Highly Porous Cellulose-Based Carbon Fibers as Effective Adsorbents for Chlorpyrifos Removal: Insights and Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorbent Preparation and Characterization
2.2. Adsorption Experiments
2.3. Neurotoxicity of Chlorpyrifos
3. Results and Discussion
3.1. SEM and EDX of the Synthesized Adsorbents
3.2. Adsorption Kinetics
3.3. Adsorption Isotherms
3.4. Neurotoxicity of Chlorpyrifos
3.5. Where Do We Stand? Comparison with the Literature Data
Type of Material/Precursor | The Maximum Adsorption Capacity (mg g−1) | The Maximum Adsorption Capacity Calculated from | Best Fitting Isotherm Model | Reference |
---|---|---|---|---|
Sugarcane bagasse | 3.20 | Experimental results | Freundlich | [41] |
Sugarcane bagasse-derived biochar | 6.25 | Experimental results | Freundlich | [42] |
Cinnamon sticks | 12.37 | Langmuir | Langmuir | [43] |
Polyvinylamine-modified nanocellulose | 98.12 | Langmuir | [45] | |
Moringa oleifera seed waste | 25.00 | Langmuir | Langmuir, Freundlich | [44] |
Activated biochar from tobacco | 0.68 using activated biochar 1.60 using chemically activated biochar | Langmuir | Langmuir, Freundlich | [52] |
Walnut shell biochar | 3.54 | Langmuir | Langmuir, Freundlich | [46] |
Nano-magnetized and carbonaceous adsorbents obtained from orange peels | 68.00, 108.00, and 100.00 for the untreated orange peels, carbonaceous orange peels, and nano-magnetized orange peels | Langmuir | Langmuir, Freundlich | [53] |
Nanostructured biochar (nPPAB) was prepared from Punica granatum peels | 100.00 | Langmuir | Langmuir | [54] |
Banana peels, orange peels, pomegranate peels and date stones | 1.12 × 10−3, 2.52 × 10−3, 1.64 × 10−3, and 1.03 × 10−3 for banana peels, orange peels, pomegranate peels, and date stones | [49] | ||
Spent coffee grounds | 7.00 | Langmuir | Langmuir | [16] |
Magnetic graphene oxide and carboxymethyl cellulose (MGOC) | 108.30 | Langmuir | [50] | |
Aminoguanidine modified magnetic graphene oxide as a robust nanoadsorbent | 85.47 | Langmuir | Freundlich | [51] |
Functionalized dextrin/graphene oxide composite | 769.23 | Langmuir | Freundlich | [47] |
Magnetic chitosan/graphene quantum dot/iron oxide nanocomposite hydrogel beads | 39.95 | Langmuir | Jossens | [48] |
Superhydrophilic graphene oxide/electrospun cellulose nanofibre | 3.97 | Langmuir | Freundlich | [55] |
Graphene-based materials | 1.02 × 103 and 2.77 × 103 for industrial-quality graphene and graphene nanoplatelets | Langmuir | Langmuir, Freundlich | [56] |
Graphene oxide | 98.039 | Langmuir | Langmuir | [57] |
Cellulose fibers | 73 ± 6 (VFH2O) 75 ± 4 (VFCO2) | Langmuir | Freundlich, Langmuir, and Sips | This study |
80.8 ± 0.1 (VFH2O) 132 ± 3 (VFCO2) | Sips |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tudi, M.; Yang, L.; Wang, L.; Lv, J.; Gu, L.; Li, H.; Peng, W.; Yu, Q.; Ruan, H.; Li, Q.; et al. Environmental and Human Health Hazards from Chlorpyrifos, Pymetrozine and Avermectin Application in China under a Climate Change Scenario: A Comprehensive Review. Agriculture 2023, 13, 1683. [Google Scholar] [CrossRef]
- Madesh, K.; Chandraleka, R.; Komala, G.; Tripathi, P. Distribution and Penetration of Insecticides; P.K. Publishers & Distributors: Ghaziabad, India, 2024; pp. 219–254. [Google Scholar]
- Foong, S.Y.; Ma, N.L.; Lam, S.S.; Peng, W.; Low, F.; Lee, B.H.K.; Alstrup, A.K.O.; Sonne, C. A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: Prevalence, remediation and actions needed. J. Hazard. Mater. 2020, 400, 123006. [Google Scholar] [CrossRef] [PubMed]
- Rakhimol, K.; Thomas, S.; Volova, T.; Jayachandran, K. Controlled Release of Pesticides for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- EPA United States Environmental Protection Agency. Available online: https://www.epa.gov/ingredients-used-pesticide-products/chlorpyrifos (accessed on 15 April 2024).
