The Influence of Annealing Temperature on the Interfacial Heat Transfer in Pulsed Laser Deposition-Grown Ga2O3 on Diamond Composite Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparations
2.2. Characterizations
3. Results and Discussion
3.1. Surface and Interface Microstructure and Morphology Variation
3.2. Surface Vacancy Defects Analysis
3.3. Thermal Properties Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, W.; You, T.; Wang, Y.; Shen, Z.; Liu, K.; Zhang, L.; Sun, H.; Qian, R.; An, Z.; Mu, F.; et al. Efficient thermal dissipation in wafer-scale heterogeneous integration of single-crystalline β-Ga2O3 thin film on SiC. Fundam. Res. 2021, 1, 691–696. [Google Scholar] [CrossRef]
- Mu, W.; Jia, Z.; Yin, Y.; Hu, Q.; Li, Y.; Wu, B.; Zhang, J.; Tao, X. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method. J. Alloys Compd. 2017, 714, 453–458. [Google Scholar] [CrossRef]
- Galazka, Z.; Fiedler, A.; Popp, A.; Ganschow, S.; Kwasniewski, A.; Seyidov, P.; Pietsch, M.; Dittmar, A.; Anooz, S.B.; Irmscher, K.; et al. Bulk single crystals and physical properties of β-(AlxGa1−x)2O3 (x = 0–0.35) grown by the Czochralski method. J. Appl. Phys. 2023, 133, 035702. [Google Scholar] [CrossRef]
- Yan, Y.; Jin, Z.; Zhang, H.; Yang, D. Recent progresses in thermal treatment of β-Ga2O3 single crystals and devices. Int. J. Miner. 2024, 31, 1659–1677. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Kuramata, A.; Masui, T.; Yamakoshi, S. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett. 2012, 100, 013504. [Google Scholar] [CrossRef]
- Zeng, K.; Vaidya, A.; Singisetti, U. 1.85 kV Breakdown Voltage in Lateral Field-Plated Ga2O3 MOSFETs. IEEE Electron Device Lett. 2018, 39, 1385–1388. [Google Scholar] [CrossRef]
- Green, A.J.; Chabak, K.D.; Heller, E.R.; Fitch, R.C.; Baldini, M.; Fiedler, A.; Irmscher, K.; Wagner, G.; Galazka, Z.; Tetlak, S.E.; et al. 3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped Ga2O3 MOSFETs. IEEE Electron Device Lett. 2016, 37, 902–905. [Google Scholar] [CrossRef]
- Wang, C.; Gong, H.; Lei, W.; Cai, Y.; Hu, Z.; Xu, S.; Liu, Z.; Feng, Q.; Zhou, H.; Ye, J.; et al. Demonstration of the p-NiOx/n-Ga2O3 Heterojunction Gate FETs and Diodes With BV2/Ron,sp Figures of Merit of 0.39 GW/cm2 and 1.38 GW/cm2. IEEE Electron Device Lett. 2021, 42, 485–488. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Wong, M.H.; Kamimura, T.; Krishnamurthy, D.; Kuramata, A.; Masuio, T.; Yamakoshi, S. Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl. Phys. Lett. 2013, 103, 123511. [Google Scholar] [CrossRef]
- Lv, Y.; Zhou, X.; Long, S.; Wang, Y.; Song, X.; Zhou, X.; Xu, G.; Liang, S.; Feng, Z.; Cai, S.; et al. Enhancement-Mode β-Ga2O3 Metal-Oxide-Semiconductor Field-Effect Transistor with High Breakdown Voltage over 3000 V Realized by Oxygen Annealing. Phys. Status Solidi-R 2019, 14, 1900586. [Google Scholar] [CrossRef]
