Two Birds with One Stone: High-Quality Utilization of COVID-19 Waste Masks into Bio-Oil, Pyrolytic Gas, and Eco-Friendly Biochar with Adsorption Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Biochar and By-Products
2.3. Characterization
2.4. Batch Experiments
2.5. Adsorption Models and Data Analysis
3. Results and Discussions
3.1. Characterization
3.1.1. Microscopic Morphology and Elemental Analysis
3.1.2. Specific Surface Area and Pore Size Analysis
3.1.3. XRD and FTIR Analysis
3.2. Analysis of Bio-Oils
3.3. Analysis of Pyrolytic Gases
3.4. Adsorption Application
3.5. Co-Pyrolysis and Adsorption Mechanisms
3.5.1. Co-Pyrolysis Mechanisms
3.5.2. Adsorption Mechanisms
3.6. Discussion of the Comparison with Hydrothermal Synthesis
3.6.1. Comparison of Hydrothermal Carbon Characterization and Adsorption Performance
3.6.2. Comparison of the Bio-Oils Component
3.7. Risk Assessment and Prospects
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, R.; Zhang, M.; Wu, Y.; Tang, P.; Sun, G.; Wang, L.; Mandal, S.; Wang, L.; Lang, J.; Passalacqua, A. What We Are Learning from COVID-19 for Respiratory Protection: Contemporary and Emerging Issues. Polymers 2021, 13, 4165. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus Disease (COVID-19) Advice for the Public: When and How to Use Masks. 2020. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/when-and-how-to-use-masks (accessed on 1 August 2023).
- Park, C.; Choi, H.; Lin, K.-Y.A.; Kwon, E.E.; Lee, J. COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste. Energy 2021, 230, 120876. [Google Scholar] [CrossRef] [PubMed]
- Saberian, M.; Li, J.; Kilmartin-Lynch, S.; Boroujeni, M. Repurposing of COVID-19 single-use face masks for pavements base/subbase. Sci. Total Environ. 2021, 769, 145527. [Google Scholar] [CrossRef] [PubMed]
- Yuwen, C.; Liu, B.; Rong, Q.; Zhang, L.; Guo, S. Porous carbon materials derived from discarded COVID-19 masks via microwave solvothermal method for lithiumsulfur batteries. Sci. Total Environ. 2022, 817, 152995. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Lee, S.; Dou, X.; Kwon, E.E. Valorization of disposable COVID-19 mask through the thermo-chemical process. Chem. Eng. J. 2021, 405, 126658. [Google Scholar] [CrossRef]
- Wang, C.; Zou, R.; Lei, H.; Qian, M.; Lin, X.; Mateo, W.; Wang, L.; Zhang, X.; Ruan, R. Biochar-advanced thermocatalytic salvaging of the waste disposable mask with the production of hydrogen and mono-aromatic hydrocarbons. J. Hazard. Mater. 2022, 426, 128080. [Google Scholar] [CrossRef]
- Silva AL, P.; Prata, J.C.; Walker, T.R.; Duarte, A.C.; Ouyang, W.; Barcelò, D.; Rocha-Santos, T. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chem. Eng. J. 2021, 405, 126683. [Google Scholar] [CrossRef]
