Nitrogen-Doped Carbon Cryogels as Adsorbents: Efficient Removal of Organophosphate Pesticides from Water and Assessment of Toxicity Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Carbon Cryogel Synthesis
2.2. Carbon Cryogel Characterization
2.3. Adsorption Studies
2.3.1. Adsorption of OPs in the Batch System
2.3.2. Adsorption of OPs via Cryogel-Modified Nylon Membrane Filter
2.4. UPLC Analysis
2.5. Toxicity Assessment
3. Results
3.1. Carbon Cryogel Characterization
3.1.1. Scanning Electron Microscopy
3.1.2. BET Analysis
3.1.3. Raman Analysis
3.1.4. XPS Analysis
3.2. OP Removal via Adsorption on Carbon Cryogels
3.2.1. Adsorption of OPs in the Batch System
3.2.2. Adsorption of OPs in the Filter System
3.2.3. Physiological Effects
3.2.4. Real Samples
4. Discussion
4.1. Linking Adsorption Performance to the Properties of the Materials
4.2. Comparison of Adsorption Efficiency in Batch and Filter Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, R.K.; Mentha, S.S.; Misra, Y.; Dwivedi, N. Emerging pollutants of severe environmental concern in water and wastewater: A comprehensive review on current developments and future research. Water-Energy Nexus 2023, 6, 74–95. [Google Scholar] [CrossRef]
- Rhind, S.M. Anthropogenic pollutants: A threat to ecosystem sustainability? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 3391–3401. [Google Scholar] [CrossRef] [PubMed]
- Moussa, M.S.; Mostafa, M.K. Rapid Assessment Method for Evaluation of the Weighted Contribution of Anthropogenic Pollution: A Case Study of Lake Burullus, Egypt. Water 2021, 13, 3337. [Google Scholar] [CrossRef]
- Egbueri, J.C.; Agbasi, J.C.; Ayejoto, D.A.; Khan, M.I.; Khan, M.Y.A. Extent of anthropogenic influence on groundwater quality and human health-related risks: An integrated assessment based on selected physicochemical characteristics. Geocarto Int. 2023, 38, 2210100. [Google Scholar] [CrossRef]
- Busquets, R.; Ivanov, A.E.; Mbundi, L.; Hörberg, S.; Kozynchenko, O.P.; Cragg, P.J.; Savina, I.N.; Whitby, R.L.D.; Mikhalovsky, S.V.; Tennison, S.R.; et al. Carbon-cryogel hierarchical composites as effective and scalable filters for removal of trace organic pollutants from water. J. Environ. Manag. 2016, 182, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Ore, O.T.; Adeola, A.O.; Bayode, A.A.; Adedipe, D.T.; Nomngongo, P.N. Organophosphate pesticide residues in environmental and biological matrices: Occurrence, distribution and potential remedial approaches. Environ. Chem. Ecotoxicol. 2023, 5, 9–23. [Google Scholar] [CrossRef]
- Banday, T.H.; Tathineni, B.; Desai, M.S.; Naik, V. Predictors of Morbidity and Mortality in Organophosphorus Poisoning: A Case Study in Rural Hospital in Karnataka, India. N. Am. J. Med. Sci. 2015, 7, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Aroniadou-Anderjaska, V.; Figueiredo, T.H.; de Araujo Furtado, M.; Pidoplichko, V.I.; Braga, M.F.M. Mechanisms of Organophosphate Toxicity and the Role of Acetylcholinesterase Inhibition. Toxics 2023, 11, 866. [Google Scholar] [CrossRef] [PubMed]
- Alejo-González, K.; Hanson-Viana, E.; Vazquez-Duhalt, R. Enzymatic detoxification of organophosphorus pesticides and related toxicants. J. Pestic. Sci. 2018, 43, 1–9. [Google Scholar] [CrossRef]
