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Abstract: New flower-shaped metallophthalocyanine polymers (THB-4-M, M = Co, Cu) have been
synthesized by using 1,3,5-Tri(4-hydroxyphenhyl) benzene (THB) as rigid and contorted units to
control the morphology under the solvothermal method. The polymers were characterized using
FT-IR, UV-vis, SEM, TGA, and XPS. These polymers were applied as heterogeneous catalysts for
the chemical fixation of carbon dioxide (CO2) to cyclic carbonates without solvent. The influence of
reaction parameters and different metal centers on the catalytic performance were studied in detail.
Under optimal conditions, the catalysts showed high conversion (49.9–99.0%), selectivity (over 85%),
and reusability at ambient conditions (at 1 bar CO2).

Keywords: phthalocyanines polymers; carbon dioxide fixation; cyclic carbonate

1. Introduction

Metallophthalocyanines (MPcs) have been a theme of great interest in many areas, such
as photovoltaic cells [1–3], non-linear optics [4,5], gas sensors [6,7], semiconductors [8,9],
and so forth [10]. Metallophthalocyanines (MPcs) have four imino-isoindoline rings with a
conjugated 18π-electron system, and are highly stable synthetic tetrapyrrolic macrocycle
compounds [11]. However, MPcs have shown insufficient electrocatalytic activity and poor
catalytic performance due to their easy aggregation as they contain a planar-shaped struc-
ture [12]. To solve the aforementioned problem, many attempts have been made to prepare
MPcs-loaded materials through the use of a nanomaterials, such as carbon nanotubes [13],
graphene [14], Ag nanoparticle [15], and so on [16]. In addition, MPcs were suitable
units of nanoporous materials due to their comprehensive application as catalysts and
their electrocatalytic and non-linear optics characteristics. Covalent organic frameworks
(COFs) [17], other nanomaterials [18–20], and metal–organic frameworks (MOFs) [21] have
employed MPcs as their primary structural unit. Polymers of intrinsic microporosity (PIM)
were also synthesized due to the inability of component macromolecules with a rigid and
contorted structure, such as MPcs, have been developed over the past decade [22–29]. Such
microporous polymers containing MPcs have attracted many researchers to study them as
heterogeneous catalysts.

Furthermore, the strategy for introducing rigid and contorted units in polymeric cat-
alyst held great attraction for many researchers. Those polymeric catalysts have shown
excellent properties in terms of large specific surface area, high porosity, and strong acid re-
sistance. McKeown et al. reported a new microporous MPcs network polymer synthesized
from the interconnection of MPcs units through the rigid and contorted linkers to enhance
of catalytic activity of MPcs [30]. Chen’s group designed a 1,3,5-tris (1H-benzo[d]imidazol-
2-yl) benzene-linked polymeric-sphere catalyst and showed high conversions and cyclic

C 2024, 10, 74. https://doi.org/10.3390/c10030074 https://www.mdpi.com/journal/carbon

https://doi.org/10.3390/c10030074
https://doi.org/10.3390/c10030074
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/carbon
https://www.mdpi.com
https://orcid.org/0009-0007-8822-3688
https://orcid.org/0000-0003-1750-7505
https://doi.org/10.3390/c10030074
https://www.mdpi.com/journal/carbon
https://www.mdpi.com/article/10.3390/c10030074?type=check_update&version=3


C 2024, 10, 74 2 of 15

organic carbonate yields at 298 K and 1 bar of CO2 [31]. It was found that introduction of
the rigid and contorted units can enhance the porosity of heterogeneous catalysts [30,31].
Specifically, 1,3,5-Tri(4-hydroxyphenhyl) benzene (THB), as reported by many researchers,
was applied, due to its excellent properties in terms of large specific surface area, high
porosity, and strong acid resistance [32–36]. However, the network polymers reported were
prepared by using high temperatures, a complicated line, and a special method.