- Luo, Z.; Zhu, X.; Deng, J.; Gong, K.; Zhu, X. High-value utilization of mask and heavy fraction of bio-oil: From hazardous waste to biochar, bio-oil, and graphene films. J. Hazard. Mater. 2021, 420, 126570. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Z.; Jiang, S.; Hou, H. Carbonization: A feasible route for reutilization of plastic wastes. Sci. Total Environ. 2020, 710, 136250. [Google Scholar] [CrossRef]
- Li, S.; Hu, J.; Aryee, A.A.; Sun, Y.; Li, Z. Three birds, one stone: Disinfecting and turning waste medical masks into valuable carbon dots for sodium hydrosulfite and Fe3+ detection enabled by a simple hydrothermal treatment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 296, 122659. [Google Scholar] [CrossRef]
- Abbas-Abadi, M.S.; Haghighi, M.N.; Yeganeh, H.; Mcdonald, A.G. Evaluation of pyrolysis process parameters on polypropylene degradation products. J. Anal. Appl. Pyrolysis 2014, 109, 272–277. [Google Scholar] [CrossRef]
- Oginni, O. COVID-19 disposable face masks: A precursor for synthesis of valuable bioproducts. Environ. Sci. Pollut. Res. 2022, 29, 85574–85576. [Google Scholar] [CrossRef] [PubMed]
- Emenike, E.C.; Iwuozor, K.O.; Agbana, S.A.; Otoikhian, K.S.; Adeniyi, A.G. Efficient recycling of disposable face masks via co-carbonization with waste biomass: A pathway to a cleaner environment. Clean. Environ. Syst. 2022, 6, 100094. [Google Scholar] [CrossRef]
- Sari, M.M.; Inoue, T.; Salsabilla, V.C.; Septiariva, I.Y.; Mulyana, R.; Prayogo, W.; Arifianingsih, N.N.; Suhardono, S.; Suryawan, I.W.K. Transforming disposable masks to sustainable gasoline-like fuel via pyrolysis. Environ. Adv. 2024, 15, 100466. [Google Scholar] [CrossRef]
- Shi, W.; Wang, H.; Yan, J.; Shan, L.; Quan, G.; Pan, X.; Cui, L. Wheat straw derived biochar with hierarchically porous structure for bisphenol A removal: Preparation, characterization, and adsorption properties. Sep. Purif. Technol. 2022, 289, 120796. [Google Scholar] [CrossRef]
- Usman, A.; Ikhlas, S.; Ahmad, M. Occurrence, toxicity and endocrine disrupting potential of Bisphenol-B and Bisphenol-F: A mini-review. Toxicol. Lett. 2019, 312, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Godiya, C.B.; Park, B.J. Removal of bisphenol A from wastewater by physical, chemical and biological remediation techniques. A review. Environ. Chem. Lett. 2022, 20, 1801–1837. [Google Scholar] [CrossRef]
- Wang, T.; Shi, H.; Kumar, A.; Zhang, D.; Wang, H.; Wang, S.; Zheng, J. Efficient visible-light photocatalysis of chloramphenicol using novel engineered biochar-based Ti-doped Bi2WO6 composite: Mechanisms, degradation pathways, and applications. Sep. Purif. Technol. 2024, 332, 125780. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, T.; Zhi, J.; Zheng, Q.; Chen, Q.; Zhang, C.; Li, Y. Utilization of Jujube Biomass to Prepare Biochar by Pyrolysis and Activation: Characterization, Adsorption Characteristics, and Mechanisms for Nitrogen. Materials 2020, 13, 5594. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, J.; Cai, J.; Liu, Q.; Zhang, X. Visible-light-driven photocatalytic degradation of dye and antibiotics by activated biochar composited with K+ doped g-C3N4: Effects, mechanisms, actual wastewater treatment and disinfection. Sci. Total Environ. 2022, 839, 155955. [Google Scholar] [CrossRef]