- Wołejko, E.; Łozowicka, B.; Jabłońska-Trypuć, A.; Pietruszyńska, M.; Wydro, U. Chlorpyrifos occurrence and toxicological risk assessment: A review. Int. J. Environ. Res. Public Health 2022, 19, 12209. [Google Scholar] [CrossRef] [PubMed]
- Sud, D.; Kumar, J.; Kaur, P.; Bansal, P. Toxicity, natural and induced degradation of chlorpyrifos. J. Chil. Chem. Soc. 2020, 65, 4807–4816. [Google Scholar] [CrossRef]
- Nandhini, A.R.; Harshiny, M.; Gummadi, S.N. Chlorpyrifos in environment and food: A critical review of detection methods and degradation pathways. Environ. Sci. Process. Impacts 2021, 23, 1255–1277. [Google Scholar] [CrossRef]
- Reigart, J.R. Recognition and Management of Pesticide Poisonings; DIANE Publishing: Collingdale, PA, USA, 2009. [Google Scholar]
- Marrs, T.C.; Ballantyne, B. Pesticide Toxicology and International Regulation; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Richardson, R.J. Assessment of the neurotoxic potential of chlorpyrifos relative to other organophosphorus compounds: A critical review of the literature. J. Toxicol. Environ. Health 1995, 44, 135–165. [Google Scholar] [CrossRef] [PubMed]
- Albers, J.W.; Cole, P.; Greenberg, R.S.; Mandel, J.S.; Monson, R.R.; Ross, J.H.; Snodgrass, W.R.; Spurgeon, A.; Van Gemert, M. Analysis of chlorpyrifos exposure and human health: Expert panel report. J. Toxicol. Environ. Health Part B 1999, 2, 301–324. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Reregistration Eligibility Science Chapter for Chlorpyrifos, Fate and Environmental Risk Assessment Chapter; U.S. Environmental Protection Agency: Washington, DC, USA, 2000. [Google Scholar]
- Pesticides, O. Reregistration Eligibility Decision for Chlorpyrifos; U.S. Environmental Protection Agency: Washington, DC, USA, 2006. [Google Scholar]
- Kamrin, M.A. Pesticide Profiles: Toxicity, Environmental Impact, and Fate; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar] [CrossRef]
- Milanković, V.; Tasić, T.; Pejčić, M.; Pašti, I.; Lazarević-Pašti, T. Spent Coffee Grounds as an Adsorbent for Malathion and Chlorpyrifos—Kinetics, Thermodynamics, and Eco-Neurotoxicity. Foods 2023, 12, 2397. [Google Scholar] [CrossRef] [PubMed]
- Tasić, T.; Milanković, V.; Batalović, K.; Breitenbach, S.; Unterweger, C.; Fürst, C.; Pašti, I.A.; Lazarević-Pašti, T. Application of Viscose-Based Porous Carbon Fibers in Food Processing—Malathion and Chlorpyrifos Removal. Foods 2023, 12, 2362. [Google Scholar] [CrossRef]
- Vareda, J.P.; Valente, A.J.M.; Durães, L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef]
- Soffian, M.S.; Halim, F.Z.A.; Aziz, F.; Rahman, M.A.; Amin, M.A.M.; Chee, D.N.A. Carbon-based material derived from biomass waste for wastewater treatment. Environ. Adv. 2022, 9, 100259. [Google Scholar] [CrossRef]
- Sabzehmeidani, M.M.; Mahnaee, S.; Ghaedi, M.; Heidari, H.; Roy, V.A. Carbon based materials: A review of adsorbents for inorganic and organic compounds. Mater. Adv. 2021, 2, 598–627. [Google Scholar] [CrossRef]