In this study, we synthesized two microporous polymers containing MPcs that used
1,3,5-tri(4-hydroxyphenhyl) benzene (THB) as the rigid and contorted units, and investi-
gated the catalytic activity for CO2 fixation (Figure 1).
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2. Experimental
2.1. Materials

Silicon tetrachloride (SiCl4, 99.5%), 4-methoxyacetophenone (99.0%), pyridine hy-
drochloride (98.0%), 4-nitrophthalonitrile (98.0%), potassium carbonate (K2CO3, 98.0%),
copric chloride dihydrate (CuCl2·2H2O, AR), cobalt chloride hexahydrate (CoCl2·6H2O,
AR), and ethanol (>99.5%, Safe Dry) were acquired from Shanghai Macklin Biochemical
Technology Co., Ltd. (China). Dimethylsulfoxide (DMSO, 99.5%), N, N-dimethylformamide
(DMF, 99.5%), 1-hexanol (98.0%), 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU, 99%), tetra-
butylammonium bromide (TBAB, 99.0%), tetrabutylammonium chlorine (TBAC, 99.0%),
tetrabutylammonium iodine (TBAI, 99.0%), benzyltriethylammonium chloride (TEBAC,
98.0%), hexadecyl trimethyl ammonium bromide (CTAB, 99.0%), hexadecyl trimethyl am-
monium chloride (CTAC, 99.0%), epichlorohydrin (ECH, 99.5%), styrene oxide (98.0%),
cyclohexene oxide (98.0%), 1,2-epoxytetradecane (95.0%), and ethylene glycol diglycidyl
ether (95.0%) were acquired from Shanghai Macklin Biochemical Co., Ltd. (Shanghai,
China). Deionized water (18.2 MΩ cm) was employed throughout the experiments. The
1,3,5-tri(4-methoxyphenyl) benzene (TMOB) (Scheme S1) and 1,3,5-tri(4-hydroxyphenyl)
benzene (THB) (Scheme S2) were obtained according to reference [37], respectively. Cobalt
phthalocyanine and copper phthalocyanine were obtained according to reference [24].

2.2. Synthesis of Phthalonitrile

A reaction flask was charged with THB (2.16 g), 4-nitrophthalonitrile (3.12 g), anhy-
drous K2CO3 (2.50 g), and dry DMSO (20.00 mL), and the reaction mixture was stirred
at room temperature under a nitrogen atmosphere. Then, anhydrous K2CO3 (1.25 g) was
added in portions every 12 h. After 48 h, the precipitates were obtained after the resulting
reaction mixture was poured into water (200.00 mL), and then filtered and further washed
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with water, and the phthalonitrile was obtained (yield ca. 97%) and marked as THB-4,
where “4” represents the 4-substituted. All the above products were confirmed by a series
of characterization analyses (ESI*). 1H NMR (400 MHz, DMSO-d6): δ 8.15 (d, J = 8.8 Hz,
3H), 8.08–8.02 (m, 6H), 7.99 (s, 3H), 7.86 (d, J = 2.6 Hz, 3H), 7.48 (dd, J = 8.8 Hz, 2.6 Hz, 3H),
7.38–7.31 (m, 6H). 13C NMR (75 MHz, DMSO-d6, 293 K): δ = 161.4, 154.2, 141.1, 137.9, 136.8,
129.9, 124.8, 123.3, 122.7, 121.2, 117.2, 116.4, 115.9, 108.3. HRMS (TOF-ES): calculated for
(C48H25N6O3

+), [M+H]+, 733.1983, found 733.1981.

2.3. Synthesis of THB-4-M (M = Co, Cu)

Phthalonitrile (THB-4, 0.66 g), CoCl2·6H2O (0.28 g), DBU (0.60 mL), and dry DMF
(5.00 mL) were added to a beaker and stirred to form a solution. After dissolving, 55.00 mL
1-hexanol was added and stirred for 30 min. The mixture was transferred into a hydrother-
mal reactor, and the reaction temperature was maintained at 160 ◦C for 24 h. Then, it was
cooled to room temperature and washed with ethanol, DMF, acetone, deionized water,
and ethanol by the Soxhlet extraction method in sequence. After that, the solid was dried
thoroughly, and the product, a bluish-green solid (THB-4-Co), was obtained (0.40 g). THB-
4-Cu was prepared following the same synthetic procedure as for THB-4-Co, except that
CoCl2·6H2O (0.28 g) was replaced by CuCl2·2H2O (0.17 g) (Figure 2).
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2.4. Characterizations

