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Abstract: Using the Monte Carlo technique via CORAL-2024 software, models of aromatic
substance adsorption on multi-walled nanotubes were constructed. Possible mechanistic
interpretations of such models and the corresponding applicability domains were investi-
gated. In constructing the models, criteria of the predictive potential such as the iIndex of
Ideality of Correlation (IIC), the Correlation Intensity Index (CII), and the Coefficient of
Conformism of a Correlative Prediction (CCCP) were used. It was assumed that the CCCP
could serve as a tool for increasing the predictive potential of adsorption models of organic
substances on the surface of nanotubes. The developed models provided good predictive
potential. The perspectives on the improvement of the nano-QSPR/QSAR were discussed.

Keywords: QSPR; Monte Carlo method; multi-walled carbon nanotubes (MWCNTs);
adsorption; coefficient of conformism of a correlative prediction (CCCP); CORAL software

1. Introduction

Nanotechnology has opened up new foundations for scientific disciplines and technol-
ogy due to its ability to demonstrate extraordinary properties of materials. Nanotechnology
is an interdisciplinary subject that combines engineering and manufacturing concepts at a
molecular level, while also providing new possibilities in medicine [1]. Nanotechnology
is mainly concerned with the study of physical processes and the application of these
nanostructures in real-world applications [2-7]. In recent decades, nanomaterials have
been synthesized, characterized, and widely applied in various fields. This technology has
had an impact on several fields, including electronics, chemistry, biology, and biomedicine.
Although different sectors create different types of nanomaterials, nanotechnology is becom-
ing increasingly relevant in environmental engineering to address environmental pollution
and contamination issues.

The development of new materials and technologies for their production and process-
ing is currently recognized as the so-called “key” or “critical” aspect of the foundation of
economic power [8]. In fact, two of the priority areas of development in modern materials
science are nanomaterials and nanotechnology. The development of fundamental and
applied concepts of nanomaterials and nanotechnology in the coming years can lead to
fundamental changes in many areas of human activity: materials science, energy, electron-
ics, computer science, mechanical engineering, medicine, agriculture, and ecology. Along
with computer information technology and biotechnology, nanotechnology is the basis of
scientific and technological revolution. It is difficult to imagine modern science without the
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widespread use of mathematical modeling, which consists of replacing the original object
with its “image”—a mathematical model—and further studying this model using computer
systems. This method combines many advantages of both theory and experiment. Working
not with the object itself, but with its model, allows us to painlessly and relatively quickly
study its properties and behavior in any conceivable situation, without significant costs.
At the same time, computational experiments with object models, relying on the power
of modern computing tools in informatics, allow us to study objects in sufficient detail
and depth, which is inaccessible to purely theoretical approaches. The use of experimental
methods leads to large amounts of time, financial, and labor costs. Therefore, the use of
methods for modeling the properties of nanostructures will significantly reduce these costs.

The use of computer modeling for nanosystems has fundamental difficulties. Firstly,
there is no long-range order, characteristic of crystals, allowing us to reduce the number of
independent degrees of freedom of the system; secondly, the short-range order, characteris-
tic of liquids, does not allow us to determine all the functional properties of nanomaterials.
Thirdly, there are technical difficulties associated with modeling macro-objects at the atomic
level. Direct modeling of such systems in the approximation of molecular dynamics and,
especially, quantum mechanics is difficult even with the use of modern supercomputer
technology. A solution may be the use of a hierarchical multiscale approach to modeling,
when, at each lower level, the parameters and variables necessary for constructing upper-
level models are calculated. At present, experimental methods are mainly used in the
development of nanomaterials with specified properties, which does not always allow us to
find the optimal solution, and increases the cost of development, so it is advisable to more
actively involve mathematical modeling methods that allow predicting the composition,
characteristics, and properties of future nanomaterials. To implement the mathematical
modeling of physicochemical processes, it is necessary to have mathematical models based
on certain theoretical approaches. Computational nanotechnology is of crucial importance
for prototyping nanomaterials, devices, systems, and various applications. At the same
time, it can be used not only to understand and characterize systems obtained as a result
of experiments but also to predict the properties of new materials, since there is a close
relationship between structural, mechanical, chemical, and electrical properties in the
nanoscale region [8,9].

A special place among nanomaterials is occupied by multi-walled nanotubes (MWC-
NTs), which have found numerous applications. Among the applications of nanotubes, a
special place is occupied by their applications for cleaning and blocking various man-made
emissions that pose an environmental problem [10].