- Lu, Y.; Park, Y.; Gao, X.; Zhang, X.; Yao, J.; Pang, Y.-P.; Jiang, H.; Zhu, K.Y. Cholinergic and non-cholinergic functions of two acetylcholinesterase genes revealed by gene-silencing in Tribolium castaneum. Sci. Rep. 2012, 2, 288. [Google Scholar] [CrossRef]
- Pope, C.; Karanth, S.; Liu, J. Pharmacology and toxicology of cholinesterase inhibitors: Uses and misuses of a common mechanism of action. Environ. Toxicol. Pharmacol. 2005, 19, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-R.; Huang, J.-B.; Yang, S.-L.; Hong, F.-F. Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules 2022, 27, 1816. [Google Scholar] [CrossRef]
- Facure, M.H.M.; Mercante, L.A.; Mattoso, L.H.C.; Correa, D.S. Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites. Talanta 2017, 167, 59–66. [Google Scholar] [CrossRef]
- Nguyen, K.N.; Saxena, R.; Re, D.B.; Yan, B. Rapid LC-MS/MS quantification of Organophosphate non-specific metabolites in hair using alkaline extraction approach. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2023, 1217, 123619. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, Y.; Liu, D.; Zhou, Z. Determination of organophosphorus pesticides in soil by dispersive liquid-liquid microextraction and gas chromatography. J. Chromatogr. Sci. 2012, 50, 15–20. [Google Scholar] [CrossRef]
- Kumaran, A.; Vashishth, R.; Singh, S.; Surendran, U.; James, A.; Chellam, P.V. Biosensors for detection of organophosphate pesticides: Current technologies and future directives. Microchem. J. 2022, 178, 107420. [Google Scholar] [CrossRef]
- Karbelkar, A.A.; Reynolds, E.E.; Ahlmark, R.; Furst, A.L. A Microbial Electrochemical Technology to Detect and Degrade Organophosphate Pesticides. ACS Cent. Sci. 2021, 7, 1718–1727. [Google Scholar] [CrossRef]
- Bhattu, M.; Verma, M.; Kathuria, D. Recent advancements in the detection of organophosphate pesticides: A review. Anal. Methods 2021, 13, 4390–4428. [Google Scholar] [CrossRef]
- Shah, M.M.; Ren, W.; Irudayaraj, J.; Sajini, A.A.; Ali, M.I.; Ahmad, B. Colorimetric Detection of Organophosphate Pesticides Based on Acetylcholinesterase and Cysteamine Capped Gold Nanoparticles as Nanozyme. Sensors 2021, 21, 8050. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, P.; Chau, L.-K.; Ngo, L.T.; Chang, T.-C.; Chen, Y.-L.; Huang, K.-T. Competitive Assay for the Ultrasensitive Detection of Organophosphate Pesticides Based on a Fiber-Optic Particle Plasmon Resonance Biosensor and an Acetylcholinesterase Binding Peptide. Anal. Chem. 2023, 95, 14600–14607. [Google Scholar] [CrossRef]
- Bondžić, A.M.; Lazarević Pašti, T.D.; Pašti, I.A.; Bondžić, B.P.; Momčilović, M.D.; Loosen, A.; Parac-Vogt, T.N. Synergistic Effect of Sorption and Hydrolysis by NU-1000 Nanostructures for Removal and Detoxification of Chlorpyrifos. ACS Appl. Nano Mater. 2022, 5, 3312–3324. [Google Scholar] [CrossRef]
- Karpouzas, D.G.; Singh, B.K. Microbial degradation of organophosphorus xenobiotics: Metabolic pathways and molecular basis. Adv. Microb. Physiol. 2006, 51, 119–185. [Google Scholar] [PubMed]
- Kumar, S.; Kaushik, G.; Dar, M.A.; Nimesh, S.; LÓPez-Chuken, U.J.; Villarreal-Chiu, J.F. Microbial Degradation of Organophosphate Pesticides: A Review. Pedosphere 2018, 28, 190–208. [Google Scholar] [CrossRef]