Various analytical techniques were employed to characterize the synthesized THB-
4-Co and THB-4-Cu, such as Fourier transform infrared spectroscopy (FTIR), scanning
electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), and thermogravi-
metric analysis (TGA). An X-ray diffractometer (XRD, DX-2700) with Cu-Kα radiation
(λ = 1.5418 Å) was used to ensure the phase compositions and crystalline structure over
a 2θ range of 5–80◦. A field emission scanning electron microscope (FE-SEM, Hitachi
SU-8100) equipped with an energy dispersive X-ray spectrometer (EDS) was employed to
characterize the surface morphologies and micro/nanostructures of the THB-4-M. EDS was
recorded at 15 kV and 15.0 mm sample distance at the Z-axis. All the samples were sput-
tered with platinum before observation. X-ray photoelectron spectra (XPS) were collected
using multifunctional electron spectroscopy (Kratos, AXIS, Ultra, DLD) with Al-Kα radia-
tion (hν = 1486.6 eV). The energy resolution during X-ray photoelectron spectra recording
was 0.1 eV. All BE values were calibrated by using contaminant carbon on the catalyst
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with C 1 s at 284.6 eV. Thermal stability analyses were conducted using a PerkinElmer
Diamond TG-DTA instrument in a nitrogen atmosphere (15–850 ◦C; 20 ◦C/min). To obtain
the specific surface area measurements of the THB-4-M, an ASAP-2020 Micromeritics was
used in nitrogen physisorption at 77 K. The specific areas of the samples were determined
by the Brunauer–Emmett–Teller (BET) procedure using nitrogen adsorption. The quantifi-
cation of cobalt or copper loading on each sample was performed by inductively coupled
plasma (ICP OES 730) emission spectrometry. The UV–VIS absorption spectra was gained
using a UV–VIS spectrophotometer (Shimadzu UV-2600). To obtained the IR spectra (KBr
pellets), the Nicolet Avatar 370 Fourier transform infrared spectra (FTIR) spectrometer was
employed. The nuclear magnetic resonance (NMR) spectra of intermediate products were
obtained using a Bruker AVANCE II 400NMR spectrometer. High-resolution mass spectra
(HRMS) were recorded on a Waters TOFMS GCT Premier using ESI ionization. Elemental
analysis was recorded by an Elementar UNICUBE using a thermal conductivity detector.

3. Results and Discussion
3.1. Characterization of Network Polymers

First, the phthalonitrile monomer was synthesized from 4-nitrophthalonitrile and the
twisting rings of 1,3,5-tri(4-hydroxyphenhyl) benzene (THB) (Scheme S3). The monomer
was completely confirmed by 1H-NMR (Figure S1), 13C-NMR (Figure S2). Then, we
employed this as a component unit of the MPcs network polymers THB-4-Co and THB-
4-Cu by coupling the condensation of 4-nitrophthalonitrile with a linker unit (THB) in
the presence of metal salts ((CoCl2■6H2O) or (CuCl2■2H2O)) by the solvothermal method.
Colorful polymers were obtained by the solvothermal reaction, washed, and subsequently
purified by Soxhlet extraction (Figure 2).