- Aydin, D.; Gübbük, İ.H.; Ersöz, M. Recent advances and applications of nanostructured membranes in water purification. Turk. J. Chem. 2024, 48, 2. [Google Scholar] [CrossRef] [PubMed]
- Jocić, A.; Breitenbach, S.; Bajuk-Bogdanović, D.; Pašti, I.A.; Unterweger, C.; Fürst, C.; Lazarević-Pašti, T. Viscose-Derived Activated Carbons Fibers as Highly Efficient Adsorbents for Dimethoate Removal from Water. Molecules 2022, 27, 1477. [Google Scholar] [CrossRef] [PubMed]
- Gavrilov, N.; Breitenbach, S.; Unterweger, C.; Fürst, C.; Pašti, I.A. Exploring the Impact of DAHP Impregnation on Activated Carbon Fibers for Efficient Charge Storage and Selective O2 Reduction to Peroxide. C 2023, 9, 105. [Google Scholar] [CrossRef]
- Pérez-Madrigal, M.M.; Edo, M.G.; Alemán, C. Powering the future: Application of cellulose-based materials for supercapacitors. Green Chem. 2016, 18, 5930–5956. [Google Scholar] [CrossRef]
- Liebner, F.; Potthast, A.; Rosenau, T.; Haimer, E.; Wendland, M. Cellulose aerogels: Highly porous, ultra-lightweight materials. Holzforschung 2008, 62, 129–135. [Google Scholar] [CrossRef]
- Magalhães, S.; Fernandes, C.; Pedrosa, J.F.S.; Alves, L.; Medronho, B.; Ferreira, P.J.T.; Rasteiro, M.D.G. Eco-Friendly Methods for Extraction and Modification of Cellulose: An Overview. Polymers 2023, 15, 3138. [Google Scholar] [CrossRef] [PubMed]
- Pandolfo, A.G.; Hollenkamp, A.F. Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11–27. [Google Scholar] [CrossRef]
- Cai, L.-F.; Zhan, J.-M.; Liang, J.; Yang, L.; Yin, J. Structural control of a novel hierarchical porous carbon material and its adsorption properties. Sci. Rep. 2022, 12, 3118. [Google Scholar] [CrossRef]
- Li, W.-K.; Shi, Y.-P. Recent advances of carbon materials on pesticides removal and extraction based determination from polluted water. TrAC Trends Anal. Chem. 2024, 171, 117534. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Lazarević-Pašti, T.D.; Bondžić, A.M.; Pašti, I.A.; Vasić, V.M. Indirect electrochemical oxidation of organophosphorous pesticides for efficient detection via acetylcholinesterase test. Pestic. Biochem. Physiol. 2012, 104, 236–242. [Google Scholar] [CrossRef]
- Breitenbach, S.; Gavrilov, N.; Pašti, I.; Unterweger, C.; Duchoslav, J.; Stifter, D.; Hassel, A.W.; Fürst, C. Biomass-Derived Carbons as Versatile Materials for Energy-Related Applications: Capacitive Properties vs. Oxygen Reduction Reaction Catalysis. C 2021, 7, 55. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Kumara, N.T.R.N.; Hamdan, N.; Petra, M.I.; Tennakoon, K.U.; Ekanayake, P. Equilibrium Isotherm Studies of Adsorption of Pigments Extracted from Kuduk-kuduk (Melastoma malabathricum L.) Pulp onto TiO2 Nanoparticles. J. Chem. 2014, 2014, 468975. [Google Scholar] [CrossRef]
- Keren, Y.; Borisover, M.; Bukhanovsky, N. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater. Chemosphere 2015, 138, 462–468. [Google Scholar] [CrossRef]
