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Abstract: The study of novel materials for H2 storage is essential to consolidate the hydrogen as a clean
energy source. In this sense, the H2 adsorption on Pd4-nNin (n = 0–3) clusters embedded on pyridinic-
type N-doped graphene (PNG) was investigated using density functional theory calculations. First,
the properties of Pd4-nNin (n = 0–3) clusters embedded on PNG were analyzed in detail. Then, the H2

adsorption on these composites was computed. The Eint between the Pd4-nNin (n = 0–3) clusters and
the PNG was greater than that computed in the literature for Pd-based systems embedded on pristine
graphene. Consequently, it was deduced that PNG can more significantly stabilize the Pd4-nNin
(n = 0–3) clusters. The analyzed composites exhibited a HOMO–LUMO gap less than 1 eV, indicating
good reactivity. Based on the Eads of H2 on Pd4-nNin (n = 0–3) clusters embedded on PNG, it was
observed that the analyzed systems meet the standards set by the DOE. Therefore, these composites
can be viable alternatives for hydrogen storage.

Keywords: Bimetal clusters; ADFT calculations; H2 storage; 2D materials

1. Introduction

Hydrogen has garnered substantial attention for use as a clean energy source because
it possesses a higher energy content per unit weight [1–4]. A critical challenge associated
with hydrogen is the low density under standard conditions. Consequently, different
hydrogen storage technologies have been proposed to improve the storage density [5,6].
The liquefaction, compression, or a combination of these two methods are commonly used
strategies for hydrogen storage [7,8]. Nevertheless, these technologies are not economically
feasible [7,8]. Therefore, the research on hydrogen storage in materials has increased con-
siderably in the past few years [7], considering that novel materials with hydrogen storage
properties have sufficiently catered to the standards specified by the U.S. Department of
Energy (DOE) [9,10].

Nowadays, numerous researchers have analyzed the feasibility of various materials
for use in hydrogen storage [11,12]. The graphene-based structures have gained significant
attention due to favorable properties such as good conductivity, high thermal/chemical
stability, and high specific surface area [13,14]. Although graphene-based structures may
be viable alternatives for hydrogen storage, pristine graphene structures exhibit limited
chemical reactivity for hydrogen storage [15]. Consequently, different strategies have been
used to improve chemical reactivity of graphene, highlighting the use of defects. It has been
reported that defective graphene structures exhibit better reactivity properties compared to
pristine graphene [15–18]. Among the different types of defects implemented in graphene,
the use of pyridinic N3-doped graphene (PNG) has been highlighted [19–21].

In some studies, PNG properties have been improved by supporting metal atoms
or clusters on its surface, which helped to derive optimal properties for different appli-
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cations [22–24]. At a theoretical level, different metal clusters embedded on PNG have
been investigated for hydrogen storage [25–29]. For instance, density functional theory
(DFT) calculations were used to study the hydrogen adsorption on Pdn clusters (n = 1–4)
embedded on PNG structures [25,26]. In another study, the first-principle computations
were employed to study the hydrogen storage on a Sc atom embedded on PNG [27]. More
recently, Rh2 and Ti2 dimers embedded on PNG were studied for hydrogen sorption using
DFT computations [28]. Finally, the DFT-based computations were employed to investigate
the hydrogen storage on a Cu atom embedded on PNG [29]. Among the systems studied,
the Pd clusters embedded on PNG structure can be highlighted, since they present promis-
ing results for hydrogen storage [25,26]. However, Pd is an expensive and scarce metal.
Therefore, Pd alloyed with 3d metals is a well-established strategy to reduce the Pd content
in various other applications [30,31]. Also, it is necessary to explore the use of Pd-based
bimetal clusters embedded on PNG as materials for hydrogen storage, considering that
bimetal clusters exhibit significantly different properties with respect to monometal clus-
ters. In this sense, in this study, the H2 adsorptions on small Pd4-nNin (n = 0–3) clusters
embedded on PNG were studied using DFT calculations. First, the properties of Pd4-nNin
(n = 0–3) clusters embedded on PNG were explored. Then, the H2 adsorption sites and
energies on Pd4-nNin (n = 0–3) clusters embedded on PNG were computed.

2. Computational Details

All computations were carried out using the auxiliary DFT (ADFT) implemented in
the deMon2k program [32]. For the exchange and correlation contributions, the revised
PBE functional was employed [33]. The variational fitting approach was employed to
calculate the Coulomb energy [34]. The 18-electron QECP|SD basis set was used for
the Pd atoms [35], and the remaining atoms were described using the DZVP-GGA basis
set [36]. All computations were performed considering the GEN-A2* auxiliary function
set [36]. The restricted open-shell Kohn–Sham computations were performed to avoid spin
contaminations for open-shell systems [37]. All structures were optimized in the delocalized
internal coordinates that employed the quasi-Newton method [38]. The computational
methodology used in this investigation has been previously validated [21,39] and the
results obtained agreed with the experimental evidence.