- Mali, H.; Shah, C.; Patel, D.H.; Trivedi, U.; Subramanian, R.B. Degradation insight of organophosphate pesticide chlorpyrifos through novel intermediate 2,6-dihydroxypyridine by Arthrobacter sp. HM01. Bioresour. Bioprocess. 2022, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Mirković, M.M.; Pašti, T.D.L.; Došen, A.M.; Čebela, M.Ž.; Rosić, A.A.; Matović, B.Z.; Babić, B.M. Adsorption of malathion on mesoporous monetite obtained by mechanochemical treatment of brushite. RSC Adv. 2016, 6, 12219–12225. [Google Scholar] [CrossRef]
- Alrefaee, S.H.; Aljohani, M.; Alkhamis, K.; Shaaban, F.; El-Desouky, M.G.; El-Bindary, A.A.; El-Bindary, M.A. Adsorption and effective removal of organophosphorus pesticides from aqueous solution via novel metal-organic framework: Adsorption isotherms, kinetics, and optimization via Box-Behnken design. J. Mol. Liq. 2023, 384, 122206. [Google Scholar] [CrossRef]
- Fu, Q.; Jia, X.; Zhang, S.; Zhang, J.; Sun-Waterhouse, D.; Wang, C.; Waterhouse, G.I.N.; Wu, P. Highly defective copper-based metal-organic frameworks for the efficient adsorption and detection of organophosphorus pesticides: An experimental and computational investigation. Food Chem. 2023, 423, 136319. [Google Scholar] [CrossRef] [PubMed]
- Sagar, V.; Kukkar, D. Facile adsorption of organophosphate pesticides over HKUST-1 MOFs. Environ. Monit. Assess. 2023, 195, 1056. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, L.A.M.; Dos Reis, R.A.; Chen, X.; Ting, V.P.; Nayak, S. Metal-Organic Frameworks as Potential Agents for Extraction and Delivery of Pesticides and Agrochemicals. ACS Omega 2022, 7, 45910–45934. [Google Scholar] [CrossRef]
- Bruna, F.; Pavlovic, I.; Barriga, C.; Cornejo, J.; Ulibarri, M.A. Adsorption of pesticides Carbetamide and Metamitron on organohydrotalcite. Appl. Clay Sci. 2006, 33, 116–124. [Google Scholar] [CrossRef]
- Lazarević-Pašti, T.; Jocić, A.; Milanković, V.; Tasić, T.; Batalović, K.; Breitenbach, S.; Unterweger, C.; Fürst, C.; Pašti, I.A. Investigating the Adsorption Kinetics of Dimethoate, Malathion and Chlorpyrifos on Cellulose-Derived Activated Carbons: Understanding the Influence of Physicochemical Properties. C J. Carbon Res. 2023, 9, 103. [Google Scholar] [CrossRef]
- Tasić, T.; Milanković, V.; Batalović, K.; Breitenbach, S.; Unterweger, C.; Fürst, C.; Pašti, I.A.; Lazarević-Pašti, T. Application of Viscose-Based Porous Carbon Fibers in Food Processing—Malathion and Chlorpyrifos Removal. Foods 2023, 12, 2362. [Google Scholar] [CrossRef] [PubMed]
- El-Kady, A.A.; Abdel Ghafar, H.H.; Ibrahim, M.B.M.; Abdel-Wahhab, M.A. Utilization of activated carbon prepared from agricultural waste for the removal of organophosphorous pesticide from aqueous media. Desalination Water Treat. 2013, 51, 7276–7285. [Google Scholar] [CrossRef]
- Tahmasebi, A.A.; Salimi Beni, A.; Azhdarpoor, A.; Moeini, Z. The application of granular and biological activated carbon columns in removal of organochlorine and organophosphorus pesticides in a water treatment plant. J. Water Process Eng. 2023, 56, 104383. [Google Scholar] [CrossRef]
- Ioannidou, O.A.; Zabaniotou, A.A.; Stavropoulos, G.G.; Islam, M.A.; Albanis, T.A. Preparation of activated carbons from agricultural residues for pesticide adsorption. Chemosphere 2010, 80, 1328–1336. [Google Scholar] [CrossRef] [PubMed]
