Recent Advances in Carbon Nanotube Technology: Bridging the Gap from Fundamental Science to Wide Applications
Abstract
:1. Introduction
2. Preparation Methods of Common Carbon Nanotubes
2.1. Chemical Vapor Deposition Method
2.2. Arc Discharge Method
2.3. Laser Ablation Method
3. Carbon Nanotube Applications
3.1. Fuel Cells
3.2. Photocatalysis
3.3. Ammonia Synthesis
3.4. Dry Reforming of Methane
3.5. Fischer–Tropsch Synthesis
3.6. Supercapacitors
3.7. Carbon Capture
3.8. Sensor and Biosensors
4. Challenges and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sandru, M.; Sandru, E.M.; Ingram, W.F.; Deng, J.; Stenstad, P.M.; Deng, L.; Spontak, R.J. An integrated materials approach to ultrapermeable and ultraselective CO2 polymer membranes. Science 2022, 376, 90–94. [Google Scholar] [CrossRef]
- Rogelj, J.; Huppmann, D.; Krey, V.; Riahi, K.; Clarke, L.; Gidden, M.; Nicholls, Z.; Meinshausen, M. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 2019, 573, 357–363. [Google Scholar] [CrossRef]
- De Lange, D.E. Climate action now: Energy industry restructuring to accelerate the renewable energy transition. J. Clean. Prod. 2024, 443, 141018. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Q. Fewer defects, better catalysis? Science 2020, 367, 737. [Google Scholar] [CrossRef]
- Ding, X.; Liu, W.; Zhao, J.; Wang, L.; Zou, Z. Photothermal CO2 Catalysis Towards the Synthesis of Solar fuel: From Material and Reactor Engineering to Techno-Economic Analysis. Adv. Mater. 2024. [Google Scholar] [CrossRef]
- Peng, W.; Li, F.; Kong, S.; Guo, C.; Wu, H.; Wang, J.; Shen, Y.; Zhang, M. Recent advances in nickel-based catalysts in eCO2RR for carbon neutrality. Carbon Energy 2024, 6, e498. [Google Scholar] [CrossRef]
- Mukherjee, A.; Coomar, P.; Sarkar, S.; Johannesson, K.H.; Fryar, A.E.; Schreiber, M.E.; Ahmed, K.M.; Alam, M.A.; Bhattacharya, P.; Bundschuh, J.; et al. Arsenic and other geogenic contaminants in global groundwater. Nat. Rev. Earth Environ. 2024, 5, 312–328. [Google Scholar] [CrossRef]
- Mohammed, S.; Eljack, F.; Al-Sobhi, S.; Kazi, M.K. A systematic review: The role of emerging carbon capture and conversion technologies for energy transition to clean hydrogen. J. Clean. Prod. 2024, 447, 141506. [Google Scholar] [CrossRef]
- Gong, H.; Chen, S.; Tok, J.B.H.; Bao, Z. An emerging class of carbon materials: Synthesis and applications of carbon flowers. Matter 2023, 6, 2206–2234. [Google Scholar] [CrossRef]
- Xue, W.; Zhao, Z.; Bi, H.; Zhang, B.; Wang, X.; Qiu, J. Insights into the role of oxygen-containing functional groups on carbon surface in water–electricity generation. Nano Res. 2024, 17, 6645–6653. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, X.; Shang, Y.; Chang, S.; Dai, L.; Cao, A. Application-driven carbon nanotube functional materials. ACS Nano 2021, 15, 7946–7974. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Sun, X.; Zhang, X.; Jia, X.; Feng, X.; Cui, M.; Gao, E.; Qian, L.; Gao, X.; Zhang, J. Kinetic Modulation of Carbon Nanotube Growth in Direct Spinning for High-Strength Carbon Nanotube Fibers. J. Am. Chem. Soc. 2024, 146, 11432–11439. [Google Scholar] [CrossRef]