Figure 3a shows the ultraviolet–visible (UV–VIS) DRS absorption of the complex
(CoPc, THB-4-Co, CuPc, THB-4-Cu). The phthalocyanine network polymers showed
typical electronic spectra with two absorption bands, which were similar to molecule
phthalocyanines. THB-4-Co showed a split Q-band at 678 nm and 626 nm, whereas the
CoPc exhibited a Q-band at 599 nm and 657 nm in CH2Cl2 [38,39]; they were ascribed to
the Q-band of monomeric and dimeric forms of MPcs. According to the curves, it was
obviously above that the monomeric forms were more stabilized than the dimeric forms in
CoPc/CH2Cl2 solution; the dimeric forms showed more than the monomeric forms in the
polymers, on the contrary. The same curve shape was also observed in the curves of CuPc
and THB-4-Cu [28]. On account of being completely insoluble in normal solvent, the UV–
VIS spectrum of CuPc in concentrated sulfuric acid revealed two bands: at 701 and 791 nm,
which are characteristic of the dimeric and monomeric forms [29]. However, the as-prepared
THB-4-Cu showed two bands: at 629 and 691 nm, which were red-shifted by 72 nm and 100
nm with that of CuPc in concentrated sulfuric acid, respectively. Furthermore, the emission
maximum of polymer THB-4-Cu was red-shifted nearly 10 nm as compared with that of
THB-4-Co, and it is well known that the difference is due to the central ion, as is typical
for phthalocyanines. Additionally, a broadened and split Q-band was detected in both
polymers due to the aggregation of MPcs, and the aggregate unit showed the high-energy
band and the monomer showed the homologous low-energy band [28]. The emission
maximum of polymer THB-4-Co was red-shifted nearly 20 nm as compared with that of
CoPc, indicating that THB-4-Co had a narrower band gap than CoPc without regard to the
solvent effect.

Table 1 summarizes the optical data of the complex (CoPc, THB-4-Co, CuPc, THB-
4-Cu). IR peaks appeared in the range of 3068; 2856 cm−1 were attributed to -C=C-H
stretching vibrations of the aromatic groups of the phthalocyanines. The peaks at 1610, 1470,
and 1390 cm−1 belonged to C=C, C-N, and C=N stretching vibrations, respectively [40–42].
Figure 3b shows a similar tendency in both the polymers and the parent monomers. These
FTIR spectroscopic data show that the objective product retained the most feature peaks
of its corresponding unit. Thus, the above analysis results exactly verified the direct
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heterogenization of THB-4-Co and THB-4-Cu polymers by the solvothermal reaction to
produce very stable and heterogeneous porous polymeric materials.
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Table 1. The optical data of THB-4-Co and THB-4-Cu.

Entry MPcs Absorption/nm IR Peaks/cm−1

1 CoPc 599, 657 a

3068, 2856, 1610, 1470,
1390

2 THB-4-Co 626, 677
3 CuPc 701, 791 b

4 THB-4-Cu 629, 691
a Absorption spectra in CH2Cl2 at a concentration 1.0 × 10−5 mol/L. b Absorption spectra in concentrated sulfuric
acid at a concentration of 1.0 × 10−5 mol/L.

The thermal stabilities of these complexes (CoPc, THB-4-Co, CuPc, THB-4-Cu) were
researched by thermogravimetric analysis to confirm the stability of the polymers. The TG
curve of the as-prepared THB-4-M shows a similar trend with CoPc and CuPc, respectively.
Additionally, that of the as-prepared THB-4-M was found to be thermally stable up to
400 ◦C, indicating possible outstanding thermal stability under harsh reaction conditions
(Figure 4a inset figure, more details see Figure S8). It was shown that the weight loss of
THB-4-Cu and THB-4-Co occurred at slight below 100 ◦C; we suspected that some solvent
molecules were absorbed in the pores of the THB-4-M. The unit of THB was decomposed
prior to the ring of phthalocyanine, according to the contrastive analysis. Notably, the
weight loss of THB-4-Cu at 443 ◦C was only 14.5%, and the loss of THB-4-Co at 439 ◦C was
19.8%, and THB-4-Cu showed more thermostability than THB-4-Co.