The measure of the ability of organic compounds to be blocked before causing harm
to ecology or human beings is their ability to adsorb on the surface of nanotubes. Thus,
knowledge of this parameter for various organic compounds (potential industrial pollu-
tants) is useful information from the point of view of risk assessment. The list of organic
compounds capable of participating in technological cycles and, therefore, being potential
pollutants of the environment is large and constantly growing.

Since the experimental determination of the adsorption capacity of various organic
compounds on nanotubes is a rather complex and expensive problem, the development
of models of this physicochemical parameter in the form of a mathematical function of
the molecular structure is a very relevant theoretical and practical problem. Quantitative
structure—property /activity relationships (QSPRs/QSARs) are widely used tools to solve
the problem, at least for substances, which are not nanomaterials [11]. It should be noted,
however, that the search for nano-versions of QSPRs/QSARs is also taking place in the
stream of work aimed at developing models of various endpoints [12-15].
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Here, the possibility and efficiency of using the Monte Carlo method to solve the given
problem is considered. Previously, the so-called index of ideality correlation (IIC) [13]
and the correlation intensity index (CII) [14] were suggested as means of improving the
operation of the optimization procedure carried out using the Monte Carlo method.

The IIC is a value sensitive to both the value of the correlation coefficient and the
value of the average absolute error [13]. The CII is a value defined by the presence of
structures in the set that support the correlation; the removal of such a structure, while
leaving all others in the set under consideration leads to a decrease in the correlation coeffi-
cient [14]. The so-called coefficient of conformism of a correlative prediction (CCCP) [15]
is the ratio of the sum of ‘supporters” and the sum of ‘oppositionists” of the correlation
in a set [15]. An oppositionist is a structure removed, which leads to an increase in the
correlation coefficient.

These special criteria of predictive potential can serve as a tool to improve it. It was
assumed that the CCCP could serve as a tool for increasing the predictive potential of
models of adsorption of organic substances on the surface of nanotubes. Since, when
calculating the CCCP, the influence of both ‘supporters” and ‘opponents’ of the correlation
is actually taken into account, there is a possibility that the CCCP will be more effective (at
least more informative) than the CII value, which does not take into account the influence
of ‘opponents’ of the correlation.

Three levels of computer simulation can be applied that relate to the endpoints of
nanomaterials or the physicochemical phenomena associated with nanomaterials. The
first level relates to models reached by traditional tools used in the traditional (without
nanomaterials) QSPRs/QSARs. The second level, or hybrid, consists of models reached
partially with traditional tools of QSPRs/QSARs analysis but, in addition, using new
descriptors/algorithms related solely to nano-reality. The third level consists of models
reached with exclusive tools related solely to nano-reality. From this point of view, the
given work considered a QSPR analysis of the first level, despite MWCNTs being part of
the wider phenomena of nano-reality.

Each of the above-mentioned levels has advantages and disadvantages. The first
level is poor in the context of the nano-reality. However, it can be a convenient tool in
practice. The second level may be quite intriguing in practical terms, but the interac-
tion between nano-reality and the traditional QSPRs/QSARs is unpredictable. The third
level, being the most obvious, is at the same time the most innovative, and therefore the
most unpredictable.

2. Materials and Methods
2.1. Data

Experimental data on the adsorption of organic substances on MWCNTs, as well as
simplified molecular input-line entry systems (SMILES) [16] representing the mentioned
organic substances, were borrowed from the literature [11,12]. The surface area normalized
adsorption coefficients of organic compounds on MWCNTs are considered here as the
endpoint. There were two duplicates of SMILES in the work [11]. Thus, the total number of
compounds considered is n = 68.

The model for the endpoint calculated via the descriptor of the correlation weights
(DCW) of SMILES attributes is as follows:

logK = Cg + C; x DCW(T,N) (1)

The DCW(T,N) is the optimal SMILES-based descriptor calculated with the correlation
weights of all the statistically significant molecular features extracted from SMILES [13].
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T and N are parameters of the Monte Carlo method that provide the correlation weights
used to calculate the DCW(T,N) values. T is the threshold to define statistically significant
(non-rare) molecular features. A feature is not significant if its frequency on the training set
is smaller than T. N is the number of epochs of the Monte Carlo optimization. One epoch is
a random sequence of modifications for all the statistically significant molecular features
extracted from SMILES. LogK is the logarithm of the surface area normalized adsorption
coefficients of organic compounds on MWCNTs.

The choice of values of T and N is made empirically. However, it is obvious: (i) that
choosing too large a value of T will result in too few parameters being optimized, which
will make the model more primitive; and (ii) too large a value of N will make the calculation
longer, and a significant part of the epochs may be in vain (the same achieved value of the
objective function will be repeated).

