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Abstract: By functionalizing reduced graphene oxide with polydopamine, the production of a two-
dimensional hydrophilicplatform with hydrophobic areas, suitable for the stabilization and slow and
controlled release of hydrophilic and hydrophobic drugs, was realized. The functionalized graphene
was first enriched with different organic drug molecules, either hydrophilic, such as doxorubicin, or
hydrophobic, such as curcumin or quercetin, and then incorporated into a xerogel of chitosan and
polyvinyl alcohol. The graphene substrate stabilizes the xerogel in water and effectively controls
the release of doxorubicin for more than three weeks. The release of curcumin and quercetin in the
aqueous environment was equally successful but at different rates. The drug-loaded xerogels also
worked effectively after their incorporation into a hemostatic cotton gauze.
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1. Introduction

Polydopamine (PDA) is a fascinating bioinspired polymer [1] that has the unique
ability to form thin films covering almost all kinds of surfaces and exhibits remarkable
adhesive properties [2–4]. It is easily formed by the self-polymerization of dopamine in
alkaline water solutions. It has been used in many applications such as in energy, catalysis,
water treatment, or sensing [5]. Due to its biocompatibility, it has been used for coating
surfaces for bioapplications [6–9]. Although several attempts have been made up to now,
the exact structure of PDA remains unknown [10]. Among all else, PDA has proven
very effective for the functionalization of GO for several applications such as absorbent,
corrosion properties, membranes, and water desalination [11–18].

GO, being the oxidized form of graphene, has a limited aromatic character and is
rich in oxygen groups such as hydroxyls, carboxylates, and epoxy which give graphene
a hydrophilic character and considerable stability in a water dispersion [19]. With the
reduction of GO, the aromatic character is partially recovered, and the oxygen groups are
largely removed. The result is that the reduced graphene oxide (rGO) loses its hydrophilic
character and becomes an amphiphilic derivative [20,21]. In this way, it forms aggregates
and traps quantities of water, resulting in the formation of hydrogels. Often these hydrogels
resulting from the reduction of the GO are reinforced with polymers [22], biopolymers [23],
and other materials to enrich their properties and use them as biomaterials [22–24].

Graphene hydrogels can be converted into aerogels by lyophilization or xerogels by
physical air-drying. Graphene aerogels have a stable structure, significant porosity, high
specific surface area, and have been used in the removal of heavy metals, in batteries,
sensors and biosensors. The formation of graphene hydrogels and aerogels is one of the
most widespread uses of GO [25,26]. Our group has described the formation of graphene
aerogels doped with diamines and aerogels reinforced with carbon fibers [27–29].

Poly(vinyl) alcohol (PVA) is a water-soluble polymer; very widespread and often used
for hydrogels. PVA-based hydrogels have low toxicity and good biocompatibility, high
water absorption, and remarkable mechanical properties. It has been extensively studied
as a drug carrier, for wound healing, tissue engineering, and bioapplications [30–32].
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PVA has, among others, been combined with chitosan, which provides the hydrogel
with antibacterial properties and thermal and mechanical stability [33,34]. Chitosan is
one of the most interesting biopolymers with antimicrobial, antifungal, and hemostatic
properties. It is a polysaccharide of natural origin and has been extensively studied in
biopharmaceuticals, with most interest in wound healing [35]. Chitosan has often been
reinforced with carbon nanotubes and graphene oxide nanosheets. Carbon nanostructures
enhance the mechanical properties of the composite and, thanks to their electrical conduc-
tivity, can promote nerve regeneration in deep wounds [36,37]. Graphene oxide possesses
several functional oxygen groups such as hydroxyls, carboxyls, and epoxies, with which it
can significantly promote as a crosslinker chitosan network formation [38].

