Algae Derived Carbon from Hydrothermal Liquefaction as Sustainable Carbon Electrode Material for Supercapacitor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Algae-Derived Carbon (ADC)
2.3. Material Characterization
2.4. Electrode Preparation and Characterization
3. Results and Discussion
3.1. Morphology
3.2. Structure
3.3. Electrochemical Properties
3.4. Discussion
3.5. Practical Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bilgen, S.; Kaygusuz, K.; Sari, A. Renewable energy for a clean and Sustainable future. Energy Sources 2004, 26, 1119–1129. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abbas, Q.; Al Makky, A.; Abdelkareem, M.A. Supercapacitors as next generation energy storage devices: Properties and applications. Energy 2022, 248, 123617. [Google Scholar] [CrossRef]
- Yu, Z.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 2015, 8, 702–730. [Google Scholar] [CrossRef]
- Abruna, H.D.; Yasuyuki, K.; Henderson, J.C. Batteries and electrochemical capacitors. Phys. Today 2008, 61, 43–47. [Google Scholar] [CrossRef]
- Fic, K.; Platek, A.; Piwek, J.; Frackowiak, E. Sustainable materials for electrochemical capacitors. Mater. Today 2018, 21, 437–454. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Y.; Song, N.; Li, X. Biomass-derived renewable carbon materials for electrochemical energy storage. Mater. Res. Lett. 2017, 5, 69–88. [Google Scholar] [CrossRef]
- Akhtar, J.; Amin, N.A.S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 2011, 15, 1615–1624. [Google Scholar] [CrossRef]
- Ponnusamy, V.K.; Nagappan, S.; Bhosale, R.R.; Lay, C.-H.; Nguyen, D.D.; Pugazhendhi, A.; Chang, S.W.; Kumar, G. Review on sustainable production of biochar through hydrothermal liquefaction: Physico-chemical properties and applications. Bioresour. Technol. 2020, 310, 123414. [Google Scholar] [CrossRef]
- He, S.; Barati, B.; Hu, X.; Wang, S. Carbon migration of microalgae from cultivation towards biofuel production by hydrothermal technology: A review. Fuel Process. Technol. 2023, 240, 107563. [Google Scholar] [CrossRef]
- Leng, L.; Yuan, X.; Zeng, G.; Shao, J.; Chen, X.; Wu, Z.; Wang, H.; Peng, X. Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption. Fuel 2015, 155, 77–85. [Google Scholar] [CrossRef]
- Salehi, B.; Wang, L. Critical Review on Nanomaterials for Enhancing Bioconversion and Bioremediation of Agricultural Wastes and Wastewater. Energies 2022, 15, 5387. [Google Scholar] [CrossRef]
- Shell, K.M.; Rodene, D.D.; Amar, V.; Thakkar, A.; Maddipudi, B.; Kumar, S.; Shende, R.; Gupta, R.B. Supercapacitor performance of corn stover-derived biocarbon produced from the solid co-products of a hydrothermal liquefaction process. Bioresour. Technol. Rep. 2021, 13, 100625. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, R.; Li, A.; Ji, G. In-situ self-activation strategy toward highly porous biochar for supercapacitors: Direct carbonization of marine algae. J. Electroanal. Chem. 2021, 882, 114986. [Google Scholar] [CrossRef]
- Kandasamy, S.; Bhuvanendran, N.; Narayanan, M.; He, Z. Chapter 13—Thermochemical conversion of algal biomass. In Handbook of Algal Biofuels; Elsevier Inc.: Amsterdam, The Netherlands, 2022; pp. 281–302. [Google Scholar]