- Sehrawat, M.; Singh, V.; Rani, M.; Kalra, C.; Bharadwaj, S.; Rani, R.; Bisht, A.; Singh, B.P. Nano-Welded Carbon Nanotube Sponges for Efficient Oil Spill Remediation. J. Clean. Prod. 2024, 467, 142841. [Google Scholar] [CrossRef]
- Zhang, F.Z.; Liu, X.B.; Yang, C.M.; Chen, G.D.; Meng, Y.; Zhou, H.B.; Zhang, S.H. Insights into robust carbon nanotubes in tribology: From nano to macro. Mater. Today 2024, 74, 203–234. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Blume, R.; Zhang, A.; Schlögl, R.; Su, D.S. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science 2008, 322, 73–77. [Google Scholar] [CrossRef]
- Titirici, M.M.; White, R.J.; Brun, N.; Budarin, V.L.; Su, D.S.; Del Monte, F.; Clark, J.H.; MacLachlan, M.J. Sustainable carbon materials. Chem. Soc. Rev. 2015, 44, 250–290. [Google Scholar] [CrossRef]
- Lv, X.; Zhang, S.; Wang, J.; Wang, M.; Shan, J.; Zhou, S. Charge controlled capture/release of CH4 on Nb2CTx MXene: A first-principles calculation. J. Mol. Graph. Model. 2022, 110, 108056. [Google Scholar] [CrossRef]
- Shah, K.A.; Tali, B.A. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process. 2016, 41, 67–82. [Google Scholar] [CrossRef]
- Arora, N.; Sharma, N.N. Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diam. Relat. Mater. 2014, 50, 135–150. [Google Scholar] [CrossRef]
- Vander Wal, R.L.; Berger, G.M.; Ticich, T.M. Carbon nanotube synthesis in a flame using laser ablation for in situ catalyst generation. Appl. Phys. A 2003, 77, 885–889. [Google Scholar] [CrossRef]
- Hata, K.; Futaba, D.N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362–1364. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Ando, Y. A simple method of producing aligned carbon nanotubes from an unconventional precursor–Camphor. Chem. Phys. Lett. 2003, 374, 521–526. [Google Scholar] [CrossRef]
- Yamagiwa, K.; Ayato, Y.; Kuwano, J. Liquid-phase synthesis of highly aligned carbon nanotubes on preheated stainless steel substrates. Carbon 2016, 98, 225–231. [Google Scholar] [CrossRef]
- Yamagiwa, K.; Goudo, D. Synthesis of carbon nanotubes on carbon fiber substrates: Effects of nanozirconia dispersion on the growth of carbon nanotubes. Jpn. J. Appl. Phys. 2023, 63, 02SP04. [Google Scholar] [CrossRef]
- Ha, J.M.; Lee, S.H.; Park, D.; Yoon, Y.J.; Yang, I.M.; Seo, J.; Hwang, Y.S.; Lee, C.Y.; Suk, J.K.; Park, J.K. Synthesis mechanism from graphene quantum dots to carbon nanotubes by ion-sputtering assisted chemical vapor deposition. Discov. Nano 2024, 19, 83. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Ma, Y.; Lv, X.; Huang, Y.; Li, F.; Chen, Y. The synthesis of single-walled carbon nanotubes with controlled length and bundle size using the electric arc method. Carbon 2006, 44, 1327–1330. [Google Scholar] [CrossRef]
- Cai, X.; Cong, H.; Liu, C. Synthesis of vertically-aligned carbon nanotubes without a catalyst by hydrogen arc discharge. Carbon 2012, 50, 2726–2730. [Google Scholar] [CrossRef]
- Takizawa, M.; Bandow, S.; Yudasaka, M.; Ando, Y.; Shimoyama, H.; Iijima, S. Change of tube diameter distribution of single-wall carbon nanotubes induced by changing the bimetallic ratio of Ni and Y catalysts. Chem. Phys. Lett. 2000, 326, 351–357. [Google Scholar] [CrossRef]