- Mabuza, M.; Premlall, K.; Daramola, M.O. Modelling and thermodynamic properties of pure CO2 and flue gas sorption data on South African coals using Langmuir, Freundlich, Temkin, and extended Langmuir isotherm models. Int. J. Coal Sci. Technol. 2022, 9, 45. [Google Scholar] [CrossRef]
- Smječanin, N.; Bužo, D.; Mašić, E.; Nuhanović, M.; Sulejmanović, J.; Azhar, O.; Sher, F. Algae based green biocomposites for uranium removal from wastewater: Kinetic, equilibrium and thermodynamic studies. Mater. Chem. Phys. 2022, 283, 125998. [Google Scholar] [CrossRef]
- Maliyekkal, S.M.; Sreeprasad, T.S.; Krishnan, D.; Kouser, S.; Mishra, A.K.; Waghmare, U.V.; Pradeep, T. Graphene: A Reusable Substrate for Unprecedented Adsorption of Pesticides. Small 2013, 9, 273–283. [Google Scholar] [CrossRef]
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef]
- Jacob, M.M.; Ponnuchamy, M.; Kapoor, A.; Sivaraman, P. Bagasse based biochar for the adsorptive removal of chlorpyrifos from contaminated water. J. Environ. Chem. Eng. 2020, 8, 103904. [Google Scholar] [CrossRef]
- Jacob, M.M.; Ponnuchamy, M.; Kapoor, A.; Sivaraman, P. Adsorptive decontamination of organophosphate pesticide chlorpyrifos from aqueous systems using bagasse-derived biochar alginate beads: Thermodynamic, equilibrium, and kinetic studies. Chem. Eng. Res. Des. 2022, 186, 241–251. [Google Scholar] [CrossRef]
- Ettish, M.N.; El-Sayyad, G.S.; Elsayed, M.A.; Abuzalat, O. Preparation and characterization of new adsorbent from Cinnamon waste by physical activation for removal of Chlorpyrifos. Environ. Chall. 2021, 5, 100208. [Google Scholar] [CrossRef]
- Hamadeen, H.M.; Elkhatib, E.A.; Badawy, M.E.I.; Abdelgaleil, S.A.M. Green low cost nanomaterial produced from Moringa oleifera seed waste for enhanced removal of chlorpyrifos from wastewater: Mechanism and sorption studies. J. Environ. Chem. Eng. 2021, 9, 105376. [Google Scholar] [CrossRef]
- Yang, J.; Ma, C.; Tao, J.; Li, J.; Du, K.; Wei, Z.; Chen, C.; Wang, Z.; Zhao, C.; Ma, M. Optimization of polyvinylamine-modified nanocellulose for chlorpyrifos adsorption by central composite design. Carbohydr. Polym. 2020, 245, 116542. [Google Scholar] [CrossRef]
- Tulun, Ş.; Akgül, G.; Alver, A.; Çelebi, H. Adaptive neuro-fuzzy interference system modelling for chlorpyrifos removal with walnut shell biochar. Arab. J. Chem. 2021, 14, 103443. [Google Scholar] [CrossRef]
- Hassanzadeh-Afruzi, F.; Esmailzadeh, F.; Taheri-Ledari, R.; Maleki, A. High adsorption capability of chlorpyrifos and Congo red in aqueous samples by a functionalized dextrin/graphene oxide composite. Int. J. Environ. Sci. Technol. 2023, 20, 10731–10750. [Google Scholar] [CrossRef]
- Barzegarzadeh, M.; Amini-Fazl, M.S.; Sohrabi, N. Ultrasound-assisted adsorption of chlorpyrifos from aqueous solutions using magnetic chitosan/graphene quantum dot-iron oxide nanocomposite hydrogel beads in batch adsorption column and fixed bed. Int. J. Biol. Macromol. 2023, 242, 124587. [Google Scholar] [CrossRef]