- Wong, M.H.; Sasaki, K.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. Field-Plated Ga2O3 MOSFETs With a Breakdown Voltage of Over 750 V. IEEE Electron Device Lett. 2016, 37, 212–215. [Google Scholar] [CrossRef]
- Sharma, S.; Zeng, K.; Saha, S.; Singisetti, U. Field-Plated Lateral Ga2O3 MOSFETs With Polymer Passivation and 8.03 kV Breakdown Voltage. IEEE Electron Device Lett. 2020, 41, 836–839. [Google Scholar] [CrossRef]
- Hwang, W.S.; Verma, A.; Peelaers, H.; Protasenko, V.; Rouvimov, S.; Xing, H.; Seabaugh, A.; Haensch, W.; de Walle, C.V.; Galazka, Z.; et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes. Appl. Phys. Lett. 2014, 104, 203111. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, H.; Zhang, J.; Mu, W.; Wei, J.; Jia, Z.; Zheng, X.; Luo, X.; Tao, X.; Hao, Y. Hysteresis-free and μs-switching of D/E-modes Ga2O3 hetero-junction FETs with the BV2/Ron,sp of 0.74/0.28 GW/cm2. Appl. Phys. Lett. 2022, 120, 112101. [Google Scholar] [CrossRef]
- Chabak, K.D.; McCandless, J.P.; Moser, N.A.; Green, A.J.; Mahalingam, K.; Crespo, A.; Hendricks, N.; Howe, B.M.; Tetlak, S.E.; Leedy, K.; et al. Recessed-Gate Enhancement-Mode β-Ga2O3 MOSFETs. IEEE Electron Device Lett. 2018, 39, 67–70. [Google Scholar] [CrossRef]
- Cheng, Z.; Wheeler, V.D.; Bai, T.; Shi, J.; Tadjer, M.J.; Feygelson, T.; Hobart, K.D.; Goorsky, M.S.; Graham, S. Integration of polycrystalline Ga2O3 on diamond for thermal management. Appl. Phys. Lett. 2020, 116, 062105. [Google Scholar] [CrossRef]
- Szwejkowski, C.J.; Creange, N.C.; Sun, K.; Giri, A.; Donovan, B.F.; Constantin, C.; Hopkins, P.E. Size effects in the thermal conductivity of gallium oxide (β-Ga2O3) films grown via open-atmosphere annealing of gallium nitride. J. Appl. Phys. 2015, 117, 084308. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, Q.; Zhu, J.; Koirala, S.; Koester, S.J.; Wang, X. Thickness-dependent thermal conductivity of mechanically exfoliated β-Ga2O3 thin films. Appl. Phys. Lett. 2020, 116, 202101. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, G.; Long, S. A large-area multi-finger β-Ga2O3 MOSFET and its self-heating effect. J. Semicond. 2023, 44, 072804. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, Y.; Hao, Y.; Wang, X.; Wang, Y.; You, T.; Ou, X.; Han, G.; Hu, H.; Zhang, S.; et al. First Demonstration of Waferscale Heterogeneous Integration of Ga2O3 MOSFETs on SiC and Si Substrates by Ion-Cutting Process. In Proceedings of the 2019 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 12.15.11–12.15.14. [Google Scholar]
- Xu, W.; Zhao, T.; Zhang, L.; Liu, K.; Sun, H.; Qu, Z.; You, T.; Yi, A.; Huang, K.; Han, G.; et al. Thermal Transport Properties of β-Ga2O3 Thin Films on Si and SiC Substrates Fabricated by an Ion-Cutting Process. ACS Appl. Electron. Mater. 2024, 6, 1710–1717. [Google Scholar]
- Sun, Z.; Zhang, D.; Qi, Z.; Wang, Q.; Sun, X.; Liang, K.; Dong, F.; Zhao, Y.; Zou, D.; Li, L.; et al. Insight into Interfacial Heat Transfer of β-Ga2O3/Diamond Heterostructures via the Machine Learning Potential. ACS Appl. Mater. Inter. 2024, 16, 31666–31676. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Huang, L.; Sun, M.; Zhao, X.; Wei, J.; Li, C. The Effect of Interlayer Microstructure on the Thermal Boundary Resistance of GaN-on-Diamond Substrate. Coatings 2022, 12, 672. [Google Scholar] [CrossRef]
