rey-Raap, José L. Figueiredo, and Manuel F. R. Pereira. 2024. "Insights into the Electrocatalytic Activity of Fe,N-Glucose/Carbon Nanotube Hybrids for the Oxygen Reduction Reaction" C 10, no. 2: 47. https://doi.org/10.3390/c10020047
APA StyleMorais, R. G., Rey-Raap, N., Figueiredo, J. L., & Pereira, M. F. R. (2024). Insights into the Electrocatalytic Activity of Fe,N-Glucose/Carbon Nanotube Hybrids for the Oxygen Reduction Reaction. C, 10(2), 47. https://doi.org/10.3390/c10020047