- Hussain, O.A.; Hathout, A.S.; Abdel-Mobdy, Y.E.; Rashed, M.M.; Abdel Rahim, E.A.; Fouzy, A.S.M. Preparation and characterization of activated carbon from agricultural wastes and their ability to remove chlorpyrifos from water. Toxicol. Rep. 2023, 10, 146–154. [Google Scholar] [CrossRef]
- Dolatabadi, M.; Naidu, H.; Ahmadzadeh, S. Adsorption characteristics in the removal of chlorpyrifos from groundwater using magnetic graphene oxide and carboxy methyl cellulose composite. Sep. Purif. Technol. 2022, 300, 121919. [Google Scholar] [CrossRef]
- Mahdavi, V.; Taghadosi, F.; Dashtestani, F.; Bahadorikhalili, S.; Farimani, M.M.; Ma’mani, L.; Mousavi Khaneghah, A. Aminoguanidine modified magnetic graphene oxide as a robust nanoadsorbent for efficient removal and extraction of chlorpyrifos residue from water. J. Environ. Chem. Eng. 2021, 9, 106117. [Google Scholar] [CrossRef]
- Celso Gonçalves, A.; Zimmermann, J.; Schwantes, D.; Tarley, C.R.T.; Conradi Junior, E.; Henrique Dias de Oliveira, V.; Campagnolo, M.A.; Ziemer, G.L. Renewable Eco-Friendly Activated Biochar from Tobacco: Kinetic, Equilibrium and Thermodynamics Studies for Chlorpyrifos Removal. Sep. Sci. Technol. 2022, 57, 159–179. [Google Scholar] [CrossRef]
- Asghar, A.; Mabarak, S.; Ashraf, B.; Rizwan, M.; Massey, S.; Asghar, B.H.; Shahid, B.; Rasheed, T. A sustainable approach for the removal of chlorpyrifos pesticide from aqueous phase using novel nano magnetized biochar. Inorg. Chem. Commun. 2024, 159, 111790. [Google Scholar] [CrossRef]
- Hamadeen, H.M.; Elkhatib, E.A. Nanostructured modified biochar for effective elimination of chlorpyrifos from wastewater: Enhancement, mechanisms and performance. J. Water Process Eng. 2022, 47, 102703. [Google Scholar] [CrossRef]
- Aris, N.I.F.; Rahman, N.A.; Wahid, M.H.; Yahaya, N.; Abdul Keyon, A.S.; Kamaruzaman, S. Superhydrophilic graphene oxide/electrospun cellulose nanofibre for efficient adsorption of organophosphorus pesticides from environmental samples. R. Soc. Open Sci. 2020, 7, 192050. [Google Scholar] [CrossRef]
- Lazarević-Pašti, T.; Anićijević, V.; Baljozović, M.; Anićijević, D.V.; Gutić, S.; Vasić, V.; Skorodumova, N.V.; Pašti, I.A. The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water. Environ. Sci. Nano 2018, 5, 1482–1494. [Google Scholar] [CrossRef]
- Yadav, S.; Goel, N.; Kumar, V.; Singhal, S. Graphene Oxide as Proficient Adsorbent for the Removal of Harmful Pesticides: Comprehensive Experimental Cum DFT Investigations. Anal. Chem. Lett. 2019, 9, 291–310. [Google Scholar] [CrossRef]
Kinetic Model | Equation |
---|---|
Pseudo-first-order model | |
Pseudo-second-order model | |
Elovich kinetic model | |
Intraparticle diffusion model |
Material | Pseudo-First-Order Kinetics | |||
---|---|---|---|---|
qe (mg g−1) | k1 (min−1) | χ2 | R2 | |
VFH2O | 174 ± 1 | (5.71 ± 0.01) × 104 | 2.443 | 0.999 |
VFCO2 | 174 ± 1 | (4.99 ± 0.01) × 104 | 5.799 | 0.999 |
Pseudo-second-order kinetics | ||||
qe (mg g−1) | k2 (min−1) | χ2 | R2 | |
VFH2O | 176 ± 1 | 0.251 ± 0.001 | 0.147 | 0.999 |