- Jevremović, A.; Stanojković, A.; Arsenijević, D.; Arsenijević, A.; Arzumanyan, G.; Mamatkulov, K.; Petrović, J.; Nedić Vasiljević, B.; Bajuk-Bogdanović, D.; Milojević-Rakić, M. Mitigating toxicity of acetamiprid removal techniques–Fe modified zeolites in focus. J. Hazard. Mater. 2022, 436, 129226. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, M.; Bin Jumah, M.N.; Othman, S.I.; Alruhaimi, R.S.; Salama, Y.F.; Allam, A.A.; Abukhadra, M.R. Effective removal of different species of organophosphorus pesticides (acephate, omthosate, and methyl parathion) using chitosan/Zeolite-A as multifunctional adsorbent. Environ. Technol. Innov. 2021, 24, 101875. [Google Scholar] [CrossRef]
- Bai, B.; Wu, N.; Yang, H.; Liu, H.; Jin, X.; Chen, L.; Huang, Z.; Zhou, C.; Wang, S.; Si, W. Development of a Zeolite H-ZSM-5-Based D-μSPE Method for the Determination of Organophosphorus Pesticides in Tea Beverages. Processes 2023, 11, 1027. [Google Scholar] [CrossRef]
- Lazarević-Pašti, T.; Anićijević, V.; Baljozović, M.; Anićijević, D.V.; Gutić, S.; Vasić, V.; Skorodumova, N.V.; Pašti, I.A. The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water. Environ. Sci. Nano 2018, 5, 1482–1494. [Google Scholar] [CrossRef]
- Shi, X.; Cheng, C.; Peng, F.; Hou, W.; Lin, X.; Wang, X. Adsorption properties of graphene materials for pesticides: Structure effect. J. Mol. Liq. 2022, 364, 119967. [Google Scholar] [CrossRef]
- Yadav, S.; Goel, N.; Kumar, V.; Singhal, S. Graphene Oxide as Proficient Adsorbent for the Removal of Harmful Pesticides: Comprehensive Experimental Cum DFT Investigations. Anal. Chem. Lett. 2019, 9, 291–310. [Google Scholar] [CrossRef]
- Bruckmann, F.S.; Schnorr, C.; Oviedo, L.R.; Knani, S.; Silva, L.F.O.; Silva, W.L.; Dotto, G.L.; Bohn Rhoden, C.R. Adsorption and Photocatalytic Degradation of Pesticides into Nanocomposites: A Review. Molecules 2022, 27, 6261. [Google Scholar] [CrossRef] [PubMed]
- Anićijević, V.; Tasić, T.; Milanković, V.; Breitenbach, S.; Unterweger, C.; Fürst, C.; Bajuk-Bogdanović, D.; Pašti, I.A.; Lazarević-Pašti, T. How Well Do Our Adsorbents Actually Perform?-The Case of Dimethoate Removal Using Viscose Fiber-Derived Carbons. Int. J. Environ. Res. Public Health 2023, 20, 4553. [Google Scholar] [CrossRef] [PubMed]
- Cordoba-Ramirez, M.; Chejne, F.; Alean, J.; Gómez, C.A.; Navarro-Gil, Á.; Ábrego, J.; Gea, G. Experimental strategy for the preparation of adsorbent materials from torrefied palm kernel shell oriented to CO2 capture. Environ. Sci. Pollut. Res. 2024, 31, 18765–18784. [Google Scholar] [CrossRef] [PubMed]
- Verner, A.; Tokarský, J.; Najser, T.; Matějová, L.; Kutláková, K.M.; Kielar, J.; Peer, V. Effects of Structure and Composition of Adsorbents on Competitive Adsorption of Gaseous Emissions: Experiment and Modeling. Nanomaterials 2023, 13, 724. [Google Scholar] [CrossRef] [PubMed]
- Hadi, P.; Yeung, K.Y.; Barford, J.; An, K.J.; McKay, G. Significance of “effective” surface area of activated carbons on elucidating the adsorption mechanism of large dye molecules. J. Environ. Chem. Eng. 2015, 3, 1029–1037. [Google Scholar] [CrossRef]
- Lawtae, P.; Tangsathitkulchai, C. The Use of High Surface Area Mesoporous-Activated Carbon from Longan Seed Biomass for Increasing Capacity and Kinetics of Methylene Blue Adsorption from Aqueous Solution. Molecules 2021, 26, 6521. [Google Scholar] [CrossRef]