First, the most stable structures for the Pd4-nNin (n = 0–3) clusters were obtained
from the literature [40,41] and reoptimized in this study. To analyze the properties of
Pd4-nNin (n = 0–3) clusters embedded on PNG, the PNG structure used in this study is
illustrated in Figure 1. We selected this structure because it has been widely utilized to
represent the graphene structure [42–44]. To obtain the most stable interaction between
the Pd4 cluster and the PNG, four different interactions were proposed and optimized,
while, for the bimetal Pd4-nNin (n = 1–3) clusters and the PNG, ten different structures were
considered and optimized for each system. The interaction energies (EInt) between the
Pd4-nNin (n = 0–3) clusters and the PNG were calculated by employing an equation reported
in the literature [21]. For a detailed understanding of the interaction between the Pd4-nNin
(n = 0–3) clusters and the PNG, bond critical points (BCPs) and the Bader charge between
the Pd4-nNin (n = 0–3) clusters and the PNG were calculated. Finally, to gain insights into
the reactivity of the studied systems, frontier molecular orbitals were calculated.

Finally, to obtain the most stable H2 adsorption on Pd4-nNin (n = 0–3) clusters embed-
ded on PNG, various initial adsorptions were investigated. The H2 adsorption energies
(Eads) on Pd4-nNin (n = 0–3) clusters embedded on PNG were calculated using the follow-
ing equation:

Eads = EH2/cluster/PNG − (EH2 + Ecluster/PNG)

where EH2/cluster/PNG is the energy of the H2 molecule adsorbed on Pd4-nNin (n = 0–3)
clusters embedded on PNG and where EH2 and Ecluster/PNG are the total energy computed
for H2 molecules and Pd4-nNin (n = 0–3) clusters embedded on PNG, respectively.
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Figure 1. The PNG structure. Blue, yellow, and white spheres represent N, C, and H atoms, respec-
tively. 
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reported in Figure 2. For the Pd4 structure embedded on PNG, it was observed that the 
interaction occurs with a Pd atom in the PNG vacancy, which agrees with the most stable 
interaction reported in the literature for this system [25,45]. For the Pd3Ni1 structure em-
bedded on PNG, it was observed that the interaction occurred through the Ni atom in the 
PNG vacancy. For the Pd4-nNin (n = 2 and 3) clusters embedded on PNG, the interactions 
were through two Ni atoms (one Ni atom in the PNG vacancy and the other Ni atom 
aĴached to the carbon atoms of the PNG). On the spin multiplicity of Pd4-nNin (n = 0–3) 
clusters embedded on PNG, all composites presented a spin multiplicity of 4 (quartet) 
(Table 1). As the systems studied are open-shell, it is important to know their spin density 
distributions. The computed results for the Pd4-nNin (n = 0–3) clusters embedded on PNG 
are illustrated in Figure 3. It was observed that the spin density was located mainly on the 
metal atoms. 

 
Figure 2. The most stable interactions between the Pd4-nNin (n = 0–3) clusters and the PNG. (a) Pd4 
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PNG, and (d) Pd1Ni3 cluster embedded on PNG. Blue, yellow, white, green, and black spheres rep-
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Figure 1. The PNG structure. Blue, yellow, and white spheres represent N, C, and H atoms, respectively.

3. Results and Discussion
3.1. Properties of Pd4-nNin (n = 0–3) Clusters Embedded on PNG

The most stable interactions between the Pd4-nNin (n = 0–3) clusters and the PNG
are reported in Figure 2. For the Pd4 structure embedded on PNG, it was observed that
the interaction occurs with a Pd atom in the PNG vacancy, which agrees with the most
stable interaction reported in the literature for this system [25,45]. For the Pd3Ni1 structure
embedded on PNG, it was observed that the interaction occurred through the Ni atom in the
PNG vacancy. For the Pd4-nNin (n = 2 and 3) clusters embedded on PNG, the interactions
were through two Ni atoms (one Ni atom in the PNG vacancy and the other Ni atom
attached to the carbon atoms of the PNG). On the spin multiplicity of Pd4-nNin (n = 0–3)
clusters embedded on PNG, all composites presented a spin multiplicity of 4 (quartet)
(Table 1). As the systems studied are open-shell, it is important to know their spin density
distributions. The computed results for the Pd4-nNin (n = 0–3) clusters embedded on PNG
are illustrated in Figure 3. It was observed that the spin density was located mainly on the
metal atoms.
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Figure 2. The most stable interactions between the Pd4-nNin (n = 0–3) clusters and the PNG. (a) Pd4

cluster embedded on PNG, (b) Pd3Ni1 cluster embedded on PNG, (c) Pd2Ni2 cluster embedded
on PNG, and (d) Pd1Ni3 cluster embedded on PNG. Blue, yellow, white, green, and black spheres
represent N, C, H, Ni, and Pd atoms, respectively.