- Noh, J.; Chowdhury, P.R.; Segovia, M.; Alajlouni, S.; Si, M.; Charnas, A.R.; Huang, S.; Maize, K.; Shakouri, A.; Xu, X.; et al. Enhancement of Thermal Transfer From β-Ga2O3 Nano-Membrane Field-Effect Transistors to High Thermal Conductivity Substrate by Inserting an Interlayer. IEEE Trans. Electron Devices 2022, 69, 1186–1190. [Google Scholar] [CrossRef]
- Cheng, Z.; Mu, F.; Yates, L.; Suga, T.; Graham, S. Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices. ACS Appl. Mater. Inter. 2020, 12, 8376–8384. [Google Scholar] [CrossRef]
- Liu, C.; He, H.; Zhou, X.; Liu, W. Influence of Substrate and Gate Insulator on the Thermal Characteristics of β-Ga2O3 Field-Effect Transistors: A Simulation Study. Electronics 2022, 11, 2323. [Google Scholar] [CrossRef]
- Tijent, F.Z.; Faqir, M.; Chouiyakh, H.; Essadiqi, E.H. Review-Integration Methods of GaN and Diamond for Thermal Management Optimization. ECS J. Solid State Sci. Technol. 2021, 10, 74003. [Google Scholar] [CrossRef]
- Zhou, Y.; Anaya, J.; Pomeroy, J.; Sun, H.; Gu, X.; Xie, A.; Beam, E.; Becker, M.; Grotjohn, T.A.; Lee, C.; et al. Barrier-Layer Optimization for Enhanced GaN-on-Diamond Device Cooling. ACS Appl. Mater. Inter. 2017, 9, 34416–34422. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhang, Y.; Hua, B.; Ni, X.; Fan, Q.; Gu, X. Interface Engineering Enabling Next Generation GaN-on-Diamond Power Devices. J. Electron. Mater. 2021, 50, 4239–4249. [Google Scholar] [CrossRef]
- Gu, L.; Ma, H.-P.; Shen, Y.; Zuo, Y.; Tang, Z.; Zhang, Q.-C. Optimization of Heteroepitaxial Gallium Oxide Thin Films on Diamond Composite Substrates using Pulsed Laser Deposition Method. In Proceedings of the 2023 20th China International Forum on Solid State Lighting & 2023 9th International Forum on Wide Bandgap Semiconductors (SSLCHINA: IFWS), Xiamen, China, 27–30 November 2023; pp. 296–299. [Google Scholar]
- Cheng, Z.; Mu, F.; You, T.; Xu, W.; Shi, J.; Liao, M.E.; Wang, Y.; Huynh, K.; Suga, T.; Goorsky, M.S.; et al. Thermal Transport across Ion-Cut Monocrystalline β-Ga2O3 Thin Films and Bonded β-Ga2O3-SiC Interfaces. ACS Appl. Mater. Interfaces 2020, 12, 44943–44951. [Google Scholar] [CrossRef]
- Liao, M.E.; Huynh, K.; Cheng, Z.; Shi, J.; Graham, S.; Goorsky, M.S. Thermal transport and structural improvements due to annealing of wafer bonded β-Ga2O3|4H-SiC. J. Vac. Sci. Technol. A 2023, 41, 063203. [Google Scholar] [CrossRef]
- Seo, J.; Kim, T.; Jeong, S.; Bae, S.-Y. Growth and thermal annealing of polycrystalline Ga2O3/diamond thin films on Si substrates. J. Korean Cryst. Growth Cryst. Technol. 2021, 31, 233–239. [Google Scholar]
- Zhang, J.; Han, S.; Cui, M.; Xu, W.; Xu, H.; Jin, C.; Gu, M.; Chen, L.; Zhang, K.H.L. Fabrication and Interfacial Electronic Structure of Wide Bandgap NiO and Ga2O3 p–n Heterojunction. ACS Appl. Electron. Mater. 2020, 2, 456–463. [Google Scholar] [CrossRef]