- Wang, T.T.; Zhang, D.; Fang, K.K.; Zhu, W.; Peng, Q.; Xie, Z.G. Enhanced nitrate removal by physical activation and Mg/Al layered double hydroxide modified biochar derived from wood waste: Adsorption characteristics and mechanisms. J. Environ. Chem. Eng. 2021, 9, 105184. [Google Scholar] [CrossRef]
- Li, C.; Yuan, X.; Sun, Z.; Suvarna, M.; Hu, X.; Wang, X.; Ok, Y.S. Pyrolysis of waste surgical masks into liquid fuel and its life-cycle assessment. Bioresour. Technol. 2022, 346, 126582. [Google Scholar] [CrossRef] [PubMed]
- Gebre, S.H.; Sendeku, M.G.; Bahri, M. Recent trends in the pyrolysis of non-degradable waste plastics. ChemistryOpen 2021, 10, 1202–1226. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Z.; Wang, W.; Ji, G.; Zhao, M.; Li, A. Kinetics, product evolution, and mechanism for the pyrolysis of typical plastic waste. ACS Sustain. Chem. Eng. 2021, 10, 91–103. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y.; Ke, L.; Dai, L.; Wu, Q.; Cobb, K.; Zeng, Y.; Zou, R.; Liu, Y.; Ruan, R. A review on catalytic pyrolysis of plastic wastes to high-value products. Energy Convers. Manag. 2022, 254, 115243. [Google Scholar] [CrossRef]
- Cheng, L.; Gu, J.; Wang, Y.; Zhang, J.; Yuan, H.; Chen, Y. Polyethylene high-pressure pyrolysis: Better product distribution and process mechanism analysis. Chem. Eng. J. 2020, 385, 123866. [Google Scholar] [CrossRef]
- Mahendra, R.A. Pyrolytic Product Distribution Analysis on Co-Pyrolysis of Face Mask Waste and Lignocellulosic Waste. METAL J. Sist. Mek. Dan Termal 2024, 7, 36–44. [Google Scholar]
- Wang, G.; Dai, G.; Ding, S.; Wu, J.; Wang, S. A new insight into pyrolysis mechanism of three typical actual biomass: The influence of structural differences on pyrolysis process. J. Anal. Appl. Pyrolysis 2021, 156, 105184. [Google Scholar] [CrossRef]
- Chen, X.; Che, Q.; Li, S.; Liu, Z.; Yang, H.; Chen, Y.; Wang, X.; Shao, J.; Chen, H. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield. Fuel Process. Technol. 2019, 196, 106180. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.K.; Jiang, J.C. A review on co-pyrolysis of biomass and waste plastics/rubbers. J. For. Eng. 2023, 8, 10–20. [Google Scholar]
- Sharifzadeh, M.; Sadeqzadeh, M.; Guo, M.; Borhani, T.N.; Konda, N.M.; Garcia, M.C.; Wang, L.; Hallett, J.; Shah, N. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. Prog. Energy Combust. Sci. 2019, 71, 1–80. [Google Scholar] [CrossRef]