- Zhou, G.; Wu, H.; Deng, Y.; Miao, R.; Lai, D.; Deng, J.; Zhang, J.; Chen, Q.; Shao, Q.; Shao, C. Synthesis of high-quality multi-walled carbon nanotubes by arc discharge in nitrogen atmosphere. Vacuum 2024, 225, 113198. [Google Scholar] [CrossRef]
- Mehdi SM, Z.; Abbas, S.Z.; Seo, Y.; Goak, J.C.; Lee, N. Enhancing purity and crystallinity of carbon nanotubes by magnetically assisted arc discharge and thermal purification and their field emission characteristics. Surf. Interfaces 2024, 49, 104442. [Google Scholar] [CrossRef]
- Shifa, M.; Toor, Z.S.; Tariq, F. Arc discharge synthesis and multistep purification of multiwall carbon nanotubes. Nano 2024, 19, 2450007. [Google Scholar] [CrossRef]
- Imtiaz, S.; Siddiq, M.; Kausar, A.; Muntha, S.T.; Ambreen, J.; Bibi, I. A review featuring fabrication, properties and applications of carbon nanotubes (CNTs) reinforced polymer and epoxy nanocomposites. Chin. J. Polym. Sci. 2018, 36, 445–461. [Google Scholar] [CrossRef]
- Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.H.; Lee, Y.H.; Kim, S.G.; Rinzler, A.G.; et al. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P.C.; Williams, K.A.; Fang, S.; Subbaswamy, K.R.; Menon, M.; Thess, A.; et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 1997, 275, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Alexandrescu, R.; Crunteanu, A.; Morjan, R.E.; Morjan, I.; Rohmund, F.; Falk, L.K.L.; Ledoux, G.; Huisken, F. Synthesis of carbon nanotubes by CO2-laser-assisted chemical vapour deposition. Infrared Phys. Technol. 2003, 44, 43–50. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Cole, M.T.; Wang, A.; Guo, X.; Liu, X.; Lyu, W.; Teng, H.; Qv, Y.; Liu, G.; et al. Nanocone-Shaped Carbon Nanotubes Field-Emitter Array Fabricated by Laser Ablation. Nanomaterials 2021, 11, 3244. [Google Scholar] [CrossRef] [PubMed]
- Altowyan, A.S.; Toghan, A.; Ahmed, H.A.; Pashameah, R.A.; Mwafy, E.A.; Alrefaee, S.H.; Mostafa, A.M. Removal of methylene blue dye from aqueous solution using carbon nanotubes decorated by nickel oxide nanoparticles via pulsed laser ablation method. Radiat. Phys. Chem. 2022, 198, 110268. [Google Scholar] [CrossRef]
- Devrim, Y.; Arıca, E.D. Investigation of the effect of graphitized carbon nanotube catalyst support for high temperature PEM fuel cells. Int. J. Hydrogen Energy 2020, 45, 3609–3617. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, J.; Lin, Z.; Li, L.; Liang, G.; Jin, Y.Q.; Huang, G.; Zhang, H.; Chen, J.; Xie, F.; et al. Fe-Nx doped carbon nanotube as a high efficient cathode catalyst for proton exchange membrane fuel cell. Chem. Eng. J. 2021, 423, 130241. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, Z.; Tian, X.; Maiyalagan, T.; Jiang, Z.J. Self-standing CoFe embedded nitrogen-doped carbon nanotubes with Pt deposition through direct current plasma magnetron sputtering for direct methanol fuel cells applications. Carbon 2023, 201, 1068–1080. [Google Scholar] [CrossRef]
- Bhunia, K.; Vijayakumar, E.; Raj NP, M.J.; Bejigo, K.S.; Kesavan, D.; Kim, S.J. Cobalt Nanoparticle-integrated Nitrogen-doped Carbon Nanotube as an Efficient Bifunctional Electrocatalyst for Direct Methanol Fuel Cells. Chem. Eng. J. 2023, 473, 145028. [Google Scholar] [CrossRef]