- Gu, L.; Ma, H.-P.; Li, Y.; Wang, A.-F.; Chen, W.-J.; Tang, Z.-R.; Shen, Y.; Sun, F.Y.; Zhu, J.-T.; Zhang, Q.-C. Investigation of gallium oxide thin film hetero-integrated with bulk diamond via atomic layer deposition. Appl. Surf. Sci. 2023, 641, 158502. [Google Scholar] [CrossRef]
- Chen, W.-J.; Ma, H.-P.; Gu, L.; Shen, Y.; Yang, R.-Y.; Zhang, J.; Yang, L.; Zhu, J.; Zhang, Q.-C. Influence of Nitrogen Annealing Treatment on Optical, Microstructural, and Chemical Properties of Ga2O3 Film Grown by Plasma-Enhanced Atomic Layer Deposition. J. Phys. Chem. C 2023, 127, 10688–10698. [Google Scholar] [CrossRef]
- Zade, V.; Makeswaran, N.; Boyce, B.L.; Paraguay-Delgado, F.; Ramana, C.V. Structural and mechanical properties of nanocrystalline Ga2O3 films made by pulsed laser deposition onto transparent quartz substrates. Nano Express 2021, 2, 020006. [Google Scholar] [CrossRef]
- Razeghi, M.; Park, J.-H.; McClintock, R.; Pavlidis, D.; Teherani, F.H.; Rogers, D.J.; Magill, B.A.; Khodaparast, G.A.; Xu, Y.; Wu, J.; et al. A review of the growth, doping & applications of β-Ga2O3 thin films. In Proceedings of the Oxide-based Materials and Devices IX, San Francisco, CA, USA, 27 January–1 February 2018; Volume 10533, pp. 105330R-1–105330R-24. [Google Scholar]
- Pang, R.; Teramura, K.; Morishita, M.; Asakura, H.; Hosokawa, S.; Tanaka, T. Enhanced CO evolution for photocatalytic conversion of CO2 by H2O over Ca modified Ga2O3. Commun. Chem. 2020, 3, 137. [Google Scholar] [CrossRef]
- Li, Y.; Xiu, X.; Xu, W.; Zhang, L.; Xie, Z.; Tao, T.; Chen, P.; Liu, B.; Zhang, R.; Zheng, Y. Microstructural analysis of heteroepitaxial β-Ga2O3 films grown on (0001) sapphire by halide vapor phase epitaxy. J. Phys. D Appl. Phys. 2021, 54, 014003. [Google Scholar] [CrossRef]
- Fang, D.; He, F.; Xie, J.; Xue, L. Calibration of Binding Energy Positions with C1s for XPS Results. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2020, 35, 711–718. [Google Scholar] [CrossRef]
- Gu, L.; Ma, H.-P.; Shen, Y.; Zhang, J.; Chen, W.-J.; Yang, R.-Y.; Wu, F.; Yang, L.; Zeng, Y.-X.; Wang, X.-R.; et al. Temperature-dependent oxygen annealing effect on the properties of Ga2O3 thin film deposited by atomic layer deposition. J. Alloys Compd. 2022, 925, 166727. [Google Scholar] [CrossRef]
- Tak, B.R.; Dewan, S.; Goyal, A.; Pathak, R.; Gupta, V.; Kapoor, A.K.; Nagarajan, S.; Singh, R. Point defects induced work function modulation of β-Ga2O3. Appl. Surf. Sci. 2019, 465, 973–978. [Google Scholar] [CrossRef]
- Hou, X.; Zhao, X.; Zhang, Y.; Zhang, Z.; Liu, Y.; Qin, Y.; Tan, P.; Chen, C.; Yu, S.; Ding, M.; et al. High-Performance Harsh-Environment-Resistant GaOX Solar-Blind Photodetectors via Defect and Doping Engineering. Adv. Mater. 2021, 34, 2106923. [Google Scholar] [CrossRef] [PubMed]