- Minović, T.Z.; Gulicovski, J.J.; Stoiljković, M.M.; Jokić, B.M.; Živković, L.S.; Matović, B.Z.; Babić, B.M. Surface characterization of mesoporous carbon cryogel and its application in arsenic (III) adsorption from aqueous solutions. Microporous Mesoporous Mater. 2015, 201, 271–276. [Google Scholar] [CrossRef]
- Babić, B.; Kaluđerović, B.; Vračar, L.; Krstajić, N. Characterization of carbon cryogel synthesized by sol–gel polycondensation and freeze-drying. Carbon 2004, 42, 2617–2624. [Google Scholar] [CrossRef]
- Babić, B.M.; Vračar, L.M.; Radmilović, V.; Krstajić, N.V. Carbon cryogel as support of platinum nano-sized electrocatalyst for the hydrogen oxidation reaction. Electrochim. Acta 2006, 51, 3820–3826. [Google Scholar] [CrossRef]
- Momčilović, M.Z.; Ranđelović, M.S.; Onjia, A.; Zarubica, A.R.; Babić, B.M.; Matović, B. Study on the efficient removal of clopyralid from water using a resorcinol-formaldehyde carbon cryogel. J. Serbian Chem. Soc. 2014, 79, 481–494. [Google Scholar] [CrossRef]
- Tonanon, N.; Tanthapanichakoon, W.; Yamamoto, T.; Nishihara, H.; Mukai, S.R.; Tamon, H. Influence of surfactants on porous properties of carbon cryogels prepared by sol–gel polycondensation of resorcinol and formaldehyde. Carbon 2003, 41, 2981–2990. [Google Scholar] [CrossRef]
- Krstić, A.; Lolić, A.; Mirković, M.; Kovač, J.; Arsić, T.M.; Babić, B.; Kalijadis, A. Synthesis of nitrogen doped and nitrogen and sulfur co-doped carbon cryogels and their application for pharmaceuticals removal from water. J. Environ. Chem. Eng. 2022, 10, 108998. [Google Scholar] [CrossRef]
- Sepehri, S.; García, B.B.; Zhang, Q.; Cao, G. Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen. Carbon 2009, 47, 1436–1443. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, L.; Yan, W.; Li, Z.; Fan, M.; Du, G.; Zhao, W. Controlled preparation of nitrogen-doped hierarchical carbon cryogels derived from Phenolic-Based resin and their CO2 adsorption properties. Energy 2022, 246, 123367. [Google Scholar] [CrossRef]
- Al-Hajri, W.; De Luna, Y.; Bensalah, N. Review on Recent Applications of Nitrogen-Doped Carbon Materials in CO2 Capture and Energy Conversion and Storage. Energy Technol. 2022, 10, 2200498. [Google Scholar] [CrossRef]
- Hou, Z.; Terakura, K. Effect of Nitrogen Doping on the Migration of the Carbon Adatom and Monovacancy in Graphene. J. Phys. Chem. C 2015, 119, 4922–4933. [Google Scholar] [CrossRef]
- Inagaki, M.; Toyoda, M.; Soneda, Y.; Morishita, T. Nitrogen-doped carbon materials. Carbon 2018, 132, 104–140. [Google Scholar] [CrossRef]
- Türkmen, D.; Bakhshpour, M.; Akgönüllü, S.; Aşır, S.; Denizli, A. Heavy Metal Ions Removal From Wastewater Using Cryogels: A Review. Front. Sustain. 2022, 3, 765592. [Google Scholar] [CrossRef]
- Dinu, I.A.; Ghimici, L.; Raschip, I.E. Macroporous 3D Chitosan Cryogels for Fastac 10EC Pesticide Adsorption and Antibacterial Applications. Polymers 2022, 14, 3145. [Google Scholar] [CrossRef]
- Badran, A.M.; Utra, U.; Yussof, N.S.; Bashir, M.J.K. Advancements in Adsorption Techniques for Sustainable Water Purification: A Focus on Lead Removal. Separations 2023, 10, 565. [Google Scholar] [CrossRef]