- Huang, C.C.; Pourzolfaghar, H.; Huang, C.L.; Liao, C.P.; Li, Y.Y. FeNi nanoalloy-carbon nanotubes on defected graphene as an excellent electrocatalyst for lithium-oxygen batteries. Carbon 2024, 222, 118973. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, Q.; Yang, S.; Fang, Y. Carbon nanotube@ silicon carbide coaxial heterojunction nanotubes as metal-free photocatalysts for enhanced hydrogen evolution. Chin. J. Catal. 2020, 41, 62–71. [Google Scholar] [CrossRef]
- Bai, X.; Guo, L.; Jia, T.; Hao, D.; Wang, C.; Li, H.; Zong, R. Perylene diimide growth on both sides of carbon nanotubes for remarkably boosted photocatalytic degradation of diclofenac. J. Hazard. Mater. 2022, 435, 128992. [Google Scholar] [CrossRef] [PubMed]
- Imam, M.D.; Badreldin, A.; Kakosimos, K.E.; Al-Hashimi, M.; Abdel-Wahab, A. One-pot synthesis of a CdS–MoS2/CNTs nano-composite for photocatalytic hydrogen production under visible light. Int. J. Hydrogen Energy 2024, 51, 1267–1278. [Google Scholar] [CrossRef]
- Wang, L.; Chen, T.; Cui, Y.; Wu, J.; Zhou, X.; Xu, M.; Liu, Z.; Mao, W.; Zeng, X.; Shen, W.; et al. Rational Design of Environmentally Friendly Carbon Nanotube Embedded Artificial Vesicle-Structured Photocatalysts for Organic Pollutants Degradation. Adv. Funct. Mater. 2024, 34, 2313653. [Google Scholar] [CrossRef]
- Ma, Y.; Lan, G.; Fu, W.; Lai, Y.; Han, W.; Tang, H.; Liu, H.; Li, Y. Role of surface defects of carbon nanotubes on catalytic performance of barium promoted ruthenium catalyst for ammonia synthesis. J. Energy Chem. 2020, 41, 79–86. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, Z.; Kuklin, A.V.; Baryshnikov, G.V.; Ågren, H.; Zhou, X.; Zhang, H. Efficient ambient electrocatalytic ammonia synthesis by nanogold triggered via boron clusters combined with carbon nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 42821–42831. [Google Scholar] [CrossRef]
- Chen, S.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem. Int. Ed. 2017, 56, 2699–2703. [Google Scholar] [CrossRef]
- Shi, L.; Bi, S.; Qi, Y.; He, R.; Ren, K.; Zheng, L.; Wang, J.; Ning, G.; Ye, J. Anchoring Mo single-atom sites on B/N co-doped porous carbon nanotubes for electrochemical reduction of N2 to NH3. ACS Catal. 2022, 12, 7655–7663. [Google Scholar] [CrossRef]
- Zhang, M.; Shen, L.; Yu, C.; Li, T.; Bai, S.; Su, Y.; Liu, Z.; Li, Y. Boosting the Faraday Efficiency of Electrochemical Ammonia Synthesis via the Strain Effect Induced by Interfacial Hybrid Formation between BN and Carbon Nanotubes. ACS Appl. Mater. Interfaces 2024, 16, 8832–8841. [Google Scholar] [CrossRef] [PubMed]
- Figueira, C.E.; Junior PF, M.; Giudici, R.; Alves, R.M.B.; Schmal, M. Nanoparticles of Ce, Sr, Co in and out the multi-walled carbon nanotubes applied for dry reforming of methane. Appl. Catal. A Gen. 2018, 550, 297–307. [Google Scholar] [CrossRef]