- Leng, E.; Guo, Y.; Chen, J.; Liu, S.; Jiaqiang, E.; Xue, Y. A comprehensive review on lignin pyrolysis: Mechanism, modeling and the effects of inherent metals in biomass. Fuel 2022, 309, 122102. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, H.; Chen, S.; Wu, J. Catalytic co-pyrolysis of lignocellulosic biomass with polymers: A critical review. Green Chem. 2016, 18, 4145–4169. [Google Scholar] [CrossRef]
- Hassan, H.; Hameed, B.; Lim, J. Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: Synergistic effect and product distributions. Energy 2020, 191, 116545. [Google Scholar] [CrossRef]
- Singh, M.; Salaudeen, S.A.; Gilroyed, B.H.; Al-Salem, S.M.; Dutta, A. A review on co-pyrolysis of biomass with plastics and tires: Recent progress, catalyst development, and scaling up potential. Biomass Convers. Biorefinery 2023, 13, 8747–8771. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, J.; Liu, H.; Peng, Q.; Zhou, H.; Zhang, X. Adsorption characteristics and mechanisms of Pb2+ and Cd2+ by a new agricultural waste–Caragana korshinskii biomass derived biochar. Environ. Sci. Pollut. Res. 2021, 28, 13800–13818. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Zhang, Y.S.; Ji, G.; Li, A. Hydrothermal transformation behavior and degradation pathway analysis of waste surgical masks in supercritical water. Process Saf. Environ. Prot. 2023, 176, 776–785. [Google Scholar] [CrossRef]
- Farru, G.; Libra, J.A.; Ro, K.S.; Cannas, C.; Cara, C.; Muntoni, A.; Piredda, M.; Cappai, G. Valorization of Face Masks Produced during COVID-19 Pandemic through Hydrothermal Carbonization (HTC): A Preliminary Study. Sustainability 2023, 15, 9382. [Google Scholar] [CrossRef]
- Wang, T.; Cai, J.; Zheng, J.; Fang, K.; Hussain, I.; Husein, D.Z. Facile synthesis of activated biochar/BiVO4 heterojunction photocatalyst to enhance visible light efficient degradation for dye and antibiotics: Applications and mechanisms. J. Mater. Res. Technol. 2022, 19, 5017–5036. [Google Scholar] [CrossRef]
- Dai, L.; Zhou, N.; Lv, Y.; Cobb, K.; Cheng, Y.; Wang, Y.; Liu, Y.; Chen, P.; Zou, R.; Lei, H. Pyrolysis-catalysis for waste polyolefin conversion into low aromatic naphtha. Energy Convers. Manag. 2021, 245, 114578. [Google Scholar] [CrossRef]
- Cai, N.; Li, X.; Xia, S.; Sun, L.; Hu, J.; Bartocci, P.; Fantozzi, F.; Williams, P.T.; Yang, H.; Chen, H. Pyrolysis-catalysis of different waste plastics over Fe/Al2O3 catalyst: High-value hydrogen, liquid fuels, carbon nanotubes and possible reaction mechanisms. Energy Convers. Manag. 2021, 229, 113794. [Google Scholar] [CrossRef]
- Hidayat, A.; Dimas, D.; Sidiq, I. Co-Pyrolysis of Disposable Mask with Sugarcane Bagasse. Mater. Sci. Forum 2022, 1073, 161–166. [Google Scholar] [CrossRef]
Biochar Type | C (%) a | N (%) | O (%) | P (%) | S (%) | SBET (m2·g−1) | Pore Volume b (cm3·g−1) | Pore Size c (nm) |
---|---|---|---|---|---|---|---|---|
PMB | 37.98 | 1.02 d | 59.02 | 1.55 | 0.43 | - d | - | - |
PCB | 61.88 | 5.09 | 24.97 | 3.24 | 2.84 | 9.42 | 0.009 | 14.91 |
