Enhanced Tetracycline Removal from Water through Synergistic Adsorption and Photodegradation Using Lignocellulose-Derived Hydrothermal Carbonation Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of HTCC
2.3. Synergistic Adsorption and Photodegradation Procedures
2.4. Analysis Methods
2.5. Computational Methods
3. Results and Discussion
3.1. Synergistic Adsorption and Photodegradation Performance of the HTCC
3.1.1. Material Optimization
3.1.2. Influencing Factors
3.2. Characterizations
3.2.1. Morphology Characteristics
3.2.2. Specific Surface Area and Pore-Size Distribution
3.2.3. Surface Functional Groups
3.3. Possible Adsorption Mechanism of HTCC-L
3.4. Possible Photodegradation Mechanism of HTCC-L
3.5. Degradation Pathway of TC in the HTCC-L-230/Visible Light System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zeng, J.; Xie, W.; Guo, Y.; Zhao, T.; Zhou, H.; Wang, Q.; Li, H.; Guo, Z.; Xu, B.B.; Gu, H. Magnetic Field Facilitated Electrocatalytic Degradation of Tetracycline in Wastewater by Magnetic Porous Carbonized Phthalonitrile Resin. Appl. Catal. B Environ. 2024, 340, 123225. [Google Scholar] [CrossRef]
- Hsini, A.; Haounati, R.; Imgharn, A.; Naciri, Y.; Malekshah, R.E.; Shaim, A.; Szunerits, S.; Boukherroub, R.; Albourine, A. 1,2,4,5-Benzene Tetracarboxylic Acid-Doped Polyaniline/Protonated Carbon Nitride Nanostructures for Cr (VI) Adsorption in Water. ACS Appl. Nano Mater. 2024, 7, 13050–13061. [Google Scholar] [CrossRef]
- Tang, R.; Gong, D.; Deng, Y.; Xiong, S.; Zheng, J.; Li, L.; Zhou, Z.; Su, L.; Zhao, J. π-π Stacking Derived from Graphene-like Biochar/g-C3N4 with Tunable Band Structure for Photocatalytic Antibiotics Degradation via Peroxymonosulfate Activation. J. Hazard. Mater. 2022, 423, 126944. [Google Scholar] [CrossRef]
- Largo, F.; Haounati, R.; Ighnih, H.; Malekshah, R.E.; Rhaya, M.; Ouachtak, H.; El Hankari, S.; Jada, A.; Addi, A.A. Effective Removal of Toxic Dye from Wastewater via Advanced Modified Magnetic Sepiolite Using Combined Surfactants SDS/CTAB/Fe3O4@Sep: Empirical and Computational Analysis Studies. J. Mol. Liq. 2024, 407, 125114. [Google Scholar] [CrossRef]
- Wang, A.; Ni, J.; Wang, W.; Liu, D.; Zhu, Q.; Xue, B.; Chang, C.-C.; Ma, J.; Zhao, Y. MOF Derived Co−Fe Nitrogen Doped Graphite Carbon@crosslinked Magnetic Chitosan Micro−nanoreactor for Environmental Applications: Synergy Enhancement Effect of adsorption−PMS Activation. Appl. Catal. B Environ. 2022, 319, 121926. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-Scheme Heterojunction Photocatalyst. Chem 2020, 6, 1543–1559. [Google Scholar] [CrossRef]
- He, X.; Zheng, N.; Hu, R.; Hu, Z.; Yu, J.C. Hydrothermal and Pyrolytic Conversion of Biomasses into Catalysts for Advanced Oxidation Treatments. Adv. Funct. Mater. 2021, 31, 2006505. [Google Scholar] [CrossRef]
- Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.-M.; Fühner, C.; Bens, O.; Kern, J.; et al. Hydrothermal Carbonization of Biomass Residuals: A Comparative Review of the Chemistry, Processes and Applications of Wet and Dry Pyrolysis. Biofuels 2011, 2, 71–106. [Google Scholar] [CrossRef]
- Mi, Y.; Hu, W.; Dan, Y.; Liu, Y. Synthesis of Carbon Micro-Spheres by a Glucose Hydrothermal Method. Mater. Lett. 2008, 62, 1194–1196. [Google Scholar] [CrossRef]
- Liiv, J.; Mäeorg, U.; Vaino, N.; Rikmann, E. Low-Temperature and Low-Pressure HydroThermal Liquefaction (L-HTL) of Biomass Using Ultrasonic Cavitation to Achieve a Local Supercritical State in Water. Sci. Technol. Energy Transit. 2024, 79, 3. [Google Scholar] [CrossRef]