2.2. Optimal SMILES-Based Descriptor

The optimal SMILES-based descriptor used in Equation (1) is calculated using the
following equation:

DCW(T,N) =) CW(Sy) + ) _ CW(SSy) (2)

Sk is a SMILES atom, i.e., an undivided fragment of SMILES (e.g., ‘C’, ‘O’, ‘Br’, ‘Cl’, etc.).
5Sy is a pair of SMILES atoms, which are neighbors in the SMILES line. From the two possi-
ble configurations of SMILES atoms, we selected those according to the ASCII codes [17] of
the corresponding symbols.

2.3. Monte Carlo Method

The numerical data on the correlation weights necessary to calculate the optimal
descriptor are obtained using the four different target functions listed below.

TFy = R} + R} + [R§ — R}| x 01 3)

TFyc = R3 + R3 + ]Ri . Rl%( % 0.1+ IIC x 0.25 (4)
TFon = R} + R} + R} — R[ x 0.1+ CI1 x 0.25 5)
TFcccp = R3 +R2 + ‘Ri _ Rl%‘ % 0.1 +CCCP x 0.25 ©)

The Monte Carlo optimization includes the following stages. First, distribution into
the active training set, the passive training set, the calibration set, and the validation set.
The distribution of the entire data set into the specified sets is carried out randomly, but in
equal shares (i.e., approximately 25%). Second, stochastic modifications of the correlation
weights aimed to reach a maximum of the selected target function.

In Equations (3)—(6), R?, and R?p are determination coefficients related to the active
and passive training sets.

The index of ideality of correlation (I/IC) [15] is calculated using data on the calibration

set as follows:
min (TMAEc, TMAE()

N = X " MAEc, *MAEC) @
. x, if x <y

Y) = ) 8

min(x, ) {y,otherwzse ®)

_)xi fx>y
max(x,y) {y,otherwise ®)
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1 .

“MAE = WZ\AH, ~N is the number of A <0 (10)
1 .

TMAE = WZ\AH, N is the number of Ay >0 (11)

Ay = observed). — calculated (12)

The observed and calculated values are the corresponding values of the endpoint.
The correlation intensity index (CII) is calculated as follows [16]:

Cllc =1—)_ Protest; (13)
Protest; = Ri—R%, if Rg—R?>0 (14)
k 0, otherwise

R? is the correlation coefficient for a set that contains 7 substances. R% is the correlation
coefficient for n — 1 substances of a set after removing the k-th substance. Hence, if
AR = (R%; — R?) is larger than zero, the k-th substance is an “opponent” for the correlation
between experimental and predicted values of the set. A small sum of “protests” means a
higher correlation [14].

The cCoefficient of Conformism of a Correlative Prediction (CCCP) is a new criterion
of the predictive potential [15]. The CCCP is calculated the follows:

CCCP = ARoppositionist (15)
ARsupporter

ARsupporter is the antagonist to ARoppositionist, 1-€., AR = (R?, — R?), which is smaller
than zero.

The main idea of the IIC is an attempt to combine the statistical quality of the model,
transmitted through the values of the coefficients of determination, and the statistical
quality of the model, transmitted through the values of the average absolute error. Instead
of the latter, one can use the root mean square error, but the use of the absolute error
turned out to be more effective in terms of the results of the stochastic process of the
optimization using the Monte Carlo method. The basic idea of CII is to evaluate how
individual compounds influence the overall correlation in the set. In the case of CII, the
overall total contribution of all opponents of the correlation is examined, that is, those
compounds whose removal from consideration leads to an improvement in the correlation.
The CCCP should be considered an attempt to improve the information content of the CII
by taking into account the influence of the “supporters” of the correlation (compounds
whose removal from consideration leads to a decrease in the coefficient of determination).

There is a variety of SMILES. Some are called canonical because they follow a standard-
ized procedure for the representation of the molecular structure; in practice, there may be
several canonical SMILES for the same substance. Therefore, it is better to consider SMILES
obtained with a single program, without pretending that canonical SMILES obtained with
different programs will be identical.

3. Results

To assess the statistical quality of the models, the following criteria have been used: the
number of compounds in a set; the determination coefficient R?; the concordance correlation
coefficient CCC [18]; the cross-validated correlation coefficient Q? [19], the root means square
error (RMSE), and the Fischer F-ratio [19]. In addition, the IIC, CII, and CCCP were used for
comparing the quality of the models. Five different splits into active training (A), passive
training (P), calibration (C), and validation sets (V) have been analyzed here.
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3.1. Monte Carlo Optimization Without Considering Calibration Set Status

Table 1 contains the statistical characteristics of the models for logK observed in the
case of the target function TF (as seen in Equation (3)). One can see that the validation sets
have several “unstable” statistical characteristics (for instance, the determination coefficient
ranges from 0.41 to 0.74). The average and dispersion of the determination coefficient of
the validation sets are 0.59 + 0.12.