Powder X-ray diffraction (PXRD) patterns were employed to assess the crystalline
structure of these complexes (CoPc, THB-4-Co, CuPc, THB-4-Cu). As shown in Figure 4b,
the diffraction peaks were affirmed as the crystalline structure of CoPc and CuPc [25].
Notably, the as-prepared polymers showed that a broad peak at 2θ = 19.42◦ corresponds to
the construction of amorphous polymeric material and reveals a non-crystalline charac-
ter [40–42] (Figure 4b). X-ray photoelectron spectroscopy (XPS) was employed to investigate
the surface compositions of THB-4-Co and THB-4-Cu. The survey scans of XPS unambigu-
ously verified the peaks attributed to carbon, nitrogen, and cobalt for THB-4-Co and copper
for THB-4-Cu (Figure 5). As shown in Figure 5c, the Co (2p) XPS spectrum of THB-4-Co
showed two deconvoluted peaks: at 797.0 and 781.2 eV, corresponding to Co (2p1/2) and
Co (2p3/2), indicating that Co had coordinated with N to form Co-Nx moieties [43–47]. In
the case of THB-4-Cu, the presence of Cu (II) species was confirmed by the appearance of
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two main peaks: at 953.3 and 933.1 eV, assigned to Cu (2p1/2) and Cu (2p3/2), as shown
in Figure 5d. Additionally, the presence of C and N was also studied. Predictably, the C
(1s) XPS spectrum of THB-4-Cu showed three deconvoluted peaks: at 284.8, 286.4, and
288.4 eV, attributed to C-C/C=C, C-N, and C-O. The N (1s) XPS spectrum of THB-4-Cu
showed two peaks: at 398.5 and 400.1 eV, corresponding to the C-N and N-M (M = Cu, Co),
as shown in Figure 6a,c [43–47]. The curves and the peaks were also exhibited in the XPS
spectrum of THB-4-Co, as shown in Figure 6b,d [43–47]. Therefore, the Co(2p) XPS analysis
of THB-4-Co and the Cu(2p) XPS analysis of THB-4-Cu confirmed successful as-prepared
THB-4-M polymers.
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To more deeply comprehend the physical structure of the as-prepared THB-4-M
polymers, N2-adsorption–desorption, CO2-adsorption–desorption, and scanning electron
microscopy (SEM) were employed. The N2 adsorption–desorption isotherm was recorded
at 77 K to investigate the porosities of the THB-4-Co and THB-4-Cu. It was found that the
THB-4-M polymers showed a typical type-IV isotherm (Figure 7a,c) with a surface area
of material of 71.14 m2·g−1 and 114.25 m2·g−1 (Table 2). The as-prepared materials were
capable of adsorbing obvious amounts of CO2 molecules under the ambient conditions. The
corresponding test had been measured to gain the CO2 adsorption isotherms (Figure 7b,d).
The CO2 absorption isotherms were carefully tested up to 760 mm Hg. As shown in Table 2,
the THB-4-Co showed the uptake capacities 24.14 and 14.17 cm3·g−1 at 273 and 298 K;
the THB-4-Cu showed the uptake capacities 25.40 and 9.68 cm3·g−1 at 273 and 298 K,
respectively. In this regard, the uptake capacities of THB-4-Co were superior to the uptake
capacities of THB-4-Cu at 298 K.

The morphology of CoPc, CuPc, and THB-4-M is displayed in SEM images (Figure 8
and Figure S9). The morphology of CoPc and CuPc were shown as the normal crystalline
form, consistent with the performance of the XRD spectra. The morphology of THB-4-M was
flower-shaped, with the size of each petal estimated to be ca. 60–80 nm. The morphology
of THB-4-Cu was shown to be smoother than that of THB-4-Co (Figure 8b,e). Subsequently,
SEM–EDS and SEM-mapping analysis confirmed the complexation of Co and Cu into the
polymeric frameworks along with other elements, such as C, N, and O. Therefore, all elements
were distributed uniformly over the as-prepared polymers (Figure 9 and Figure S10), and the
elemental analysis of the THB-4-M polymers is shown in Table S1. The found data might not
be relevant or up to the calculated data because of the impurity of the polymers.

Table 2. Characterization data of THB-4-M polymers.

Entry MPcs SBET
(m2·g−1)

Vpore

(cm3·g−1)
Dpore
(nm)

CO2 Capacities
(273 K, cm3·g−1)

CO2 Capacities
(298 K, cm3·g−1) ICP

1 THB-4-Co 71.14 0.36 24.07 24.14 14.17 7.73
2 THB-4-Cu 114.25 0.25 19.71 25.40 9.68 8.52
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3.2. Cycloaddition of CO2 to Cyclic Carbonate

As mentioned in the introduction, the new flower-shaped catalysts were employed
in the cycloaddition of CO2 to epoxides. As shown in Table 3, we applied these network
polymers as catalysts in the synthesis of cyclic carbonates. The cycloaddition of pure CO2
(1 bar) with epichlorohydrin (ECH) as substrate and tetrabutylammonium bromide (TBAB)
as co-catalyst at certain temperatures in solvent-free conditions was selected as a model
reaction to start our research. Surprisingly, both THB-4-Cu and THB-4-Co showed excellent
conversion under the above reaction conditions, and exhibited better TON than certain
catalysts that contained Cu ion and Co ion.