- Rikmann, E.; Mäeorg, U.; Liiv, J. Recycling of Low-Quality Carbon Black Produced by Tire Pyrolysis. Appl. Sci. 2024, 14, 2192. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, H.; Wei, Z.; Xie, L.; Wang, Y. An Efficient Way to Introduce Hierarchical Structure into Biomass-Based Hydrothermal Carbonaceous Materials. ACS Sustain. Chem. Eng. 2014, 2, 2435–2441. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A Review of the Hydrothermal Carbonization of Biomass Waste for Hydrochar Formation: Process Conditions, Fundamentals, and Physicochemical Properties. Renew. Sustain. Energy Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Sun, K.; Ro, K.; Guo, M.; Novak, J.; Mashayekhi, H.; Xing, B. Sorption of Bisphenol A, 17α-Ethinyl Estradiol and Phenanthrene on Thermally and Hydrothermally Produced Biochars. Bioresour. Technol. 2011, 102, 5757–5763. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, H.; Sun, H.; Tadé, M.O.; Wang, S. One-Step Synthesis of Flour-Derived Functional Nanocarbons with Hierarchical Pores for Versatile Environmental Applications. Chem. Eng. J. 2018, 347, 432–439. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Y.; Hu, Z.; Yu, J.C. Converting Cellulose Waste into a High-Efficiency Photocatalyst for Cr(VI) Reduction via Molecular Oxygen Activation. Appl. Catal. B Environ. 2021, 295, 120253. [Google Scholar] [CrossRef]
- Hu, Z.; Yu, J.C.; Ming, T.; Wang, J. A Wide-Spectrum-Responsive TiO2 Photoanode for Photoelectrochemical Cells. Appl. Catal. B Environ. 2015, 168–169, 483–489. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, G.; Chen, X.; Shen, Z.; Yu, J.C. Enhancing Charge Separation in Metallic Photocatalysts: A Case Study of the Conducting Molybdenum Dioxide. Adv. Funct. Mater. 2016, 26, 4445–4455. [Google Scholar] [CrossRef]
- Glenis, S.; Benz, M.; LeGoff, E.; Schindler, J.L.; Kannewurf, C.R.; Kanatzidis, M.G. Polyfuran: A New Synthetic Approach and Electronic Properties. J. Am. Chem. Soc. 1993, 115, 12519–12525. [Google Scholar] [CrossRef]
- Wang, G.; Bi, W.; Zhang, Q.; Dong, X.; Zhang, X. Hydrothermal Carbonation Carbon-Based Photocatalysis under Visible Light: Modification for Enhanced Removal of Organic Pollutant and Novel Insight into the Photocatalytic Mechanism. J. Hazard. Mater. 2022, 426, 127821. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Liu, C.; Wang, Y.; Dionysiou, D.D.; Zhou, D. Photogeneration of Reactive Oxygen Species from Biochar Suspension for Diethyl Phthalate Degradation. Appl. Catal. B Environ. 2017, 214, 34–45. [Google Scholar] [CrossRef]
- Chen, N.; Huang, Y.; Hou, X.; Ai, Z.; Zhang, L. Photochemistry of Hydrochar: Reactive Oxygen Species Generation and Sulfadimidine Degradation. Environ. Sci. Technol. 2017, 51, 11278–11287. [Google Scholar] [CrossRef] [PubMed]
- Basak, B.; Kumar, R.; Bharadwaj, A.V.S.L.S.; Kim, T.H.; Kim, J.R.; Jang, M.; Oh, S.-E.; Roh, H.-S.; Jeon, B.-H. Advances in Physicochemical Pretreatment Strategies for Lignocellulose Biomass and Their Effectiveness in Bioconversion for Biofuel Production. Bioresour. Technol. 2023, 369, 128413. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, Q. Realization of Conceptual Density Functional Theory and Information-Theoretic Approach in Multiwfn Program. In Conceptual Density Functional Theory, 2nd ed.; Liu, S., Ed.; WILEY-VCH GmbH: Weinheim, Germany, 2022; Volume 2, pp. 631–647. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Li, Z.; Schulz, L.; Ackley, C.; Fenske, N. Adsorption of Tetracycline on Kaolinite with pH-Dependent Surface Charges. J. Colloid Interface Sci. 2010, 351, 254–260. [Google Scholar] [CrossRef]