Table 1. Spin multiplicities, Bond critical points (BCPs), interaction energies (Eint), Bader charge
analysis, and the HOMO–LUMO gap of the Pd4-nNin (n = 0–3) clusters embedded on pyridinic
N-doped graphene (PNG).

Pd4/PNG Pd3Ni1/PNG Pd2Ni2/PNG Pd1Ni3/PNG

Spin multiplicities 4 4 4 4
BCPs 3 3 4 5

Eint (eV) −2.74 −4.37 −5.00 −5.50
Bader charges (e) 0.39 0.54 0.65 0.74

HOMO–LUMO gap (eV) 1.0 0.91 0.71 0.69
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Figure 3. Spin density (red) plots of the Pd4-nNin (n = 0–3) clusters embedded on PNG. (a) Pd4 cluster
embedded on PNG, (b) Pd3Ni1 cluster embedded on PNG, (c) Pd2Ni2 cluster embedded on PNG,
and (d) Pd1Ni3 cluster embedded on PNG. Blue, yellow, white, green, and black spheres represent N,
C, H, Ni, and Pd atoms, respectively.

To complement the discussed interaction between the Pd4-nNin (n = 0–3) clusters and
the PNG, BCPs and bond paths were calculated. The computed results are illustrated
and reported in Figure 4 and Table 1, respectively. For the Pd4 cluster embedded on PNG
(Figure 4a), three BCPs were located between a Pd atom and three N atoms. For the
Pd3Ni1 cluster embedded on the PNG (Figure 4b), three BCPs were obtained between a Ni
atom and three N atoms. It was observed that between the Pd2Ni2 cluster and the PNG
(Figure 4c), there were four BCPs, where three were localized between a Ni atom and three
N atoms, while the other BCP was localized between a C atom and a Ni atom. Finally, for
the Pd1Ni3 cluster embedded on the PNG (Figure 4d), five BCPs were computed. Where
three BCPs were located between a Ni atom and three N atoms, the other two BCPs were
located between a Ni atom and two C atoms.
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Figure 4. The BCPs (orange spheres) and bond paths between the Pd4-nNin (n = 0–3) clusters and the
PNG. (a) Pd4 cluster embedded on PNG, (b) Pd3Ni1 cluster embedded on PNG, (c) Pd2Ni2 cluster
embedded on PNG, and (d) Pd1Ni3 cluster embedded on PNG. Blue, yellow, white, green, and black
spheres represent N, C, H, Ni, and Pd atoms, respectively.

To better understand the interaction between the Pd4-nNin (n = 0–3) clusters and PNG,
the Eint and Bader charge transfer were computed (see Table 1). The calculated Eint is
greater than that calculated in the literature for Pd-based system embedded on pristine
graphene [46,47]. Therefore, it was deduced that PNG can be a better support material to
stabilize the Pd4-nNin (n = 0–3) clusters. It was observed that as the Ni content increases
in the Pd4-nNin (n = 0–3) clusters, the Eint between the clusters and PNG tends to increase.
Furthermore, the Eint calculated for the Pd4 cluster embedded on PNG is similar to that
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calculated in the literature [25,45]. Based on Bader charge analysis, Pd4-nNin (n = 0–3)
clusters transfer charge to the PNG because they adopt a positive charge (see Table 1). The
calculations revealed that the charge transfer between the clusters and the PNG increases
with the number of Ni atoms in the cluster, which can be attributed to the electronegativity
of metal atoms, where the electronegativity of the Pd atoms is greater than the Ni atoms.
Therefore, Ni atoms can transfer charge more easily. The highest charge transfer from
the Pd4-nNin (n = 0–3) clusters to the PNG structure was produced by the metal atoms
embedded in the PNG vacancy. It was also observed that C atoms bonded to N atoms
transfer charge to the N atoms. When the Pd4-nNin (n = 0–3) clusters are deposited on
the PNG structure, N atoms gain the transferred charge (≈−1.07 e per atom), which is
attributed to the electronegativity of these atoms. Finally, to investigate the reactivity of
the Pd4-nNin (n = 0–3) clusters embedded on PNG, the energy differences between the
frontier orbitals (HOMO–LUMO gap) were calculated (see Table 1). The studied composites
exhibited a HOMO–LUMO gap less than 1 eV, indicating good reactivity. It was observed
that as the Ni content increases in the Pd4-nNin (n = 0–3) clusters, the HOMO–LUMO
gap tends to decrease, which can be associated with an improvement in the reactivity of
the composites.