- Sadegh, H.; Ali, G.A.M. Potential Applications of Nanomaterials in Wastewater Treatment: Nanoadsorbents Performance. In Advanced Treatment Techniques for Industrial Wastewater; Hussain, A., Ahmed, S., Eds.; IGI Global: Hershey, PA, USA, 2019; pp. 51–61. [Google Scholar]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Al Othman, Z.A. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Monson, P.A. Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory. Microporous Mesoporous Mater. 2012, 160, 47–66. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, R. Modifying the BET model for accurately determining specific surface area and surface energy components of aggregates. Constr. Build. Mater. 2018, 175, 653–663. [Google Scholar] [CrossRef]
- Xia, X.-H.; Zhang, X.-F.; Yi, S.-Q.; Liu, H.-B.; Chen, Y.-X.; Chen, H.; Yang, L.; He, Y.-D. Preparation of high specific surface area composite carbon cryogels from self-assembly of graphene oxide and resorcinol monomers for supercapacitors. J. Solid State Electrochem. 2016, 20, 1793–1802. [Google Scholar] [CrossRef]
- Job, N.; Théry, A.; Pirard, R.; Marien, J.; Kocon, L.; Rouzaud, J.-N.; Béguin, F.; Pirard, J.-P. Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials. Carbon 2005, 43, 2481–2494. [Google Scholar] [CrossRef]
- White, R.J.; Budarin, V.; Luque, R.; Clark, J.H.; Macquarrie, D.J. Tuneable porous carbonaceous materials from renewable resources. Chem. Soc. Rev. 2009, 38, 3401–3418. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Gong, J.; Zhu, J.; Mijowska, E. Deep insight into the pore size distribution of N-doped porous carbon materials on electrochemical energy storage and CO2 sorption. Diam. Relat. Mater. 2020, 105, 107802. [Google Scholar] [CrossRef]
- Sun, A.; Liu, Y.; Ma, J.; Yang, L.; Wang, Y. Preparation and oxygen reduction performance of nitrogen-doped cotton stalk-derived carbon. Int. J. Low-Carbon Technol. 2022, 17, 1029–1035. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, X.; Wang, H.; Zhao, X.; Kong, F.; Liu, Y. Novel Nitrogen-Doped Porous Carbon with High Surface Areas Prepared from Industrial Alkali Lignin for Supercapacitors. ChemElectroChem 2022, 9, e202200869. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Orlando, A.; Franceschini, F.; Muscas, C.; Pidkova, S.; Bartoli, M.; Rovere, M.; Tagliaferro, A. A Comprehensive Review on Raman Spectroscopy Applications. Chemosensors 2021, 9, 262. [Google Scholar] [CrossRef]
- Ahmed, S.; Rafat, M.; Ahmed, A. Nitrogen doped activated carbon derived from orange peel for supercapacitor application. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 035008. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J.; Ferrari, A.C.; Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2004, 362, 2477–2512. [Google Scholar] [CrossRef] [PubMed]
- Brzhezinskaya, M.; Mishakov, I.V.; Bauman, Y.I.; Shubin, Y.V.; Maksimova, T.A.; Stoyanovskii, V.O.; Gerasimov, E.Y.; Vedyagin, A.A. One-pot functionalization of catalytically derived carbon nanostructures with heteroatoms for toxic-free environment. Appl. Surf. Sci. 2022, 590, 153055. [Google Scholar] [CrossRef]
- Ma, C.; Min, J.; Gong, J.; Liu, X.; Mu, X.; Chen, X.; Tang, T. Transforming polystyrene waste into 3D hierarchically porous carbon for high-performance supercapacitors. Chemosphere 2020, 253, 126755. [Google Scholar] [CrossRef]
- Rella, S.; Giuri, A.; Corcione, C.E.; Acocella, M.R.; Colella, S.; Guerra, G.; Listorti, A.; Rizzo, A.; Malitesta, C. X-ray photoelectron spectroscopy of reduced graphene oxide prepared by a novel green method. Vacuum 2015, 119, 159–162. [Google Scholar] [CrossRef]