VFCO2 | 176 ± 1 | 0.158 ± 0.001 | 0.150 | 0.999 |
Elovich model | ||||
α (mg g−1 min−1) | β (g mg−1) | χ2 | R2 | |
VFH2O | (1.74 ± 0.01) × 1027 | 0.364 ± 0.001 | 6.317 | 0.999 |
VFCO2 | (8.93 ± 0.01) × 1024 | 0.334 ± 0.001 | 5.366 | 0.999 |
Material | Intraparticle Diffusion Model | ||
---|---|---|---|
VFH2O | I part | C (mg g−1) | 0 |
kid (mg g−1 min−0.5) | 172 ± 1 | ||
II part | C (mg g−1) | 173 ± 4 | |
kid (mg g−1 min−0.5) | 0.539 ± 0.006 | ||
VFCO2 | I part | C (mg g−1) | 0 |
kid (mg g−1 min−0.5) | 169 ± 1 | ||
II part | C (mg g−1) | 171 ± 3 | |
kid (mg g−1 min−0.5) | 0.904 ± 0.009 |
Adsorption Isotherm Model | Equation |
---|---|
Freundlich model | |
Langmuir model | |
Temkin model | |
Dubinin–Radushkevic model | |
Sips model |
Material | Freundlich Isotherm | |||||
---|---|---|---|---|---|---|
KF ((dm3 mg−1)1/n) | n | χ2 | R2 | |||
VFH2O | 239 ± 2 | 1.45 ± 0.04 | 1.341 | 0.992 | ||
VFCO2 | 451 ± 1 | 1.37 ± 0.02 | 0.778 | 0.996 | ||
Langmuir Isotherm | ||||||
KL (dm3 mg−1) | qmax (mg g−1) | χ2 | R2 | |||
VFH2O | 26.91 ± 0.4 | 73 ± 6 | 2.101 | 0.993 | ||
VFCO2 | 13.77 ± 0.03 | 75 ± 4 | 0.684 | 0.998 | ||
Temkin Isotherm | ||||||
KT (dm3 mg−1) | bT (J g mol−1 mg−1) | χ2 | R2 | |||
VFH2O | 354 ± 6 | 242 ± 3 | 12.247 | 0.930 | ||
VFCO2 | 705 ± 9 | 243 ± 7 | 15.829 | 0.909 | ||
Dubinin–Radushkevich Isotherm | ||||||
qDR (mg g−1) | KDR (mol2 J−2) | E (J mol−1) | χ2 | R2 | ||
VFH2O | 76.4 ± 0.1 | (1.60 ± 0.02) × 10−8 | (5.58 ± 0.01) × 103 | 0.497 | 0.997 | |
VFCO2 | 101 ± 2 | (1.41 ± 0.01) × 10−8 | (5.95 ± 0.01) × 103 | 0.952 | 0.995 | |
Sips Isotherm | ||||||
Ks (dm3 mg−1)bs | bs | qmax (mg g−1) | χ2 | R2 | ||
VFH2O | 10.7 ± 0.2 | 0.917 ± 0.001 | 80.8 ± 0.1 | 0.834 | 0.995 | |
VFCO2 | 8.27 ± 0.03 | 0.828 ± 0.002 | 132 ± 3 | 1.224 | 0.993 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tasić, T.; Milanković, V.; Unterweger, C.; Fürst, C.; Breitenbach, S.; Pašti, I.A.; Lazarević-Pašti, T. Highly Porous Cellulose-Based Carbon Fibers as Effective Adsorbents for Chlorpyrifos Removal: Insights and Applications. C 2024, 10, 58. https://doi.org/10.3390/c10030058
Tasić T, Milanković V, Unterweger C, Fürst C, Breitenbach S, Pašti IA, Lazarević-Pašti T. Highly Porous Cellulose-Based Carbon Fibers as Effective Adsorbents for Chlorpyrifos Removal: Insights and Applications. C. 2024; 10(3):58. https://doi.org/10.3390/c10030058
Chicago/Turabian StyleTasić, Tamara, Vedran Milanković, Christoph Unterweger, Christian Fürst, Stefan Breitenbach, Igor A. Pašti, and Tamara Lazarević-Pašti. 2024. "Highly Porous Cellulose-Based Carbon Fibers as Effective Adsorbents for Chlorpyrifos Removal: Insights and Applications" C 10, no. 3: 58. https://doi.org/10.3390/c10030058
APA StyleTasić, T., Milanković, V., Unterweger, C., Fürst, C., Breitenbach, S., Pašti, I. A., & Lazarević-Pašti, T. (2024). Highly Porous Cellulose-Based Carbon Fibers as Effective Adsorbents for Chlorpyrifos Removal: Insights and Applications. C, 10(3), 58. https://doi.org/10.3390/c10030058