- Cahill, D.G.; Braun, P.V.; Chen, G.; Clarke, D.R.; Fan, S.; Goodson, K.E.; Keblinski, P.; King, W.P.; Mahan, G.D.; Majumdar, A.; et al. Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 2014, 1, 011305. [Google Scholar] [CrossRef]
- David, G.C. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 2004, 75, 5119–5122. [Google Scholar]
- Schmidt, A.J.; Chen, X.; Chen, G. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 2008, 79, 114902. [Google Scholar] [CrossRef]
- Moelle, C.; Werner, M.; Szücs, F.; Wittorf, D.; Sellschopp, M.; von Borany, J.; Fecht, C.J.H.-J. Specific heat of single-, poly- and nanocrystalline diamond. Diam. Relat. Mater. 1998, 7, 499–503. [Google Scholar] [CrossRef]
- Adams, J.G.B.; Johnston, H.L. Low Temperature Heat Capacities of Inorganic Solids. XI. The Heat Capacity of β-Gallium Oxide from 15 to 300 °K. J. Am. Chem. Soc. 1952, 75, 3101–3102. [Google Scholar] [CrossRef]
- Mu, F.; Cheng, Z.; Shi, J.; Shin, S.; Xu, B.; Shiomi, J.; Graham, S.; Suga, T. High Thermal Boundary Conductance across Bonded Heterogeneous GaN-SiC Interfaces. ACS Appl. Mater. Inter. 2019, 11, 33428–33434. [Google Scholar] [CrossRef] [PubMed]
- Munshi, J.; Roy, A.; Hansen, S.; Ekuma, C.E.; Balasubramanian, G. Effect of vacancy defects on the thermal transport of β-Ga2O3. Mol. Simul. 2021, 47, 1017–1021. [Google Scholar] [CrossRef]
- Cheng, Z.; Yates, L.; Shi, J.; Tadjer, M.J.; Hobart, K.D.; Graham, S. Thermal conductance across β-Ga2O3-diamond van der Waals heterogeneous interfaces. APL Mater. 2019, 7, 031118. [Google Scholar] [CrossRef]
- Petkov, A.; Mishra, A.; Pomeroy, J.W.; Kuball, M. Molecular dynamics study of thermal transport across Ga2O3-diamond interfaces. Appl. Phys. Lett. 2023, 122, 031602. [Google Scholar] [CrossRef]
- Zheng, Y.; Swinnich, E.; Seo, J.H. Investigation of Thermal Properties of β-Ga2O3 Nanomembranes on Diamond Heterostructure Using Raman Thermometry. ECS J. Solid State Sci. Technol. 2020, 9, 055007. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, L.; Shen, Y.; Chen, W.; Zuo, Y.; Ma, H.; Zhang, Q. The Influence of Annealing Temperature on the Interfacial Heat Transfer in Pulsed Laser Deposition-Grown Ga2O3 on Diamond Composite Substrates. C 2024, 10, 80. https://doi.org/10.3390/c10030080
Gu L, Shen Y, Chen W, Zuo Y, Ma H, Zhang Q. The Influence of Annealing Temperature on the Interfacial Heat Transfer in Pulsed Laser Deposition-Grown Ga2O3 on Diamond Composite Substrates. C. 2024; 10(3):80. https://doi.org/10.3390/c10030080
Chicago/Turabian StyleGu, Lin, Yi Shen, Wenjie Chen, Yuanhui Zuo, Hongping Ma, and Qingchun Zhang. 2024. "The Influence of Annealing Temperature on the Interfacial Heat Transfer in Pulsed Laser Deposition-Grown Ga2O3 on Diamond Composite Substrates" C 10, no. 3: 80. https://doi.org/10.3390/c10030080
APA StyleGu, L., Shen, Y., Chen, W., Zuo, Y., Ma, H., & Zhang, Q. (2024). The Influence of Annealing Temperature on the Interfacial Heat Transfer in Pulsed Laser Deposition-Grown Ga2O3 on Diamond Composite Substrates. C, 10(3), 80. https://doi.org/10.3390/c10030080