WMB | 78.98 | 1.72 | 14.97 | 1.56 | 0.60 | 30.85 | 0.015 | 8.81 |
Corresponding Biochar Type | № | Library/ID | CAS № | Chemical Formula | Ret. Time (min) | Peak Area (%) |
---|---|---|---|---|---|---|
PMB | 1 | 1,4-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester | 6422-86-2 | C24H38O4 | 29.196 | 33.87 |
2 | Phthalic acid, di(2-propylpentyl) ester | - a | C24H38O4 | 27.434 | 1.69 | |
3 | Furan-2-carbonyl chloride, tetrahydro- | 52449-98-6 | C5H7ClO2 | 6.759 | 1.51 | |
4 | Pentanoic acid, 4-oxo-, ethyl ester | 539-88-8 | C7H12O3 | 6.500 | 1.33 | |
5 | Heptanediamide, N,N′-di-benzoyloxy- | - | C21H22N2O6 | 8.218 | 1.21 | |
6 | 3,3-Diethoxy-1-propanol, propyl ether | - | C10H22O3 | 7.099 | 1.07 | |
7 | Hexadecanoic acid, ethyl ester | 628-97-7 | C18H36O2 | 21.554 | 0.84 | |
8 | Eicosane, 2-methyl- | 1560-84-5 | C21H44 | 10.633 | 0.80 | |
9 | Furan, 2,5-diethoxytetrahydro- | 3320-90-9 | C8H16O3 | 5.789 | 0.74 | |
10 | Dibutyl phthalate | 84-74-2 | C16H22O4 | 21.254 | 0.57 | |
11 | p-Xylene | 106-42-3 | C8H10 | 3.667 | 0.52 | |
12 | Decane, 2,4,6-trimethyl- | 62108-27-4 | C13H28 | 6.340 | 0.50 | |
WMB | 1 | 1,6-Heptadien-4-ol | 2883-45-6 | C7H14O | 6.745 | 12.75 |
2 | Phenol | 108-95-2 | C6H6O | 5.351 | 6.59 | |
3 | Benzoic acid | 65-85-0 | C7H6O2 | 8.259 | 5.45 | |
4 | o-Acetyl-L-serine | 5147-00-2 | C5H9NO4 | 6.415 | 2.65 | |
5 | Phenol, 2-methoxy- | 90-05-1 | C7H8O2 | 6.922 | 2.10 | |
6 | Ethoxyacetaldehyde diethylacetal | 4819-77-6 | C8H18O3 | 4.531 | 1.95 | |
7 | Butyrolactone | 96-48-0 | C4H6O2 | 4.344 | 1.94 | |
8 | Pentanoic acid, 4-oxo-, ethyl ester | 539-88-8 | C7H12O3 | 6.490 | 1.49 | |
9 | Propanoic acid, 2-hydroxy-, ethyl ester, (L)- | 687-47-8 | C5H10O3 | 3.106 | 1.46 | |
10 | 3-Mercaptohexyl hexanoate | 136954-22-8 | C12H24O2S | 8.177 | 1.37 | |
11 | 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- | 80-71-7 | C6H8O2 | 5.983 | 1.28 | |
12 | 2-Diethoxymethyl-3-methyl-butan-1-ol | - | C10H22O3 | 10.228 | 1.11 | |
13 | 3,3-Diethoxy-1-propanol, propyl ether | - | C10H22O3 | 7.096 | 1.02 | |
14 | 4-Nonanol, 4-methyl- | 23418-38-4 | C10H22O | 9.133 | 0.98 | |
15 | 2-Cyclopenten-1-one | 930-30-3 | C5H6O | 3.348 | 0.94 | |
16 | 2-Cyclopenten-1-one, 2-hydroxy- | 10493-98-8 | C5H6O2 | 4.490 | 0.83 | |
17 | 4-Methoxy-1-pentene | 98386-09-5 | C6H12O | 4.225 | 0.75 | |
18 | 2-Ethoxytetrahydrofuran | 13436-46-9 | C6H12O2 | 3.174 | 0.74 | |
19 | Butanedioic acid, diethyl ester | 123-25-1 | C8H14O4 | 8.504 | 0.74 | |
20 | 2-Cyclopenten-1-one, 3-methyl- | 2758-18-1 | C6H8O | 5.086 | 0.73 | |
21 | 3,3-Diethoxy-1-propanol, butyl ether | - | C11H24O3 | 5.779 | 0.69 | |
22 | Diethoxymethyl acetate | 14036-06-7 | C7H14O4 | 3.011 | 0.61 | |
23 | Glycerol triethyl ether | 162614-45-1 | C9H20O3 | 4.099 | 0.59 | |
24 | Hexadecanoic acid, ethyl ester | 628-97-7 | C18H36O2 | 21.554 | 0.54 | |
25 | 2-Cyclopenten-1-one, 2,3-dimethyl- | 1121-05-7 | C7H10O | 6.157 | 0.50 | |