- Yardim, Y.; Saka, C. Oxygen and nitrogen-doped carbon particles derived from pyrolysis of Chlorella vulgaris and Spirulina platensis microalgae as an efficient electrode material for supercapacitor application. Full. Nanotub. Carbon Nanostructures 2023, 31, 713–723. [Google Scholar] [CrossRef]
- Amar, V.S.; Houck, J.D.; Shende, R.V. Catalytic HTL-derived biochar and sol-gel synthesized (Mn, Ti)-oxides for asymmetric supercapacitors. Int. J. Energy Res. 2020, 44, 12546–12558. [Google Scholar] [CrossRef]
- Hwang, H.; Lee, J.-H.; Ahmed, M.A.; Choi, J.W. Evaluation of pyrochar and hydrochar derived activated carbons for biosorbent and supercapacitor materials. J. Environ. Manag. 2021, 298, 113436. [Google Scholar] [CrossRef]
- Hasan, M.F.; Mantripragada, S.; Gbewonyo, S.; Xiu, S.; Shahbazi, A.; Zhang, L. Carbon nanofibrous electrode material from electrospinning of chlorella (microalgae) with polyacrylonitrile for practical high-performance supercapacitor. Int. J. Energy Res. 2022, 46, 22867–22882. [Google Scholar] [CrossRef]
- Hasan, M.F.; Asare, K.; Mantripragada, S.; Charles, V.; Shahbazi, A.; Zhang, L. Meso-microporous carbon nanofibrous aerogel electrode material with fluorine-treated wood biochard for high-performance supercapacitor. Gels 2024, 10, 82. [Google Scholar] [CrossRef]
- Nzediegwu, C.; Naeth, M.A.; Chang, S.X. Feedstock type drives surface property, demineralization and element leaching of nitric acid-activated biochars more than pyrolysis temperature. Bioresour. Technol. 2022, 344 Pt B, 126316. [Google Scholar] [CrossRef]
- Yorgun, S.; Yıldız, D. Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. J. Taiwan Inst. Chem. Eng. 2015, 53, 122–131. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Kuang, S.; Zhou, J.; Xing, W.; Zhuo, S. Nitrogen-doped hierarchical porous carbon as an efficient electrode material for supercapacitors. Eletrochimica Acta 2015, 153, 273–279. [Google Scholar] [CrossRef]
- Li, M.; Xue, J. Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior preformance in supercapacitors. J. Phys. Chem. C 2014, 118, 2507–2517. [Google Scholar] [CrossRef]
- Wu, D.; He, T.; Albashir, A.I.M.; Tan, Y.; Ran, F. Iron-doped carbon electrode materials derived from polyethersulfone. J. Energy Storages 2021, 33, 102099. [Google Scholar] [CrossRef]
- Wang, J.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725. [Google Scholar] [CrossRef]
- Zhu, L.; Zhao, N.; Tong, L.; Lv, Y. Structural and adsorption characteristics of potassium carbonate activated biochar. RSC Adv. 2018, 8, 21012–21019. [Google Scholar] [CrossRef]
- Mei, B.-A.; Munteshari, O.; Lau, J.; Dunn, B.; Pilon, L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. J. Phys. Chem. C 2018, 122, 194–206. [Google Scholar] [CrossRef]
- Asare, K.; Hasan, F.; Shahbazi, A.; Zhang, L. A comparative study of porous and hollow carbon nanofibrous structures from electrospinning for supercapacitor electrode material development. Surf. Interfaces 2021, 26, 101386. [Google Scholar] [CrossRef]
- Jenkins, H.D.B.; Thakur, K.P. Reappraisal of Thermochemical Radii for Complex Ions. J. Chem. Educ. 1979, 56, 576–577. [Google Scholar] [CrossRef]
- Vicentini, R.; Nunes, W.G.; Costa, L.H.; Pascon, A.; da Silva, L.M.; Baldan, M.; Zanin, H.G. Environmentally friendly functionalization of porous carbon electrodes for aqueous based electrochemical capacitors. IEEE Trans. Nanotechnol. 2018, 18, 73–82. [Google Scholar] [CrossRef]