Table 3. The cycloaddition of CO2 with ECH catalyzed by THB-4-M under solvent-free conditions.

C 2024, 10, 74 10 of 16 
 

 

Table 3. The cycloaddition of CO2 with ECH catalyzed by THB-4-M under solvent-free conditions. 

 

Entry Catalysts 
P CO2 
(bar) T (°C) t (h) Conv. (%) TON (a) Ref. 

1 
Co/POP-

TPP/TBAB 1 29 24 95.6 442 [48] 

2 CoPc/g-C3N4 30 130 24 97.6 296 [40] 
3 CoPc-NDs/TBAB 1 25 24 88.0 1708 [49] 
4 Co-CMP/TBAB 3 100 1 98.1 201 [50] 

5 FTPFs-Cu-Nb-
Ni/TBAB 

1 r.t. 48 93.0 186 [51] 

6 CuPc@CS/TBAB 1 80 4.5 95.0 270 [29] 
7 FJI-H7(Cu)/TBAB 1 25 60 66.5 332.5 [29] 

8 
MMPF-

9(Cu)/TBAB 1 25 48 87.4 NM (b) [52] 

9 MMCF-
2(Cu)/TBAB 

1 r.t. 48 88.5 NM [53] 

10 CoPc/TBAB / (c) 140 5 5.1 NM [54] 

11 THB-4-Co/TBAB 1 60 24 90.3 674 
This work 

(d) 
12 THB-4-Cu/TBAB 1 60 24 91.6 676 This work 

(a) Turn-over number (mol substrate converted/mol catalysts based on Cu); (b) NM: not mentioned; (c) 
CO2 360 mmol; (d) Reaction conditions: 1.00 g epichlorohydrin (ECH), 10 mg THB-4-M (0.013 mmol 
MPc), and 50 mg TBAB (the mass ratio of catalyst: co-catalyst = 1:5) were added to a Schlenk tube 
with a CO2 balloon (1 bar pure CO2) under solvent-free conditions. 

First, reaction conditions such as the amount of co-catalyst, temperature, and reaction 
time were screened using epichlorohydrin as the substrate (Table 4). Typically, 1.00 g of 
epichlorohydrin (ECH), 10 mg of catalyst (THB-4-M, 0.013 mmol MPc), and 50 mg TBAB 
(the mass ratio of catalyst and co-catalyst was 1:5) were added to a Schlenk tube with a 
CO2 balloon (1 bar pure CO2) under solvent-free conditions. First, the tube was placed 
under a vacuum and purged three times, and the pressure of CO2 was set by the CO2 
balloon (1 bar pure CO2). The mixture was stirred at the given temperature and time. 
Similar to the literature [29], TBAB showed low catalytic performance, and the conversion 
was only 47.3% in our system, but higher than the review. CuPc and CoPc exhibited no 
catalytic performance and were also confirmed in this system. Remarkably, in our case, 
the conversion and selectivity of ECH were determined by 1H NMR spectra analysis using 
1,3,5-trimethoxybenzene as an internal standard (Figure S11) [55,56]. 

Quaternary ammonium halides were employed as a co-catalyst in the commercial 
synthetic process for cyclic carbonates [57]. Table 4 shows that the alkyl group and the 
counter anion of the quaternary ammonium salt significantly affect the catalytic activity. 
With regard to different alkyl groups, catalytic activity increased in the following order: 
TBA+<CTA+<TEBA+ (Table 4, entry 3–5). As expected, Br- showed the best selectivity and 
highest conversion among the different halide ions [33,58–60] (Table 4, entry 1–3). The 
amount of co-catalyst in the catalytic system also affected the conversion and selectivity 
of chloropropene carbonate from CO2 and ECH (Table 4, entry 12–14). The conversion and 
selectivity of ECH increased along with the amount of TBAB. Furthermore, we studied 
the effect of the reaction time (Table 4, entry 7–10). It was found that the conversion of the 

Entry Catalysts P CO2 (bar) T (◦C) t (h) Conv. (%) TON (a) Ref.