Table 1. The statistical characteristics of models build up using TFj on five random splits. The best
model is indicated in bold.

n* R? ccc IIC c11 Q? cccp RMSE F
A 18 0.9696 0.9846 0.6266 0.9790 0.9632 0.9591 0.245 510
P 17 0.9303 0.8920 0.2280 0.9384 0.9151 0.8044 0.625 200
C 18 0.0805 0.1647 0.1036 0.7526 0 —0.5554 1.29 1
\Y% 16 0.5055 - - - - - 1.00 -
A 18 0.8026 0.8905 0.4480 0.8732 0.7530 0.5573 0.553 65
P 16 0.8029 0.8670 0.6314 0.8477 0.7599 0.4188 0.803 57
C 18 0.7991 0.8743 0.6235 0.8464 0.7460 0.0355 0.318 64
A\ 17 0.4082 - - - - - 0.62 -
A 17 0.7921 0.8840 0.7911 0.8387 0.7538 —0.0397 0.702 57
P 18 0.9667 0.2240 0.3461 0.9731 0.9595 0.9091 1.23 465
C 16 0.1597 0.2261 0.1199 0.5083 0 —0.7493 0.566 3
\Y 18 0.7376 - - - - - 0.53 -
A 18 0.8744 0.9330 0.9351 0.9163 0.8489 0.7761 0.429 111
P 16 0.9539 0.8740 0.6130 0.9587 0.9430 0.7264 0.511 290
C 18 0.2744 0.4070 0.3395 0.6712 0 —0.0965 0.859 6
\Y% 17 0.6498 - - - - - 0.73 -
A 18 0.9363 0.9671 0.7741 0.9517 0.9208 0.8812 0.331 235
P 17 0.7197 0.5935 0.3515 0.7897 0.6671 0.2012 2.22 39
C 18 0.4443 0.5533 0.4044 0.6672 0.1452 —0.2561 0.956 13
\Y% 16 0.6514 - - - - - 0.71 -
* n = number of compounds in a set; R? = determination coefficient; CCC = concordance correlation coefficient;
IIC = index of ideality of correlation; CII = correlation intensity index; Q? = cross-validated R%; CCCP = coefficient
of conformism of a correlative prediction; RMSE = root mean square error; F = Fischer F-ratio.
3.2. Monte Carlo Optimization Using TFyc
Table 2 contains the statistical characteristics of the models for logK observed in the
case of the target function TFjc (as seen in Equation (4)). One can see that the validation
sets have quite “unstable” statistical characteristics (the determination coefficient ranges
from 0.04 to 0.76). The average and dispersion of the determination coefficient of the
validation sets are 0.57 4 0.28.
Table 2. The statistical characteristics of models build up using TFyjc on five random splits. The best
model is indicated in bold.
n* R? ccc IIC CI1 Q? cccp RMSE F
A 18 0.7928 0.8844 0.8904 0.8380 0.7509 0.5566 0.298 61
P 17 0.9234 0.8023 0.4737 0.9359 0.9092 0.6593 0.650 181
C 18 0.5022 0.6026 0.7085 0.6930 0.3673 —0.4570 0.891 16
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Table 2. Cont.
n* R? ccc IIC CI1 Q? cccp RMSE F
\% 16 0.0373 - - - - - 1.07 -
A 18 0.5856 0.7387 0.7653 0.7861 0.4718 0.0819 0.822 23
P 16 0.6605 0.6277 0.2436 0.7873 0.5807 0.3494 1.08 27
C 18 0.7235 0.8090 0.8499 0.8490 0.5394 0.7073 0.433 42
A\ 17 0.7629 - - - - - 0.67 -
A 17 0.6099 0.7577 0.6942 0.7737 0.5289 0.3759 0.833 23
P 18 0.8177 0.7779 0.7673 0.8835 0.7801 0.4544 0.681 72
C 17 0.7959 0.8583 0.8901 0.8291 0.7384 —0.2418 0.374 58
\% 17 0.7524 - - - - - 0.89 -
A 18 0.7297 0.8437 0.5436 0.8128 0.6720 0.1829 0.681 43
P 18 0.6606 0.7949 0.5372 0.7728 0.5816 0.2076 0.918 31
C 16 0.7444 0.8432 0.8599 0.8272 0.6332 0.3673 0.380 41
\% 17 0.7503 - - - - - 0.34 -
A 18 0.6722 0.8040 0.6559 0.7892 0.6091 0.2275 0.699 33
P 17 0.7685 0.7756 0.6137 0.8239 0.7136 0.3726 0.748 50
C 17 0.7881 0.8733 0.8871 0.8735 0.7416 0.7421 0.367 56
\% 17 0.5267 - - - - - 0.44 -
* n = number of compounds in a set; R? = determination coefficient; CCC = concordance correlation coefficient;