In this article, we describe the formation of a xerogel from chitosan and polyvinyl
alcohol reinforced with polydopamine-functionalized graphene (rGO-PDA) as substrate
and its use for the drug loading and slow release. The drug-loaded xerogel could be
used for the transdermal administration of drugs or therapeutic agents. As representative
substances that can be delivered by this rGO-PDA-doped xerogel, doxorubicin, quercetin,
and curcumin have been selected. The substances are incorporated into the graphene
platform and then covered by the polymer blends of the hydrogel. The product is stabilized
in the form of xerogel and can be converted back to a hydrogel before use, releasing
therapeutic substances on contact with the skin. Alternatively, hydrogel can be easily
incorporated into fabric, which, in the form of wearable patches, can provide a good fit
on various parts of the human body for continuous contact with the skin and transdermal
delivery over long periods of time [39]. For this reason, here the xerogel was embedded in
a cotton gauze and the drug release was examined by immersing the gauze in water.

The introduction of pharmaceutical substances into the human body is an important
issue that seriously affects the effectiveness of the drug. Transdermal administration is an
alternative method of drug delivery through the skin via a diffusion process into the blood-
stream and, from there, to the target organs. This method has significant advantages, such
as continuous and controlled drug administration, avoidance of digestion and metabolism
in the liver, and limited toxicity. However, up to now it has been used mainly for substances
that can penetrate the outer layer of the skin (stratum corneum) [40].

Doxorubicin is a widely used anti-cancer chemotherapeutic drug that acts by blocking
DNA replication in solid tumors like breast, lung, and skin cancers. Since its action takes
place in the nucleus of cancer cells, the efficient action requires its effective transport to
the cell nucleus. Usually, it is administered in doses by intravenous injections, causing
many side effects such as alopecia, myelosuppression, mouth ulcers, and cardiotoxicity
that limit its clinical application. To avoid this limitation, several efforts have been made to
use transdermal administration of DOX [41–43].

Curcumin is a natural herbal product traditionally used for wound healing [44] and
its anti-inflammatory and antioxidant properties. It is a polyphenolic compound from the
rhizome of Curcuma longa, quite hydrophobic and poorly soluble in aqueous media. It
is often used for the transdermal therapy of psoriasis, using liposomes or hydrogels to
overcome its poor solubility in water [45–49]. Much research has also been devoted to its
therapeutic potential in breast cancer prevention. However, due to its poor absorption
when consumed orally, the anticancer effects of curcumin have not yet been fully exploited.
Atlan et al. proposed a curcumin-modified textile product that offers transdermal, targeted
drug delivery simply through skin contact for daily breast cancer prevention [30].

Quercetin is another polyphenol of natural origin from the flavonol family with high
therapeutic potential [50], but limited pharmacological use due to its low water solubility
and bioavailability [51]. It has been shown that quercetin can be transported through the
skin using mesoporous silica particles, embedded in oleogel [52].
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2. Materials and Methods
2.1. Materials

Graphite, curcumin (Curc), polyvinyl alcohol (PVA), and dopamine were purchased
from Alfa Aesar Thermo Fisher Scientific, Waltham, MA, USA: doxorubicin hydrochloride
(DOX) from Merck & Co., Inc., Rahway, NJ, USA: quercetin hydrate (Querc) from Cayman
Chemical Company, Ann Arbor, MI, USA; chitosan (Chit) from Glentham Life Sciences
Ltd., Wiltshire, UK. All other chemicals and solvents were of analytical grade.

2.2. Preparation of GO

GO was prepared according to Staudenmaier’s method (Staudenmaier, 1898) through
oxidation of graphite [39,53]. 20 g of graphite was added to 600 mL of a cold mixture of
H2SO4 and HNO3, (2:1). 200 g of KClO3 powder was added to the cold mixture in small
portions under continuous stirring. The reaction was quenched after 20 h by pouring the
mixture into deionized water. The GO product was then washed until the pH reached 6.0
and was dried at room temperature.

2.3. Preparation of rGO-PDA

50 mg of GO was mixed with an excess of dopamine (200 mg) in 50 mL of water
and the pH was controlled to 8.5 with concentrated ammonia. The mixture was stirred
overnight, and the product was isolated with centrifugation and filtration (hydrophilic
membrane filter 0.2 µm) and washed with water.

2.4. Preparation of Hydrogel rGO-PDA

50 mg of PVA and 10 mg of Chit were dissolved in 1 mL of water and stirred overnight.
The PVA/Chit mixture was then mixed with 1 mL of rGO-PDA (1 g L−1), deposited on a
glass slide, and air-dried. For the study of the xerogel as a drug release system, a quantity
of doxorubicin (DOX) was first incorporated into the rGO-PDA.