- Kozonoe, C.E.; Santos, V.M.; Schmal, M. Investigating the stability of Ni and Fe nanoparticle distribution and the MWCNT structure in the dry reforming of methane. Environ. Sci. Pollut. Res. 2023, 30, 111382–111396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gao, Y.; Mao, Y.; Jin, Y.; Wang, W.; Sun, J.; Song, Z.; Zhao, X. Hierarchical core–shell Ni@ C-NCNTs nanocomposites tailored for microwave-induced dry reforming of methane process. J. Mater. Chem. A 2023, 11, 21908–21926. [Google Scholar] [CrossRef]
- Nakhaei Pour, A.; Karimi, J.; Taghipoor, S.; Gholizadeh, M.; Hashemian, M. Fischer–Tropsch synthesis over CNT-supported cobalt catalyst: Effect of magnetic field. J. Iran. Chem. Soc. 2017, 14, 1477–1488. [Google Scholar] [CrossRef]
- Pendyala VR, R.; Jacobs, G.; Graham, U.M.; Shafer, W.D.; Martinelli, M.; Kong, L.; Davis, B.H. Fischer–Tropsch synthesis: Influence of acid treatment and preparation method on carbon nanotube supported ruthenium catalysts. Ind. Eng. Chem. Res. 2017, 56, 6408–6418. [Google Scholar] [CrossRef]
- Akbarzadeh, O.; Mohd Zabidi, N.A.; Abdul Wahab, Y.; Hamizi, N.A.; Chowdhury, Z.Z.; Merican Aljunid Merican, Z.; Ab Rahman, M.; Akhter, S.; Rasouli, E.; Johan, M.R. Effect of cobalt catalyst confinement in carbon nanotubes support on fischer-tropsch synthesis performance. Symmetry 2018, 10, 572. [Google Scholar] [CrossRef]
- Almkhelfe, H.; Li, X.; Thapa, P.; Hohn, K.L.; Amama, P.B. Carbon nanotube-supported catalysts prepared by a modified photo-Fenton process for Fischer–Tropsch synthesis. J. Catal. 2018, 361, 278–289. [Google Scholar] [CrossRef]
- Zhan, W.; Wang, Y.; Chen, J.; Li, Y. Boosting the Fischer-Tropsch synthesis performances of cobalt-based catalysts via geometric and electronic engineering: Construction of hollow structures. Appl. Catal. B Environ. 2022, 313, 121469. [Google Scholar] [CrossRef]
- Wang, B.; Huang, W.; Chi, L.; Al-Hashimi, M.; Marks, T.J.; Facchetti, A. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 2018, 118, 5690–5754. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sim, K.; Chen, J.; Kim, H.; Rao, Z.; Li, Y.; Chen, W.; Song, J.; Verduzco, R.; Yu, C. Soft ultrathin electronics innervated adaptive fully soft robots. Adv. Mater. 2018, 30, 1706695. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, Y. Wearable droplet microfluidics. Sci. Bull. 2019, 64, 1472–1473. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Lee, S.; Pornnoppadol, G.; Nam, Y.S.; Kim, S.H.; Kim, B.J. Microcapsules containing pH-responsive, fluorescent polymer-integrated MoS2: An effective platform for in situ pH sensing and photothermal heating. ACS Appl. Mater. Interfaces 2018, 10, 9023–9031. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Pak, S.; Lee, Y.G.; Hwang, J.S.; Giraud, P.; An, G.H.; Cha, S. Hybrid smart fiber with spontaneous self-charging mechanism for sustainable wearable electronics. Adv. Funct. Mater. 2020, 30, 1908479. [Google Scholar] [CrossRef]
- Huang, S.; Du, X.; Li, X.; Ma, M.; Xiong, L. Ultrahigh-Areal Capacitance Flexible Supercapacitors Based on Laser Assisted Construction of Hierarchical Aligned Carbon Nanotubes. Adv. Funct. Mater. 2021, 31, 2104531. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, A.; He, X.; Li, Q.; Sun, J.; Lei, Z.; Liu, Z.H. Full-temperature all-solid-state Ti3C2Tx/aramid fiber supercapacitor with optimal balance of capacitive performance and flexibility. Adv. Funct. Mater. 2021, 31, 2010944. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Q.; Zhao, Y.; Zhang, R.; Liu, L.; Yu, J. Highly flexible, freestanding supercapacitor electrodes based on hollow hierarchical porous carbon nanofibers bridged by carbon nanotubes. Chem. Eng. J. 2022, 434, 134662. [Google Scholar] [CrossRef]