- Kang, S.; Li, X.; Fan, J.; Chang, J. Characterization of Hydrochars Produced by Hydrothermal Carbonization of Lignin, Cellulose, d -Xylose, and Wood Meal. Ind. Eng. Chem. Res. 2012, 51, 9023–9031. [Google Scholar] [CrossRef]
- Falco, C.; Baccile, N.; Titirici, M.-M. Morphological and Structural Differences between Glucose, Cellulose and Lignocellulosic Biomass Derived Hydrothermal Carbons. Green Chem. 2011, 13, 3273. [Google Scholar] [CrossRef]
- Lou, R.; Wu, S. Products Properties from Fast Pyrolysis of Enzymatic/Mild Acidolysis Lignin. Appl. Energy 2011, 88, 316–322. [Google Scholar] [CrossRef]
- Liu, X.; Lu, J.; Fu, M.; Zheng, H.; Chen, Q. Activated Carbon Induced Hydrothermal Carbonization for the Treatment of Cotton Pulp Black Liquor. J. Water Process Eng. 2022, 47, 102733. [Google Scholar] [CrossRef]
- Kim, P.; Johnson, A.; Edmunds, C.W.; Radosevich, M.; Vogt, F.; Rials, T.G.; Labbé, N. Surface Functionality and Carbon Structures in Lignocellulosic-Derived Biochars Produced by Fast Pyrolysis. Energy Fuels 2011, 25, 4693–4703. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef]
- Chia, C.H.; Gong, B.; Joseph, S.D.; Marjo, C.E.; Munroe, P.; Rich, A.M. Imaging of Mineral-Enriched Biochar by FTIR, Raman and SEM–EDX. Vib. Spectrosc. 2012, 62, 248–257. [Google Scholar] [CrossRef]
- Singh, B.; Fang, Y.; Cowie, B.C.C.; Thomsen, L. NEXAFS and XPS Characterisation of Carbon Functional Groups of Fresh and Aged Biochars. Org. Geochem. 2014, 77, 1–10. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, B.; Shen, J.; Yan, P.; Kang, J.; Wang, W.; Bi, L.; Zhu, X.; Li, Y.; Wang, S.; et al. Preparation of Novel N-Doped Biochar and Its High Adsorption Capacity for Atrazine Based on π–π Electron Donor-Acceptor Interaction. J. Hazard. Mater. 2022, 432, 128757. [Google Scholar] [CrossRef]
- Wang, A.; Ni, J.; Wang, W.; Wang, X.; Liu, D.; Zhu, Q. MOF-Derived N-Doped ZnO Carbon Skeleton@hierarchical Bi2MoO6 S-Scheme Heterojunction for Photodegradation of SMX: Mechanism, Pathways and DFT Calculation. J. Hazard. Mater. 2022, 426, 128106. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Li, Y.; Huang, G.; Yang, C.; Chen, C.; Zhou, T.; Zhao, Y.; Ma, J. Adsorption Behavior of the Antibiotic Levofloxacin on Microplastics in the Presence of Different Heavy Metals in an Aqueous Solution. Chemosphere 2020, 260, 127650. [Google Scholar] [CrossRef]
- Cheung, W.H.; Szeto, Y.S.; McKay, G. Intraparticle Diffusion Processes during Acid Dye Adsorption onto Chitosan. Bioresour. Technol. 2007, 98, 2897–2904. [Google Scholar] [CrossRef]
- Liao, S.; Pan, B.; Li, H.; Zhang, D.; Xing, B. Detecting Free Radicals in Biochars and Determining Their Ability to Inhibit the Germination and Growth of Corn, Wheat and Rice Seedlings. Environ. Sci. Technol. 2014, 48, 8581–8587. [Google Scholar] [CrossRef]