- Eliad, L.; Pollak, E.; Levy, N.; Salitra, G.; Soffer, A.; Aurbach, D. Assessing optimal pore-to-ion size relations in the design of porous poly(vinylidene chloride) carbons for EDL capacitors. Appl. Phys. A Mater. Sci. Process. 2006, 82, 607–613. [Google Scholar] [CrossRef]
- Largeot, C.; Portet, C.; Chmioia, J.; Taberna, P.-L.; Gogotsi, Y.; Simon, P. Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. J. Am. Chem. Soc. 2008, 130, 2730–2731. [Google Scholar] [CrossRef] [PubMed]
- Ranaweera, C.K.; Kahol, P.K.; Ghimire, M.; Mishra, S.R.; Gupta, R.K. Orange-Peel-Derived Carbon: Designing Sustainable and High-Performance Supercapacitor Electrodes. C 2017, 3, 25. [Google Scholar] [CrossRef]
- Hulicova-Jurcakova, D.; Seredych, M.; Lu, G.Q.; Bandosz, T.J. Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors. Adv. Funct. Mater. 2009, 19, 438–447. [Google Scholar] [CrossRef]
ADC Materials | C (Atom%) | O (Atom%) | N (Atom%) | Fe (Atom%) | C/N |
---|---|---|---|---|---|
Raw-ADC | 84.03 | 12.21 | 3.76 | - | 22.34 |
H2SO4-ADC | 85.7 | 9.12 | 5.19 | - | 16.51 |
H3PO4-ADC | 73.1 | 21.7 | 5.2 | - | 14.06 |
HNO3-ADC | 81.82 | 15.1 | 3.08 | - | 26.56 |
N-ADC | 83.93 | 11.01 | 5.06 | - | 16.59 |
Fe-ADC | 79.33 | 13.35 | 6.98 | 0.33 | 11.37 |
KOH-ADC | 63.43 | 35.05 | 1.52 | - | 41.73 |
ADC Materials | Pyridinic-N (%) | Pyrrolic-N (%) | Quaternary-N (%) | Oxidized-N (%) |
---|---|---|---|---|
Raw-ADC | 100 | |||
H2SO4-ADC | 41.35 | 6.72 | 51.93 | |
H3PO4-ADC | 100 | |||
HNO3-ADC | 27.91 | 51.83 | 8.84 | 11.43 |
N-ADC | 100 | |||
Fe-ADC | 74.23 | 17.58 | 8.18 | |
KOH-ADC | 85.13 | 14.87 |
ADC Materials | BET SSA | Vmicro | Vmeso | Vtotal | Average Pore Size |
---|---|---|---|---|---|
(m2/g) | (cm3/g) | (cm3/g) | (cm3/g) | (nm) | |
Raw-ADC | 5.85 | 0.0000 | 0.0065 | 0.0487 | 33.51 |
H2SO4-ADC | 166.21 | 0.0001 | 0.0234 | 0.0484 | 3.10 |
H3PO4-ADC | 71.98 | 0.0048 | 0.0338 | 0.0593 | 4.27 |
HNO3-ADC | 152.69 | 0.0047 | 0.0315 | 0.0586 | 3.17 |
N-ADC | 65.81 | 0.0027 | 0.0174 | 0.03003 | 3.37 |
Fe-ADC | 174.66 | 0.0037 | 0.0173 | 0.0282 | 2.45 |
KOH-ADC | 1417.92 | 0.0587 | 0.0975 | 0.1716 | 2.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asare, K.; Mali, A.; Hasan, M.F.; Agbo, P.; Shahbazi, A.; Zhang, L. Algae Derived Carbon from Hydrothermal Liquefaction as Sustainable Carbon Electrode Material for Supercapacitor. C 2024, 10, 51. https://doi.org/10.3390/c10020051
Asare K, Mali A, Hasan MF, Agbo P, Shahbazi A, Zhang L. Algae Derived Carbon from Hydrothermal Liquefaction as Sustainable Carbon Electrode Material for Supercapacitor. C. 2024; 10(2):51. https://doi.org/10.3390/c10020051
Chicago/Turabian StyleAsare, Kingsford, Abhijeet Mali, Md Faruque Hasan, Philip Agbo, Abolghasem Shahbazi, and Lifeng Zhang. 2024. "Algae Derived Carbon from Hydrothermal Liquefaction as Sustainable Carbon Electrode Material for Supercapacitor" C 10, no. 2: 51. https://doi.org/10.3390/c10020051
APA StyleAsare, K., Mali, A., Hasan, M. F., Agbo, P., Shahbazi, A., & Zhang, L. (2024). Algae Derived Carbon from Hydrothermal Liquefaction as Sustainable Carbon Electrode Material for Supercapacitor. C, 10(2), 51. https://doi.org/10.3390/c10020051