2.5. Preparation of Hydrogel rGO-PDA/DOX

250 µL of DOX solution (1 g L−1) was mixed with 1 mL rGO-PDA (1 g L−1) and
stirred overnight. The mixture was then added to 1 mL of PVA/Chit solution, and half of
the product was deposited on glass and air-dried. The control sample contains the same
quantities, except the rGO-PDA.

2.6. Preparation of Hydrogel rGO-PDA/Querc

100 µL of Quercetin solution (2 g L−1) in ethanol was mixed with 1 mL rGO-PDA (1 g L−1)
and stirred overnight. The mixture was then added to 1 mL of PVA/Chit solution, and half
of the product was embedded in a piece of gauze and air-dried.

2.7. Preparation of Hydrogel rGO-PDA/Curc

100 µL of Curcumin solution (2 g L−1) in ethanol was mixed with 1 mL rGO-PDA (1 g L−1)
and stirred overnight. The mixture was then added to 1 mL of PVA/Chit solution and half
of the product was embedded in a piece of gauze and air-dried.

2.8. Characterization Methods

The FTIR spectra were performed with an ATR technique on a Fourier transform
spectrometer (IRTracer-100, Shimadzu Europa GmbH, Duisburg, Germany). The optical
spectra were recorded in water dispersion with a Shimadzu UV-1900 (Shimadzu, Duis-
burg, Germany).

DLS and PDI. The determination of the hydrodynamic diameter and polydispersity
index (PDI) of nanoparticles dispersed in water was performed in a ZetaSizer Nano series
Nano-ZS (Malvern Instruments Ltd., Malvern, UK) equipped with a He–Ne laser beam at a
wavelength of 633 nm and a fixed backscattering angle of 173◦. Polydispersity index (PDI)
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is the square of light scattering polydispersity and indicates the size distribution of the size
of the nanosheets.

3. Results and Discussion

The treatment of GO with dopamine in alkaline water dispersion resulted in the partial
reduction of GO and the functionalization with polydopamine. The product rGO-PDA
can be seen as a biocompatible, two-dimensional (2D) platform with aromatic moieties
and PDA oligomers or macromolecules attached to the surface. Although not yet fully
explained, the PDA aromatic parts and NH or OH groups could provide covalent bonds
or van der Waals interactions and hydrogen bonds as the main attractive forces that bind
PDA to rGO [54]. rGO-PDA was highly hydrophilic and formed stable dispersion in water
(see Figure 1). Based on the mass of the product that was isolated and the starting amount
of GO, the PDA percentage in rGO-PDA was estimated to be approximately 35%. To form
the xerogel, rGO-PDA was mixed with a mixture of chitosan and PVA, deposited on a
glass slide, and air-dried. The removal of water from the hydrogel by evaporation results
in significant shrinkage of the structure and the formation of a xerogel in the form of a
stable film with significant mechanical stability. The XRD pattern of the xerogel showed
a totally amorphous phase, indicating a homogeneous dispersion of the rGO-PDA in the
polymer blend. Microscopic analysis of the xerogel film by SEM analysis showed the
absence of pores on the surface. However, on contact of the film with water, the hydrogel is
regenerated and then studied as a drug release system.
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Figure 1. The formation of the rGO-PDA derivative and attachment of DOX (red colored) on rGO-
PDA (rGO-PDA/DOX).

Firstly, DOX was selected as a representative hydrophilic compound to be loaded and
released from the hydrogel. A quantity of DOX was incorporated into the rGO-PDA. Due to
the solubility of DOX in water, both components were mixed in water. The DOX molecules
interact mainly with the aromatic areas of the graphene by π stacking interactions (see
Figure 1) as well as with OH and NH groups of PDA by hydrogen bonds [55,56]. Curcumin
(Curc) and quercetin (Querc) are hydrophobic substances and thus are not sufficiently
soluble in water. Therefore, the deposition of those compounds on the rGO-PDA surface
was performed in an ethanol/water mixture. Both compounds have aromatic rings that
favor their hydrophobicity and contribute to the van der Waals interactions with the
graphene platforms through π stacking, and oxygen groups that can be involved with
hydrogen bonds with PDA chains [57–60]. The prepared hybrids rGO-PDA/drug were
then incorporated into the PVA-chitosan blend, forming hydrogels and the final xerogels.
The presence of rGO-PDA nanosheets provides a significant mechanical stability to the
hydrogels, and thus maintaining their structure even after 30 days in water. Whereas
hydrogels without rGO-PDA nanosheets that were used in control experiments have much
less stability and are often destroyed much faster in water.