26 | 2-Propanol, 1,1-dimethoxy- | 42919-42-6 | C5H12O3 | 4.184 | 0.50 |
Corresponding Biochar Type | № | Library/ID | CAS № | Chemical Formula | Ret. Time (min) | Peak Area (%) |
---|---|---|---|---|---|---|
PMB | 1 | Carbamic acid, monoammonium salt | 1111-78-0 | CH6N2O2 | 1.024 | 8.38 |
2 | 3-Pyridinol | 109-00-2 | C5H5NO | 9.492 | 4.82 | |
3 | D-Allose | 2595-97-3 | C6H12O6 | 18.855 | 4.42 | |
4 | Carbon dioxide | 124-38-9 | CO2 | 1.132 | 4.34 | |
5 | Carbon dioxide | 124-38-9 | CO2 | 1.098 | 3.06 | |
6 | 1,6-Anhydro-β-d-talopyranose | - a | C6H10O5 | 16.431 | 2.36 | |
7 | D-Allose | 2595-97-3 | C6H12O6 | 18.818 | 2.15 | |
8 | Carbamic acid, monoammonium salt | 1111-78-0 | CH6N2O2 | 0.959 | 2.15 | |
9 | Ethyne, fluoro- | 2713-09-9 | C2HF | 1.439 | 2.13 | |
10 | Ethyne, fluoro- | 2713-09-9 | C2HF | 1.541 | 1.89 | |
11 | D-Allose | 2595-97-3 | C6H12O6 | 18.729 | 1.88 | |
12 | Carbon dioxide | 124-38-9 | CO2 | 1.187 | 1.83 | |
13 | Ethyne, fluoro- | 2713-09-9 | C2HF | 1.282 | 1.66 | |
14 | Ethyne, fluoro- | 2713-09-9 | C2HF | 1.241 | 1.56 | |
15 | Ethyne, fluoro- | 2713-09-9 | C2HF | 1.496 | 1.48 | |
16 | Ethyne, fluoro- | 2713-09-9 | C2HF | 1.221 | 1.48 | |
17 | Ethyne, fluoro- | 2713-09-9 | C2HF | 1.785 | 1.46 | |
18 | Ethyne, fluoro- | 2713-09-9 | C2HF | 1.333 | 1.38 | |
19 | 3,5-Decadien-7-yne, 6-t-butyl-2,2,9,9-tetramethyl- | - | C18H30 | 30.626 | 1.35 | |
20 | Amberonne (isomer 1) | - | C16H26O | 30.599 | 1.19 | |
21 | β-D-Glucopyranoside, methyl 3,6-anhydro- | 3056-46-0 | C7H12O5 | 15.539 | 1.18 | |
22 | Ethyne, fluoro- | 2713-09-9 | C2HF | 1.364 | 1.09 | |
23 | Ethyne, fluoro- | 2713-09-9 | C2HF | 1.262 | 1.08 | |
24 | 3-O-Methyl-d-glucose | - | C7H14O6 | 16.131 | 1.04 | |
25 | Tetrapentacontane, 1,54-dibromo- | - | C54H108Br2 | 30.936 | 1.03 | |
26 | 3,4-Altrosan | - | C6H10O5 | 18.835 | 1.02 | |
WMB | 1 | (2-Aziridinylethyl)amine | 4025-37-0 | C4H10N2 | 1.092 | 23.72 |
2 | 1,2,4-Benzenetricarboxylic acid, 1,2-dimethyl ester | 54699-35-3 | C11H10O6 | 1.445 | 20.35 | |
3 | D-Allose | 2595-97-3 | C6H12O6 | 18.723 | 6.55 | |
4 | 1,6-Anhydro-β-d-talopyranose | - | C6H10O5 | 16.311 | 2.47 | |
5 | D-Allose | 2595-97-3 | C6H12O6 | 18.672 | 2.10 | |
6 | 4a,7b-Dihydroxy-3-(hydroxymethyl)-1,1,6,8-tetramethyl-9a-((2-methylpropanoyl)oxy)-5-oxo-1a,1b,4,4a,5,7a,7b,8,9,9a-decahydro-1H-cyclopropa[3,4]benzo[1,2-e]azulen-9-yl 2-methylbutanoate | 92214-55-6 | C29H42O8 | 31.916 | 1.88 | |
7 | 3-Pyridinol | 109-00-2 | C5H5NO | 9.513 | 1.62 | |
8 | Hydroquinone | 123-31-9 | C6H6O2 | 14.499 | 1.28 | |
9 | 3-Pyridinol | 109-00-2 | C5H5NO | 9.462 | 1.24 | |
10 | Dasycarpidan-1-methanol, acetate (ester) | 55724-48-6 | C20H26N2O2 | 31.354 | 1.12 |
Langmuir | Freundlich | Temkin | D-R model | ||||||||
a | Qm/mg·g−1 | R2 | KF | n | R2 | A | B | R2 | Q0/mmol·g−1 | E/kJ·mol−1 | R2 |