- Song, G.; Li, C.; Wang, T.; Lim, K.H.; Hu, F.; Cheng, S.; Hondo, E.; Liu, S.; Kawi, S. Hierarchical hollow carbon particles with encapsulation of carbon nanotubes for high performance supercapacitors. Small 2024, 20, 2305517. [Google Scholar] [CrossRef]
- Gong, L.; Zeng, R.; Shi, Y.; Yu, M.; Yu, X.; Sun, D. Co/P co-doped bamboo-based woodceramics with a sandwich structure modified by carbon nanotube electrodeposition as supercapacitor electrodes. Bioresour. Technol. 2024, 399, 130573. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lai, C.; Xiao, Z.; Zou, S.; Liu, K.; Yin, Y.; Liang, T.; Wu, Z. Superb electrolyte penetration/absorption of three-dimensional porous carbon nanosheets for multifunctional supercapacitor. ACS Appl. Energy Mater. 2019, 2, 3185–3193. [Google Scholar] [CrossRef]
- Avasthi, P.; Balakrishnan, V. Tuning the wettability of vertically aligned CNT–TiO2 hybrid electrodes for enhanced supercapacitor performance. Adv. Mater. Interfaces 2019, 6, 1801842. [Google Scholar] [CrossRef]
- Avasthi, P.; Kumar, A.; Balakrishnan, V. Aligned CNT forests on stainless steel mesh for flexible supercapacitor electrode with high capacitance and power density. ACS Appl. Nano Mater. 2019, 2, 1484–1495. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, X.; Acauan, L.; Kalfon-Cohen, E.; Ni, X.; Stein, Y.; Gleason, K.K.; Wardle, B.L. Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal P3MT on horizontally aligned carbon-nanotube arrays. Adv. Mater. 2019, 31, 1901916. [Google Scholar] [CrossRef]
- Liang, J.; Tian, B.; Li, S.; Jiang, C.; Wu, W. All-printed MnHCF-MnOx-based high-performance flexible supercapacitors. Adv. Energy Mater. 2020, 10, 2000022. [Google Scholar] [CrossRef]
- Zhang, R.; Yan, K.; Palumbo, A.; Xu, J.; Fu, S.; Yang, E.H. A stretchable and bendable all-solid-state pseudocapacitor with dodecylbenzenesulfonate-doped polypyrrole-coated vertically aligned carbon nanotubes partially embedded in PDMS. Nanotechnology 2019, 30, 095401. [Google Scholar] [CrossRef]
- Dubey, A.; Arora, A. Advancements in carbon capture technologies: A review. J. Clean. Prod. 2022, 373, 133932. [Google Scholar] [CrossRef]
- Turgut, O.; Bjerketvedt, V.S.; Tomasgard, A.; Roussanaly, S. An integrated analysis of carbon capture and storage strategies for power and industry in Europe. J. Clean. Prod. 2021, 329, 129427. [Google Scholar] [CrossRef]
- McLaughlin, H.; Littlefield, A.A.; Menefee, M.; Kinzer, A.; Hull, T.; Sovacool, B.K.; Bazilian, M.D.; Kim, J.; Griffiths, S. Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world. Renew. Sustain. Energy Rev. 2023, 177, 113215. [Google Scholar] [CrossRef]
- Kotagodahetti, R.; Hewage, K.; Karunathilake, H.; Sadiq, R. Long-term feasibility of carbon capturing in community energy systems: A system dynamics-based evaluation. J. Clean. Prod. 2022, 377, 134460. [Google Scholar] [CrossRef]