The FT-IR spectrum of rGO-PDA has some different peaks compared to that of GO due
to the addition of PDA groups on the graphene surface and the removal of oxygen groups
from GO by the reductive action of dopamine. The spectrum of GO has some characteristic
peaks at 3000–3400 cm−1 (vOH), 1620 (C=C stretching and water bending), 1370 (C-OH
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bending), 1190 (epoxy or S=O stretching), and 1043 (C-OH stretching), 980 cm−1 (epoxy
stretching) [61]. The spectrum of rGO-PDA has much lower peaks in the 3000–3400 re-
gion and 1620 cm−1 due to the removal of oxygen groups, with new peaks at 1500 and
1580 cm−1 that correspond to the N-H bonding and C=C stretching vibration respectively
(see Figure 2a) [62,63]. The characteristic peak of N-H at around 3100 cm−1 is very broad
due to hydrogen bond interaction and therefore difficult to observe [64,65].
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Figure 2. FTIR spectra of (a) GO, (b) rGO-PDA (c) Part of the spectrum (a) in magnification. and
(d) UV-Vis spectra of GO and rGO-PDA dispersed in water.

The UV-Vis spectrum of GO has a band with two distinct λmax at 234 and 300 nm due
to π,π* and n,π* transitions. In the spectrum of rGO-PDA, the peak at 300 nm was removed,
indicating the absence of oxygen groups, and the π,π* transition was red-shifted to 273 nm
due to increased aromaticity of the product after the reduction of GO (see Figure 2b) [66].
The dynamic light scattering (DLS) of rGO-PDA (see Figure 3) showed a mean size of the
particle of about 300 nm, with a zeta potential of −21.6 mV, showing that the colloidal
stability of the product in water was partly attributed to the charge of the surface [67]. The
polydispersity index (PDI) was measured to 0.42, indicating a moderate size distribution of
the rGO-PDA nanosheets.
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3.1. Release of DOX from Hydrogel and Gauze with Embedded Hydrogel

DOX was embedded into the xerogel by mixing it with rGO-PDA in the first stage.
DOX molecules were absorbed onto the surfaces of rGO-PDA nanosheets through van der
Waals interactions, as indicated by the discoloration of the DOX solution after the addition
of rGO-PDA and overnight stirring. Furthermore, the UV-Vis absorption of DOX was less
intense after the addition of rGO-PDA, and at least two of its bands were shifted due to the
interaction with the surface of rGO-PDA (see Figure 4d). The xerogel rGO-PDA/DOX and
blank samples, in the form of dry films, contained 125 µg of DOX and were kept in the dark.
For the release experiments, the samples were placed in water. The xerogels absorbing
water were converted to hydrogel and started releasing DOX. The amount of DOX released
as a function of days is shown in Figure 4. The blank sample (without rGO-PDA) released a
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total of approximately 71 µg of DOX after 11 days, with 90% (64 µg) of this amount released
in the first two days. The sample with rGO-PDA released approximately 90 µg of DOX
after 33 days, with only 56% (49 µg) of this amount released on the first day. After day 9,
the sample released about 0.4 µg on average each day.
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Figure 4. (a) The released amount of DOX per day from rGO-PDA/DOX hydrogel, (b) photo of the
DOX-doped xerogel before and after the release process, (c) the release of DOX per day from the gauze
modified with rGO-PDA/DOX hydrogel, (d) the UV-Vis spectra of DOX and rGO-PDA/Dox hybrid.