0.0214 | 28.726 | 0.991 | 1.636 | 1.837 | 0.972 | 0.229 | 6.154 | 0.988 | 17.577 | 0.128 | 0.833 |
Pseudo-first-order | Pseudo-second-order | Elovich | Intraparticle diffusion | ||||||||
Qe/mg·g−1 | k1 | R2 | Qe/mg·g−1 | k2 | R2 | a | b | R2 | ki | C | R2 |
3.072 | 0.025 | 0.820 | 3.230 | 0.006 | 0.943 | 0.762 | 2.490 | 0.896 | 0.064 | 1.086 | 0.874 |
Corresponding Biochar Type | № | Library/ID | CAS № | Chemical Formula | Ret. Time (min) | Peak Area (%) |
---|---|---|---|---|---|---|
HMB | 1 | 1,4-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester | 6422-86-2 | C24H38O4 | 29.196 | 15.09 |
2 | 13-Docosenamide, (Z)- | 112-84-5 | C22H43NO | 29.506 | 8.31 | |
3 | Phthalic acid, di(2-propylpentyl) ester | - a | C24H38O4 | 27.434 | 1.51 | |
4 | 4-Dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene)tyramine | - | C16H14N2O4 | 3.916 | 0.93 | |
5 | (Z)-Docos-9-enenitrile | - | C22H41N | 26.849 | 0.74 | |
6 | Benzene, 1,3-dimethyl- | 108-38-3 | C8H10 | 3.674 | 0.64 | |
7 | Dibutyl phthalate | 84-74-2 | C16H22O4 | 21.265 | 0.61 | |
HWMB | 1 | 13-Docosenamide, (Z)- | 112-84-5 | C22H43NO | 29.512 | 43.38 |
2 | 1,4-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester | 6422-86-2 | C24H38O4 | 29.196 | 5.64 | |
3 | (Z)-Docos-9-enenitrile | - | C22H41N | 26.846 | 2.37 | |
4 | cis-11-Eicosenamide | 10436-08-5 | C20H39NO | 29.716 | 1.73 | |
5 | 9-Octadecenamide, (Z)- | 301-02-0 | C18H35NO | 25.618 | 0.77 | |
6 | Benzene, 1,3-dimethyl- | 108-38-3 | C8H10 | 3.990 | 0.75 | |
7 | Phthalic acid, di(2-propylpentyl) ester | - | C24H38O4 | 27.434 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Zhang, D.; Shi, H.; Wang, S.; Wu, B.; Jia, J.; Feng, Z.; Zhao, W.; Chang, Z.; Husein, D.Z. Two Birds with One Stone: High-Quality Utilization of COVID-19 Waste Masks into Bio-Oil, Pyrolytic Gas, and Eco-Friendly Biochar with Adsorption Applications. C 2024, 10, 70. https://doi.org/10.3390/c10030070
Wang T, Zhang D, Shi H, Wang S, Wu B, Jia J, Feng Z, Zhao W, Chang Z, Husein DZ. Two Birds with One Stone: High-Quality Utilization of COVID-19 Waste Masks into Bio-Oil, Pyrolytic Gas, and Eco-Friendly Biochar with Adsorption Applications. C. 2024; 10(3):70. https://doi.org/10.3390/c10030070
Chicago/Turabian StyleWang, Tongtong, Di Zhang, Hui Shi, Sen Wang, Bo Wu, Junchao Jia, Zhizhen Feng, Wenjuan Zhao, Zhangyue Chang, and Dalal Z. Husein. 2024. "Two Birds with One Stone: High-Quality Utilization of COVID-19 Waste Masks into Bio-Oil, Pyrolytic Gas, and Eco-Friendly Biochar with Adsorption Applications" C 10, no. 3: 70. https://doi.org/10.3390/c10030070
APA StyleWang, T., Zhang, D., Shi, H., Wang, S., Wu, B., Jia, J., Feng, Z., Zhao, W., Chang, Z., & Husein, D. Z. (2024). Two Birds with One Stone: High-Quality Utilization of COVID-19 Waste Masks into Bio-Oil, Pyrolytic Gas, and Eco-Friendly Biochar with Adsorption Applications. C, 10(3), 70. https://doi.org/10.3390/c10030070