1 Co/POP-TPP/TBAB 1 29 24 95.6 442 [48]
2 CoPc/g-C3N4 30 130 24 97.6 296 [40]
3 CoPc-NDs/TBAB 1 25 24 88.0 1708 [49]
4 Co-CMP/TBAB 3 100 1 98.1 201 [50]

5 FTPFs-Cu-Nb-
Ni/TBAB 1 r.t. 48 93.0 186 [51]

6 CuPc@CS/TBAB 1 80 4.5 95.0 270 [29]
7 FJI-H7(Cu)/TBAB 1 25 60 66.5 332.5 [29]
8 MMPF-9(Cu)/TBAB 1 25 48 87.4 NM (b) [52]
9 MMCF-2(Cu)/TBAB 1 r.t. 48 88.5 NM [53]

10 CoPc/TBAB / (c) 140 5 5.1 NM [54]
11 THB-4-Co/TBAB 1 60 24 90.3 674 This work (d)

12 THB-4-Cu/TBAB 1 60 24 91.6 676 This work

(a) Turn-over number (mol substrate converted/mol catalysts based on Cu); (b) NM: not mentioned; (c) CO2
360 mmol; (d) Reaction conditions: 1.00 g epichlorohydrin (ECH), 10 mg THB-4-M (0.013 mmol MPc), and 50 mg
TBAB (the mass ratio of catalyst: co-catalyst = 1:5) were added to a Schlenk tube with a CO2 balloon (1 bar pure
CO2) under solvent-free conditions.

First, reaction conditions such as the amount of co-catalyst, temperature, and reaction
time were screened using epichlorohydrin as the substrate (Table 4). Typically, 1.00 g of
epichlorohydrin (ECH), 10 mg of catalyst (THB-4-M, 0.013 mmol MPc), and 50 mg TBAB
(the mass ratio of catalyst and co-catalyst was 1:5) were added to a Schlenk tube with a
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CO2 balloon (1 bar pure CO2) under solvent-free conditions. First, the tube was placed
under a vacuum and purged three times, and the pressure of CO2 was set by the CO2
balloon (1 bar pure CO2). The mixture was stirred at the given temperature and time.
Similar to the literature [29], TBAB showed low catalytic performance, and the conversion
was only 47.3% in our system, but higher than the review. CuPc and CoPc exhibited no
catalytic performance and were also confirmed in this system. Remarkably, in our case, the
conversion and selectivity of ECH were determined by 1H NMR spectra analysis using
1,3,5-trimethoxybenzene as an internal standard (Figure S11) [55,56].

Quaternary ammonium halides were employed as a co-catalyst in the commercial
synthetic process for cyclic carbonates [57]. Table 4 shows that the alkyl group and the
counter anion of the quaternary ammonium salt significantly affect the catalytic activity.
With regard to different alkyl groups, catalytic activity increased in the following order:
TBA+<CTA+<TEBA+ (Table 4, entry 3–5). As expected, Br− showed the best selectivity
and highest conversion among the different halide ions [33,58–60] (Table 4, entry 1–3). The
amount of co-catalyst in the catalytic system also affected the conversion and selectivity of
chloropropene carbonate from CO2 and ECH (Table 4, entry 12–14). The conversion and
selectivity of ECH increased along with the amount of TBAB. Furthermore, we studied the
effect of the reaction time (Table 4, entry 7–10). It was found that the conversion of the ECH
increased obviously by the increase in the reaction time. Unfortunately, the selectivity of
the corresponding carbonate decreased after 48 h. Notably, high temperatures accelerated
both the conversion and selectivity of ECH (Table 4, entry 7–11). In addition, it was found
that both the conversion and selectivity increased obviously by an increase in the mass
fraction of TBAB in the mass ratio of THB-4-Cu/TBAB (Table 4, entry 12–14).