The rGO-PDA/DOX hydrogel was then incorporated into a gauze and air-dried. The
gauze embedded with rGO-PDA/DOX was placed in water to measure the release of DOX.
The total amount of DOX incorporated in the gauze sample was 62.5 µg. During the release
process, about 24 µg (61% of the total released amount) was released on the first day, while
the next 15 µg of DOX was released slowly over 22 days. By comparing the two different
release procedures—hydrogel and gauze with embedded hydrogel—it is observed that
after the first day, where both procedures release similar amounts of approximately 60%,
the gauze has a smoother release over the whole period from day 2 to day 22 (average
release 0.65 µg/day), while the hydrogel initially releases the drug at a higher rate (average
release 4 µg/day) for 8 days and then at a lower rate (average release 0.4 µg/day). The
smooth release of DOX from the gauze can be correlated with the increased surface of the
hydrogel that is absorbed into the cotton textile.

3.2. Release of Quercetin from Gauze with Embedded Hydrogel

Quercetin was first embedded into the rGO-PDA nanosheets. The aromatic part
of the molecules, as well as the oxygen groups they contain, ensure that the quercetin
molecules are attached to the nanosheets through van der Waals interactions and hydrogen
bonds. These interactions are responsible for the red shift of the two characteristic bands
in the UV-Vis spectrum of rGO-PDA/Querc compared to free quercetin (see Figure 5a).
Afterwards, the rGO-PDA/Querc hydrogel was incorporated into a gauze and air-dried.
For the release measurements, the rGO-PDA/Querc-embedded gauze was placed in water.
The total amount of the drug that was incorporated into a gauze sample was 50 µg. In a
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period of 12 days, about 10 µg was released, although quercetin has very low solubility
in water. About 6 µg was released on the first day, while the next 4 µg of the drug was
released slowly over 12 days, with a mean amount of about 0.33 µg of quercetin every day
(see Figure 5).
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3.3. Release of Curcumin from Gauze with Embedded Hydrogel

Curcumin was also first embedded into the rGO-PDA nanosheets before the hydrogel
formation by overnight stirring in a water solution. Similar to the previous molecules,
curcumin was strongly attached to the nanosheets through van der Waals interactions and
hydrogen bonds due to its aromatic rings and the oxygen groups. The UV-Vis spectrum
of rGO-PDA/Querc showed a less intense and broader band at 426 nm compared to the
spectrum of free curcumin (see Figure 6d). The rGO-PDA/Curc embedded gauze was
placed in water to measure the release of curcumin. The total amount of the drug that was
incorporated into the gauze sample was 50 µg. During the release process, about 3 µg was
released slowly over the first 7 days, with a mean amount of about 0.36 µg of curcumin
every day, while the next 1 µg of the drug was released slowly over 10 days, at a mean
amount of about 0.06 µg every day (see Figure 6).
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The gauze samples embedded with the drug-loaded hydrogels showed different
release rates, which were mainly related to the solubility of the drug in water. DOX, with
the higher water solubility (10 g L−1), was released from the gauze at a rate of 39%, with an
average of 0,65% per day. Quercetin, with much lower solubility (2.15 mg L−1) was released
at 20%, with an average of 0.33% per day, while curcumin, having the lowest solubility
(0.6 mg L−1), was released at 7%, with an average of 0.06% per day. DOX, having aromatic
rings that help its anchoring to the surface of graphene but also hydrophilic groups that
overlap overall, is gradually released from the surface of the graphene, through water, over
a long period of about 3 weeks. The remaining two substances, quercetin and curcumin,
are dominated by their hydrophobic character, which allows a stronger binding to the
graphene surface, and this is reflected in the low release rate they exhibit. However, despite
their low solubility in water, both compounds are released gradually over a period of about
2 weeks.

4. Conclusions

In this work, a graphene-based hydrogel rGO-PDA was constructed that can gradually
release a hydrophilic substance like DOX for more than 1 month, without destroying its
structure. For better application, the hydrogel was incorporated into a cotton gauze patch,
where the release of DOX was similar in regards to the yield and the rate of the daily release.
Furthermore, the hydrogel rGO-PDA embedded in gauze was suitable for the binding
and release of hydrophobic substances such as quercetin and curcumin. The yield and the
release rate of these substances were much lower due to their low solubility in water and
stronger binding with the graphene surface.
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