3.2. H2 Adsorption on Pd4-nNin (n = 0–3) Clusters Embedded on PNG

To incorporate novel materials in H2 storage, it is necessary to calculate the Eads of
the H2 molecule on the materials of interest. In this sense, the H2 adsorptions on Pd4-nNin
(n = 0–3) clusters embedded on PNG were computed. First, the H2 molecule was optimized,
where a H-H bond length of 0.749 Å was calculated, which is very similar to experimental
data reported in the literature (0.741 Å) [48]. The most stable H2 adsorption on Pd4-nNin
(n = 0–3) clusters embedded on PNG is illustrated in Figure 5. It was observed that the H2
molecule was adsorbed on a metal atom of the Pd4-nNin (n = 0–3) clusters embedded on
PNG. For the Pd4-nNin (n = 0–2) clusters embedded on PNG, the H2 adsorption occurs on
a Pd atom, whereas for the Pd1Ni3 cluster embedded on PNG, the H2 adsorption occurs
on a Ni atom. The calculated interaction mode for the H2 molecule on Pd4 embedded on
PNG is like that reported in the literature as the most stable adsorption [25]. When the
hydrogen molecule is adsorbed on Pd4-nNin (n = 0–3) clusters embedded on PNG, a slight
elongation of the H-H bond length is observed (see Table 2), coinciding with previously
reported results [25]. On the Eads of the H2 molecule on Pd4-nNin (n = 0–3) clusters
embedded on PNG (see Table 2), the calculated values are less than 0.50 eV, inferring that
the H2 adsorption on Pd4-nNin (n = 0–3) clusters embedded on PNG is via physisorption.
Interestingly, the Eads of H2 molecule comply with the standards specified by the DOE (−0.2
to −0.6 eV/H2) [15,49]. Consequently, the Pd4-nNin (n = 0–3) clusters embedded on PNG
can be viable alternatives for hydrogen storage. Even though the Eads results show that
the proposed materials are good candidates for hydrogen storage, future studies should be
aimed at evaluating the gravimetric capacity of Pd4-nNin (n = 0–3) clusters embedded on
PNG for hydrogen storage.

Table 2. Adsorption energies (Eint) and H-H bond length of the H2 adsorption on Pd4-nNin (n = 0–3)
clusters embedded on PNG.

Pd4/PNG Pd3Ni1/PNG Pd2Ni2/PNG Pd1Ni3/PNG

Eads (eV) −0.29 −0.31 −0.39 −0.37
H-H bond lengths (Å) 0.83 0.83 0.84 0.85
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studied, employing DFT computations. To the best of the authors’ knowledge, this is the 
first DFT-based study on the H2 adsorption on these composites. Based on the Eint between 
the Pd4-nNin (n = 0–3) clusters and the PNG, it was observed that the Eint was greater than 
that calculated in the literature for Pd-based clusters embedded on pristine graphene. 
Therefore, it has been deduced that PNG can be a good support material to stabilize the 
Pd4-nNin (n = 0–3) clusters. Further, the analyzed composites exhibit a HOMO–LUMO gap 
less than 1 eV, indicating good reactivity. According to the Eads of H2 on the Pd4-nNin (n = 
0–3) clusters embedded on PNG, it was observed that the systems studied meet the stand-
ards specified by the DOE. Consequently, these composites can be viable alternatives for 
hydrogen storage. 
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Pd atoms, respectively.

4. Conclusions

In this study, the H2 adsorption on Pd4-nNin (n = 0–3) clusters embedded on PNG was
studied, employing DFT computations. To the best of the authors’ knowledge, this is the
first DFT-based study on the H2 adsorption on these composites. Based on the Eint between
the Pd4-nNin (n = 0–3) clusters and the PNG, it was observed that the Eint was greater
than that calculated in the literature for Pd-based clusters embedded on pristine graphene.
Therefore, it has been deduced that PNG can be a good support material to stabilize the
Pd4-nNin (n = 0–3) clusters. Further, the analyzed composites exhibit a HOMO–LUMO
gap less than 1 eV, indicating good reactivity. According to the Eads of H2 on the Pd4-nNin
(n = 0–3) clusters embedded on PNG, it was observed that the systems studied meet the
standards specified by the DOE. Consequently, these composites can be viable alternatives
for hydrogen storage.
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