Under the optimized reaction parameters, we further expanded this catalytic system
to synthesis of various cyclic carbonates using THB-4-M as the catalyst (Tables 4 and S3,
entry 15–19). All the provided substrates under the optimized reaction conditions provided
medium to good yields and selectivity towards the cyclic carbonates. Unfortunately, the
steric effect also caused lower conversion and selectivity, similar to the literature [19,25,37]
(Table 4, entry 16). For 1,2-epoxytetradecane, the corresponding carbonate was obtained
in a low yield of 65.7% and 62.6% (Table 4 and Table S3, entry 18), presumably due to the
flexibility of the aliphatic chain of the tetradecane oxide. It is important to note that the
THB-4-Co exhibited the same catalytic performance and selectivity (Table S3).

Table 4. Catalytic performance of THB-4-Cu and various epoxides in the thermal cycloaddition of
CO2 to epoxides.

Entry Epoxide Co-Cat (a) T (◦C) t (h) Conv. (%) (b) Selec. (%) (b) TON (c)

1
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3.3. Catalyst Recycling Performance

The most important performance for an ideal heterogeneous catalyst was the reusabil-
ity and stability of the catalysts. A three-cycle test was performed to probe the reusability
of THB-4-M in the cycloaddition reactions (ESI*). Additionally, the change of morphology
obtained from SEM was also evaluated for the stability of the catalysts. Figure 10 shows
the conversion and selectivity of ECH catalyzed by THB-4-M. In contrast, the THB-4-Co
and THB-4-Cu showed more stability by analyzing the conversion and the morphology of
the catalyst (Figure 10b,c). Unfortunately, the conversion of ECH catalyzed by THB-4-Cu
reduced from 90.3% to 86.9%, presumably due to the reduction of the surface area and
the CO2 uptake capacities (ESI*). The content of cobalt or copper loading was also an
important influencing factor, causing the variation of the conversion and selectivity of ECH.
Interestingly, the selectivity of ECH was enhanced from 90.5% to 97.3%. On the contrary,
the conversion and selectivity of ECH catalyzed by THB-4-Co reduced observably.
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3.4. Possible Reaction Mechanism

Based on previous reports [33,57], a plausible mechanism is proposed for the reaction
of epoxide and CO2 into cyclic carbonate catalyzed by THB-4-M in the presence of TBAB
as a co-catalyst (Scheme 1). At first, CO2 molecules were adsorbed by THB-4-M (M = Cu,
Co) and the coupling reaction by coordination of MPc (M = Cu, Co) as a Lewis acidic site
with the O atom of the ECH to form a metal alkoxide intermediate (B). The coordination
between the MPc (M = Cu, Co) and ECH was shown as the crucial factor [37]. In the second
step, halogen ions, such as Br−, attacked the less-hindered carbon atom of ECH, and the
ring of ECH opened. Then, CO2 molecules, which had been adsorbed, interacted with
the oxygen anion of the opened epoxy ring to form an intermediate (D). In the end, the
formation of cyclic carbonate and regeneration of catalyst THB-4-M were obtained along
with the departure of Br−.
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4. Conclusions

In summary, new flower-like phthalocyanine polymers have been successfully synthe-
sized by introducing 1,3,5-tri(4-hydroxyphenhyl) benzene (THB) as the rigid and contorted
units. Due to their porosity and excellent CO2 capacities, the THB-4-M showed very promis-
ing catalytic activities with 146–756 TON in the conversion of CO2 into cyclic carbonates. In
addition, the THB-4-M showed high catalytic performance and excellent selectivity toward
the cycloaddition reaction under mild conditions. Under optimal reaction conditions, ECH
showed 99.0% conversion and 92.6% selectivity. The catalyst THB-4-M was readily sepa-
rated and effectively recycled for up to three cycles. More importantly, the high stability and
reusability of the catalyst benefitted from the flower-like structure of THB-4-M. According
to the research results, this opens new ways of thinking about designing more efficient
heterogeneous catalysts and fixing CO2 by chemical methods under mild conditions.
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