Novel Superhard Tetragonal Hybrid sp3/sp2 Carbon Allotropes Cx (x = 5, 6, 7): Crystal Chemistry and Ab Initio Studies
Abstract
:1. Introduction
2. Computational Framework
3. Crystal Structure Engineering
4. Projections of the Charge Densities
5. Mechanical Properties
HV | B | GV | EV | νV | KIc ‡ | |||||
---|---|---|---|---|---|---|---|---|---|---|
T * | LO † | MO ‡ | CN § | B0 * | BV | |||||
GPa | MPa·m½ | |||||||||
Diamond | 98 | 90 | 100 | 93 | 445 ** | 530 ** | 1138 †† | 0.074 †† | 6.7 ‡‡ | |
C5 #115 | 90 | 81 | 49 | 45 | 410 | 405 | 333 | 784 | 0.177 | 7.1 |
C6 #119 | 86 | 71 | 35 | 35 | 391 | 384 | 284 | 684 | 0.203 | 6.1 |
C7 #115 | 79 | 62 | 30 | 31 | 360 | 376 | 260 | 634 | 0.219 | 5.8 |
6. Equations of State
7. Phonon Band Structures
8. Thermodynamic Properties
9. Electronic Band Structures
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Glass, C.W.; Oganov, A.R.; Hansen, N. USPEX—Evolutionary crystal structure prediction. Comput. Phys. Commun. 2006, 175, 713–720. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun. 2012, 183, 2063–2070. [Google Scholar] [CrossRef]
- Correiro, N.; Rizzi, R.; Settembre, R.G.; Del Buono, N.; Diacono, D. CrystalMELA: A new crystallographic machine learning platform for crystal system determination. J. Appl. Cryst. 2023, 56, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, R.; Kabanov, A.A.; Golov, A.A.; Proserpio, D.M. Homo Citans and carbon allotropes: For an ethics of citation. Angew. Chem. Int. Ed. 2016, 55, 10962–10976. [Google Scholar] [CrossRef]
- Matar, S.F.; Solozhenko, V.L. The simplest dense carbon allotrope: Ultra-hard body centered tetragonal C4. J. Solid State Chem. 2022, 314, 123424. [Google Scholar] [CrossRef]
- Shevchenko, A.P.; Shabalin, A.A.; Karpukhin, I.Y.; Blatov, V.A. Topological representations of crystal structures: Generation, analysis and implementation in the TopCryst system. Sci. Technol. Adv. Mater. 2022, 2, 250–265. [Google Scholar] [CrossRef]
- O’Keeffe, M.; Peskov, M.A.; Ramsden, S.J.; Yaghi, O.M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 2008, 41, 1782–1789. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, Q.; Yan, H.; Zhang, M.; Wei, B. A new tetragonal superhard metallic carbon allotrope. J. Alloys Compd. 2018, 769, 347–352. [Google Scholar] [CrossRef]
- Fujii, Y.; Maruyama, M.; Cuong, N.T.; Okada, S. Retraction: Pentadiamond: A hard carbon allotrope of a pentagonal network of sp2 and sp3 C atoms [Phys. Rev. Lett. 125, 016001 (2020)]. Phys. Rev. Lett. 2020, 125, 079901. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Ma, Y.; Dai, Y. Progress of structural and electronic properties of diamond: A mini review. Funct. Diam. 2021, 1, 150–159. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 1964, 136, 864–871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 1965, 140, 1133–1138. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, J. From ultrasoft pseudopotentials to the projector augmented wave. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Perdew, J.; Burke, K.; Ernzerhof, M. The Generalized Gradient Approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes, 2nd ed.; Cambridge University Press: New York, NY, USA, 1986. [Google Scholar]
- Blöchl, P.; Jepsen, O.; Anderson, O. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223–16233. [Google Scholar] [CrossRef] [PubMed]
- Methfessel, M.; Paxton, A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special k-points for Brillouin Zone integration. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Gaillac, R.; Pullumbi, P.; Coudert, F.X. ELATE: An open-source online application for analysis and visualization of elastic tensors. J. Phys. Condens. Matter 2016, 28, 275201. [Google Scholar] [CrossRef]
- Voigt, W. Über die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annal. Phys. 1889, 274, 573–587. [Google Scholar] [CrossRef]
- Mazhnik, E.; Oganov, A.R. A model of hardness and fracture toughness of solids. J. Appl. Phys. 2019, 126, 125109. [Google Scholar] [CrossRef]
- Chen, X.Q.; Niu, H.; Li, D.; Li, Y. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 2011, 19, 1275–1281. [Google Scholar] [CrossRef]