- Mitra, A.; Howli, P.; Sen, D.; Das, B.; Chattopadhyay, K.K. Cu2O/g-C3N4 nanocomposites: An insight into the band structure tuning and catalytic efficiencies. Nanoscale 2016, 8, 19099–19109. [Google Scholar] [CrossRef]
- Barth, G.; Linder, R.; Bryson, C. Advances in charge neutralization for XPS measurements of nonconducting materials. Surf. Interface Anal. 1988, 11, 307–311. [Google Scholar] [CrossRef]
- Gengenbach, T.R.; Major, G.H.; Linford, M.R.; Easton, C.D. Practical guides for x-ray photoelectron spectroscopy (XPS): Interpreting the carbon 1s spectrum. J. Vac. Sci. Technol. A 2021, 39, 013204. [Google Scholar] [CrossRef]
- Hulicova-Jurcakova, D.; Seredych, M.; Lu, G.Q.; Bandosz, T.J. Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors. Adv. Funct. Mater. 2009, 19, 438–447. [Google Scholar] [CrossRef]
- Sobaszek, M.; Brzhezinskaya, M.; Olejnik, A.; Mortet, V.; Alam, M.; Sawczak, M.; Ficek, M.; Gazda, M.; Weiss, Z.; Bogdanowicz, R. Highly Occupied Surface States at Deuterium-Grown Boron-Doped Diamond Interfaces for Efficient Photoelectrochemistry. Small 2023, 19, 2208265. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Bolivar, J.; Mikheenko, I.P.; Orozco, R.L.; Sharma, S.; Banerjee, D.; Walker, M.; Hand, R.A.; Merroun, M.L.; Macaskie, L.E. Synthesis of Pd/Ru Bimetallic Nanoparticles by Escherichia coli and Potential as a Catalyst for Upgrading 5-Hydroxymethyl Furfural Into Liquid Fuel Precursors. Front. Microbiol. 2019, 10, 1276. [Google Scholar] [CrossRef] [PubMed]
- Gutić, S.; Dobrota, A.S.; Gavrilov, N.; Baljozović, M.; Pašti, I.A.; Mentus, S.V. Surface Charge Storage Properties of Selected Graphene Samples in pH-neutral Aqueous Solutions of Alkali Metal Chlorides-Particularities and Universalities. Int. J. Electrochem. Sci. 2016, 11, 8662–8682. [Google Scholar] [CrossRef]
- Sebastián, D.; Nieto-Monge, M.J.; Pérez-Rodríguez, S.; Pastor, E.; Lázaro, M.J. Nitrogen Doped Ordered Mesoporous Carbon as Support of PtRu Nanoparticles for Methanol Electro-Oxidation. Energies 2018, 11, 831. [Google Scholar] [CrossRef]
- Kumar, S.S.; Ghosh, P.; Malyan, S.K.; Sharma, J.; Kumar, V. A comprehensive review on enzymatic degradation of the organophosphate pesticide malathion in the environment. J. Environ. Sci. Health Part C 2019, 37, 288–329. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, J.; Zhu, L.; Xie, H.; Shao, B.; Hou, X. The enzyme toxicity and genotoxicity of chlorpyrifos and its toxic metabolite TCP to zebrafish Danio rerio. Ecotoxicology 2014, 23, 1858–1869. [Google Scholar] [CrossRef]
- Anićijević, V.J.; Petković, M.; Pašti, I.A.; Lazarević-Pašti, T.D. Decomposition of Dimethoate and Omethoate in Aqueous Solutions—Half-Life, Eco-Neurotoxicity Benchmarking, and Mechanism of Hydrolysis. Water Air Soil Pollut. 2022, 233, 390. [Google Scholar] [CrossRef]
Sample | Specific Surface Area (BET Method) /m2 g–1 | Average Pore Radius (APR)/nm | Cumulative Volume /cm3 g–1 |
---|---|---|---|
CCN2% | 628 | 8.5 | 1.2 |
CCN4% | 586 | 3.5 | 0.8 |
CCN6% | 589 | 3.6 | 0.9 |
CCN8% | 595 | 5.4 | 1.2 |
CCN10% | 621 | 12.3 | 1.9 |
D* (D4) | D (D1) | D″ (D3) | G | D′ (D2) | ID/IG | |
---|---|---|---|---|---|---|
Sample | Wavenumber/cm−1 | |||||
CCN2% | 1187 | 1327 | 1602 | 1597 | 1507 | 1.52 |
CCN4% | 1166 | 1327 | 1495 | 1602 | 1591 | 1.79 |