- Hsan, N.; Dutta, P.K.; Kumar, S.; Das, N.; Koh, J. Capture and chemical fixation of carbon dioxide by chitosan grafted multi-walled carbon nanotubes. J. CO2 Util. 2020, 41, 101237. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, M.; Jung, H.S.; Xu, R.; Kim, S.; Kang, Y.T. Liquid-like adsorbent assembled by CNTs: Serving as renewable CO2 capture materials for indoor air. J. Energy Chem. 2021, 63, 574–584. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, M.; Park, J.H.; Kang, Y.T. Recyclable carbon nanotube/silicone oil emulsion with NaOH aqueous solution for indoor CO2 capture. Green Chem. 2022, 24, 6264–6277. [Google Scholar] [CrossRef]
- Kim, S.; Han, J.; Choi, J.M.; Nam, J.S.; Lee, I.H.; Lee, Y.; Novikov, I.V.; Kauppinen, E.I.; Lee, K.; Jeon, I. Aerosol-Synthesized Surfactant-Free Single-Walled Carbon Nanotube-Based NO2 Sensors: Unprecedentedly High Sensitivity and Fast Recovery. Adv. Mater. 2024, 36, 2313830. [Google Scholar] [CrossRef] [PubMed]
- Kouediatouka, A.N.; Wang, J.; Mawignon, F.J.; Wang, W.; Liu, Q.; Meng, Z.; Makanda, I.L.D.; Djandja, O.S.; Dong, G. Carbon nanotube/liquid metal hybrid coating-based flexible pressure piezoresistive sensors. Chem. Eng. J. 2024, 481, 148637. [Google Scholar] [CrossRef]
- Feng, X.; Li, P.; Li, T.; Cao, X.; Liu, D.; Xiao, M.; Wang, L. Ultra-sensitive and rapid detection of Salmonella enterica and Staphylococcus aureus to single-cell level by aptamer-functionalized carbon nanotube field-effect transistor biosensors. Biosens. Bioelectron. 2024, 257, 116333. [Google Scholar] [CrossRef]
Device | Device Type | Substrate | Areal Capacitance [mF cm−2] | Capacitance Retention [Cycles] | References |
---|---|---|---|---|---|
Laser-etched VACNT electrode | EDLC | Al microgrid | 1300 | 90% (20,000) | [67] |
PANI@HPCNFs@CNTs | EDLC | NA | 405.2 | 88.5% (5000) | [69] |
CNTs@HPC composite | EDLC | NA | 197.09 | 91% (5000) | [70] |
CNT/GNF composite | EDLC | NA | 2.16 | 94.6% (10,000) | [72] |
CNT/PC composite | EDLC | NA | 300 | 97% (5000) | [73] |
CNT forests | EDLC | SS | 5.99 | 95% (10,000) | [74] |
P3MT/HACNT | Pseudo SC | PDMS | 3100 | 92% (5000) | [75] |
MnHCF-MnOx/ErGO | Pseudo SC | PET | 16.8 | 89% (5000) | [76] |
PPy(DBS)/CNTs | Pseudo SC | PDMS | 3.6 | 90% (5000) | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Z.; Zhao, Y.; Wang, Y.; Zhang, G. Recent Advances in Carbon Nanotube Technology: Bridging the Gap from Fundamental Science to Wide Applications. C 2024, 10, 69. https://doi.org/10.3390/c10030069
Tao Z, Zhao Y, Wang Y, Zhang G. Recent Advances in Carbon Nanotube Technology: Bridging the Gap from Fundamental Science to Wide Applications. C. 2024; 10(3):69. https://doi.org/10.3390/c10030069
Chicago/Turabian StyleTao, Zhizhi, Yuqiong Zhao, Ying Wang, and Guojie Zhang. 2024. "Recent Advances in Carbon Nanotube Technology: Bridging the Gap from Fundamental Science to Wide Applications" C 10, no. 3: 69. https://doi.org/10.3390/c10030069
APA StyleTao, Z., Zhao, Y., Wang, Y., & Zhang, G. (2024). Recent Advances in Carbon Nanotube Technology: Bridging the Gap from Fundamental Science to Wide Applications. C, 10(3), 69. https://doi.org/10.3390/c10030069