- Qin, Y.; Li, G.; Gao, Y.; Zhang, L.; Ok, Y.S.; An, T. Persistent Free Radicals in Carbon-Based Materials on Transformation of Refractory Organic Contaminants (ROCs) in Water: A Critical Review. Water Res. 2018, 137, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.-K.; Jia, Y.-J.; Huang, Y.-Y.; Xu, D.-B.; Wu, X.-J.; Chen, M.; Shi, W.-D. Near-Infrared Light-Driven Photocatalytic Reforming Lignocellulose into H2 and Chemicals over Heterogeneous Carbon Nitride. ACS Catal. 2023, 13, 13768–13776. [Google Scholar] [CrossRef]
- Gong, Y.; Shen, J.; Wu, Y.; Shen, L.; Zhao, S.; Zhou, Y.; Li, Y.; Cui, L.; Kang, J.; Chen, Z. Ligands-Triggered Evolution of Catalytic Intermediates during Periodate Activation via Soluble Mn (II) for Organic Contaminants’ Abatement. Appl. Catal. B Environ. 2023, 322, 122093. [Google Scholar] [CrossRef]
- Gao, T.; Zhang, H.; Zhao, X.; Xiao, S.; Zhang, Z.; Yu, S. Efficient Removal of Tetracycline from MOF-on-MOF Heterojunctions Driven by Visible Light: Evaluation of Photocatalytic Mechanisms and Degradation Pathway. Appl. Surf. Sci. 2024, 651, 159227. [Google Scholar] [CrossRef]
- Li, Y.; Meas, A.; Shan, S.; Yang, R.; Gai, X. Production and Optimization of Bamboo Hydrochars for Adsorption of Congo Red and 2-Naphthol. Bioresour. Technol. 2016, 207, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Ngo, H.H.; Guo, W.; Wen, H.; Zhang, D.; Li, C.; Qi, L. Characterization and Sulfonamide Antibiotics Adsorption Capacity of Spent Coffee Grounds Based Biochar and Hydrochar. Sci. Total Environ. 2020, 716, 137015. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Liu, Y.; Jing, F.; Ye, R.; Chen, J. Contrasting Impacts of Chemical and Physical Ageing on Hydrochar Properties and Sorption of Norfloxacin with Coexisting Cu2+. Sci. Total Environ. 2021, 772, 145502. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.H.; Le, A.H.; Pham, T.H.; Nguyen, D.T.; Chang, S.W.; Chung, W.J.; Nguyen, D.D. Adsorption Isotherms and Kinetic Modeling of Methylene Blue Dye onto a Carbonaceous Hydrochar Adsorbent Derived from Coffee Husk Waste. Sci. Total Environ. 2020, 725, 138325. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Luo, Y.; Yang, T.; Xue, M.; Yin, Z.; Gao, B. Effects of Ball Milling on Hydrochar for Integrated Adsorption and Photocatalysis Performance. Sep. Purif. Technol. 2025, 354, 128687. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Ma, X.; Chen, Z.; Chen, R.; Gong, Y.; Cui, L.; Kang, J.; Shen, J.; Zhao, S.; Li, C. Enhanced Tetracycline Removal from Water through Synergistic Adsorption and Photodegradation Using Lignocellulose-Derived Hydrothermal Carbonation Carbon. C 2024, 10, 75. https://doi.org/10.3390/c10030075
Zhou Y, Ma X, Chen Z, Chen R, Gong Y, Cui L, Kang J, Shen J, Zhao S, Li C. Enhanced Tetracycline Removal from Water through Synergistic Adsorption and Photodegradation Using Lignocellulose-Derived Hydrothermal Carbonation Carbon. C. 2024; 10(3):75. https://doi.org/10.3390/c10030075
Chicago/Turabian StyleZhou, Yanchi, Xingdi Ma, Zhonglin Chen, Ruihang Chen, Yingxu Gong, Lei Cui, Jing Kang, Jimin Shen, Shengxin Zhao, and Chen Li. 2024. "Enhanced Tetracycline Removal from Water through Synergistic Adsorption and Photodegradation Using Lignocellulose-Derived Hydrothermal Carbonation Carbon" C 10, no. 3: 75. https://doi.org/10.3390/c10030075
APA StyleZhou, Y., Ma, X., Chen, Z., Chen, R., Gong, Y., Cui, L., Kang, J., Shen, J., Zhao, S., & Li, C. (2024). Enhanced Tetracycline Removal from Water through Synergistic Adsorption and Photodegradation Using Lignocellulose-Derived Hydrothermal Carbonation Carbon. C, 10(3), 75. https://doi.org/10.3390/c10030075