CCN6% | 1162 | 1324 | 1490 | 1599 | 1539 | 1.48 |
CCN8% | 1156 | 1326 | 1487 | 1597 | 1590 | 1.68 |
CCN10% | 1195 | 1333 | 1494 | 1597 | 1599 | 1.62 |
Sample | C at.% | N at.% | O at.% |
---|---|---|---|
CCN2% | 97.06 | 0.24 | 2.70 |
CCN4% | 98.19 | 0.39 | 1.42 |
CCN6% | 97.55 | 0.59 | 1.85 |
CCN8% | 96.74 | 0.73 | 2.53 |
CCN10% | 93.90 | 1.00 | 5.08 |
Element | Eb/eV (±0.2 eV) | Assignation | Relative Contribution of Each Functional Group/% | ||||
---|---|---|---|---|---|---|---|
CCN2% | CCN4% | CCN6% | CCN8% | CCN10% | |||
C | 284.5 | C=C (sp2) | 27.6 | 32.7 | 56.3 | 27.4 | 26.8 |
285.1 | C–C (sp3) | 20.5 | 24.6 | 14.7 | 24.8 | 23.3 | |
285.9 | C–Ox | 20.3 | 15.5 | 14.3 | 19.3 | 23.1 | |
287.5 | C=O, N−C=O | 15.9 | 9.2 | 8.1 | 12.5 | 13.8 | |
290.0 | π→π* | 9.7 | 8.5 | - | 10.3 | 8.1 | |
292.5 | π→π* (N-containing C) | 5.7 | 9.2 | 5.6 | 4.7 | 4.7 | |
O | 530.3 | C=O | 15.2 | 35.3 | 29.2 | 5.1 | 24.8 |
531.8 | C–O | 50.6 | 25.1 | 40.9 | 63.4 | 43.4 | |
532.5 | C–O–C | 34.1 | 37.4 | 30.0 | 31.5 | 24.6 | |
533.7 | C–OH, H–OH | - | - | - | - | 6.9 | |
N | 398.8 | Pyrrolic/Pyridonic N | 50.1 | 28.1 | 34.3 | 38.5 | 35.2 |
400.8 | Quaternary N | 49.9 | 71.9 | 65.7 | 61.5 | 64.8 |
AChE Inhibition (% of Control) | ||||||
---|---|---|---|---|---|---|
Batch | Filter | |||||
Sample | Chlorpyrifos | Malathion | Dimethoate | Chlorpyrifos | Malathion | Dimethoate |
No adsorbate | 100 ± 1 | 72 ± 2 | 13 ± 1 | 100 ± 1 | 85 ± 3 | 17 ± 1 |
CCN2% | 25 ± 1 | 0 | 0 | 0 | 13 ± 1 | 0 |
CCN4% | 38 ± 3 | 0 | 0 | 0 | 0 | 0 |
CCN6% | 32 ± 2 | 0 | 0 | 0 | 26 ± 2 | 0 |
CCN8% | 0 | 0 | 0 | 0 | 8 | 0 |
CCN10% | 88 ± 2 | 0 | 0 | 0 | 39 ± 2 | 0 |
Adsorption Capacity, mg of Adsorbed OP per g of Adsorbent | ||||||
---|---|---|---|---|---|---|
Batch | Filter | |||||
Sample | Chlorpyrifos | Malathion | Dimethoate | Chlorpyrifos | Malathion | Dimethoate |
CCN2% | 7.6 | 4.6 | 2.2 | 4.9 | 15.5 | 17.5 |
CCN4% | 7.6 | 4.6 | 1.8 | 6.1 | 16.5 | 17.5 |
CCN6% | 7.6 | 4.6 | 1.9 | 5.5 | 14.5 | 17.5 |
CCN8% | 7.6 | 4.6 | 4.2 | 6.3 | 15.9 | 17.5 |
CCN10% | 7.6 | 4.6 | 0.0 | 6.4 | 13.5 | 17.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazarević-Pašti, T.; Anićijević, V.; Karkalić, R.; Baljozović, M.; Babić, B.; Pašti, I.A. Nitrogen-Doped Carbon Cryogels as Adsorbents: Efficient Removal of Organophosphate Pesticides from Water and Assessment of Toxicity Reduction. C 2024, 10, 56. https://doi.org/10.3390/c10020056
Lazarević-Pašti T, Anićijević V, Karkalić R, Baljozović M, Babić B, Pašti IA. Nitrogen-Doped Carbon Cryogels as Adsorbents: Efficient Removal of Organophosphate Pesticides from Water and Assessment of Toxicity Reduction. C. 2024; 10(2):56. https://doi.org/10.3390/c10020056
Chicago/Turabian StyleLazarević-Pašti, Tamara, Vladan Anićijević, Radovan Karkalić, Miloš Baljozović, Biljana Babić, and Igor A. Pašti. 2024. "Nitrogen-Doped Carbon Cryogels as Adsorbents: Efficient Removal of Organophosphate Pesticides from Water and Assessment of Toxicity Reduction" C 10, no. 2: 56. https://doi.org/10.3390/c10020056
APA StyleLazarević-Pašti, T., Anićijević, V., Karkalić, R., Baljozović, M., Babić, B., & Pašti, I. A. (2024). Nitrogen-Doped Carbon Cryogels as Adsorbents: Efficient Removal of Organophosphate Pesticides from Water and Assessment of Toxicity Reduction. C, 10(2), 56. https://doi.org/10.3390/c10020056