- Mukhanov, V.A.; Kurakevych, O.O.; Solozhenko, V.L. The interrelation between hardness and compressibility of substances and their structure and thermodynamic properties. J. Superhard Mater. 2008, 30, 368–378. [Google Scholar] [CrossRef]
- Mukhanov, V.A.; Kurakevych, O.O.; Solozhenko, V.L. Hardness of materials at high temperature and high pressure. Philos. Mag. 2009, 89, 2117–2127. [Google Scholar] [CrossRef]
- Lyakhov, A.O.; Oganov, A.R. Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2. Phys. Rev. B 2011, 84, 092103. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Eyert, V. Basic notions and applications of the augmented spherical wave method. Int. J. Quantum Chem. 2000, 77, 1007–1031. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Matar, S.F.; Solozhenko, V.L. Novel ultrahard sp2/sp3 hybrid carbon allotrope from crystal chemistry and first principles: Body-centered tetragonal C6 (‘neoglitter’). Diam. Relat. Mater. 2023, 133, 109747. [Google Scholar] [CrossRef]
- Solozhenko, V.L.; Matar, S.F. Prediction of novel ultrahard phases in the B-C-N system from first principles: Progress and problems. Materials 2023, 16, 886. [Google Scholar] [CrossRef]
- Munro, R.; Freiman, S.; Baker, T. Fracture Toughness Data for Brittle Materials; NIST Interagency/Internal Report No. 6153; NIST: Gaithersburg, MD, USA, 1998. [Google Scholar]
- Brazhkin, V.V.; Solozhenko, V.L. Myths about new ultrahard phases: Why materials that are significantly superior to diamond in elastic moduli and hardness are impossible. J. Appl. Phys. 2019, 125, 130901. [Google Scholar] [CrossRef]
- Matar, S.F.; Solozhenko, V.L. Crystal chemistry and ab initio prediction of ultrahard rhombohedral B2N2 and BC2N. Solid State Sci. 2021, 118, 106667. [Google Scholar] [CrossRef]
- Birch, F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res. 1978, 83, 1257–1268. [Google Scholar] [CrossRef]
- Dove, M.T. Introduction to Lattice Dynamics; Cambridge University Press: New York, NY, USA, 1993. [Google Scholar]
- DeSorbo, W. Specific heat of diamond at low temperatures. J. Chem. Phys. 1953, 21, 876–880. [Google Scholar] [CrossRef]
- Victor, A.C. Heat capacity of diamond at high temperatures. J. Chem. Phys. 1962, 36, 1903–1911. [Google Scholar] [CrossRef]
Space Group Topology | tet-C4 [5] I-4m2 (No. 119) dia | Simple Tetragonal C4 | tet-C5 P-4m2 (No. 115) 3,4^2T1-CA | |
---|---|---|---|---|
a, Å | 2.527 | 2.527 | 2.48 | |
c, Å | 3.574 | 3.574 | 4.99 | |
Atomic positions | C1 (2a) 0, 0, 0 C2 (2d) ½, 0, ¼ | C1a (½, ½, ½) | → | C1 (1c) ½, ½, ½ |
C1b (0, 0, 0) | → | C2 (2e) 0, 0, ±z | ||
C2a (½, 0, ¼)⌉ C2b (0, ½, ¾)⌋ | → | C3 (2g) 0, ½, ±z′ |
Space Group Topology | C5 P-4m2 (No. 115) 3,4^2T1-CA | C6 I-4m2 (No. 119) tfa | C7 P-4m2 (No. 115) tfa |
---|---|---|---|
a, Å | 2.48 | 2.456 | 2.563 |
c, Å | 4.998 | 6.415 | 7.471 |
Vcell, Å3 | 30.75 | 38.7 | 49.07 |
Density, g/cm3 | 3.25 | 3.12 | 2.84 |
Shortest bond length, Å | 1.46/1.50/1.55 | 1.44/1.51 | 1.30/1.45/1.53 |
Atomic positions | C1 (1c) ½, ½, ½ C2 (2e) 0, 0, 0.854 C3 (2g) 0, ½, 0.314 | C1 (2c) 0, ½, ¼ C2 (4e) 0, ½, 0.888 | C1 (1c) ½, ½, ½ C2 (2e) 0, 0, 0.903 C3 (2f) ½, ½, 0.326 C4 (2g) 0, ½, 0.210 |
Etotal, eV Ecoh/atom, eV | −43.29 −2.06 | −50.06 −1.73 | −58.07 −1.69 |
C11 | C12 | C13 | C33 | C44 | C66 | |
---|---|---|---|---|---|---|
C5 | 943 | 9 | 136 | 1194 | 198 | 337 |
C6 | 784 | 19 | 135 | 1313 | 144 | 270 |
C7 | 715 | 70 | 131 | 1286 | 119 | 268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matar, S.F.; Solozhenko, V.L. Novel Superhard Tetragonal Hybrid sp3/sp2 Carbon Allotropes Cx (x = 5, 6, 7): Crystal Chemistry and Ab Initio Studies. C 2024, 10, 64. https://doi.org/10.3390/c10030064
Matar SF, Solozhenko VL. Novel Superhard Tetragonal Hybrid sp3/sp2 Carbon Allotropes Cx (x = 5, 6, 7): Crystal Chemistry and Ab Initio Studies. C. 2024; 10(3):64. https://doi.org/10.3390/c10030064
Chicago/Turabian StyleMatar, Samir F., and Vladimir L. Solozhenko. 2024. "Novel Superhard Tetragonal Hybrid sp3/sp2 Carbon Allotropes Cx (x = 5, 6, 7): Crystal Chemistry and Ab Initio Studies" C 10, no. 3: 64. https://doi.org/10.3390/c10030064
APA StyleMatar, S. F., & Solozhenko, V. L. (2024). Novel Superhard Tetragonal Hybrid sp3/sp2 Carbon Allotropes Cx (x = 5, 6, 7): Crystal Chemistry and Ab Initio Studies. C, 10(3), 64. https://doi.org/10.3390/c10030064