IIC = index of ideality of correlation; CII = correlation intensity index; Q? = cross-validated R%; CCCP = coefficient
of conformism of a correlative prediction; RMSE = root mean square error; F = Fischer F-ratio.
3.3. Monte Carlo Optimization Using TFcyy
Table 3 contains the statistical characteristics of the models for logK observed in the
case of the target function TFcy; (as seen in Equation (5)). One can see that the validation
sets have different statistical characteristics (the determination coefficient ranges from
0.49 to 0.84). The average and dispersion of the determination coefficient of the validation
sets are 0.68 £ 0.14. Thus, there is an improvement, compared to the situation observed in
Tables 1 and 2.
Table 3. The statistical characteristics of models build up using TFj; on five random splits. The best
model is indicated in bold.
n* R? ccc Iic CI1 Q? ccecp RMSE F
A 17 0.8800 0.9362 0.6567 0.9063 0.8473 0.7954 0.339 110
P 17 0.8480 0.5642 0.5567 0.8940 0.7680 0.7925 0.561 84
C 18 0.3884 0.4909 0.3401 0.7357 0.2762 0.0219 1.59 10
\% 17 0.5362 - - - - - 1.32 -
A 18 0.7863 0.8803 0.8867 0.8299 0.7503 0.1435 0.611 59
P 16 0.7802 0.7517 0.5756 0.8234 0.7380 —0.5862 1.09 53
C 18 0.5537 0.7299 0.5065 0.8456 0.4091 0.6445 0.633 17
A\Y 17 0.8415 - - - - - 0.43 -
A 17 0.8530 0.9207 0.8210 0.8682 0.8257 —0.9189 0.393 87
P 18 0.8523 0.7918 0.3440 0.8741 0.8298 0.5431 1.11 92
C 17 0.8714 0.7608 0.4424 0.8984 0.8469 0.6512 0.547 102
\% 17 0.7516 - - - - - 0.81 -
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Table 3. Cont.
n* R? ccc 1IC clI Q? cccp RMSE F
A 18 0.7263 0.8415 0.8522 0.8051 0.6724 —0.2712 0.627 42
P 16 0.8237 0.8691 0.5583 0.8598 0.7841 0.6580 0.556 65
C 18 0.3674 0.4141 0.2882 0.8012 0.2145 0.1111 0.837 9
\% 17 0.4929 - - - - - 0.94 -
A 18 0.9287 0.9630 0.9637 0.9439 0.9147 0.8443 0.350 208
P 18 0.7132 0.5873 0.4697 0.7954 0.6608 0.2863 2.14 40
C 16 0.8820 0.5160 0.8183 0.9037 0.8579 0.6819 1.49 105
\% 17 0.8069 - - - - - 2.08 -
* 1 = number of compounds in a set; R? = determination coefficient; CCC = concordance correlation coefficient;
IIC = index of ideality of correlation; CII = correlation intensity index; Q? = cross-validated R%; CCCP = coefficient
of conformism of a correlative prediction; RMSE = root mean square error; F = Fischer F-ratio.
3.4. Monte Carlo Optimization Using TFcccp

Table 4 contains the statistical characteristics of the models for logK observed in the
case of the target function TFcccp (as seen in Equation (6)). One can see that the validation
sets have different but quite similar statistical characteristics (the smallest determination
coefficient is 0.84 and the largest one is 0.87). The average and dispersion of the determina-
tion coefficient of the validation sets are 0.85 &= 0.01. This target function is more advanced
compared to the previous ones since it incorporates several optimization steps.

Figure 1 contains the comparison of the best models observed in the cases of the
considered target functions for split 2. The target function preferable according to the
determination coefficient value (Table 4) of the validation set is TFcccp. The consideration
of the average values confirms this.

MY MY . MY .t MY .
b : D FRLE B o b .
E pr ! E S E L E .+ e (D
L T . X L " s L =" X L = X

Active Training zet () | Active Training set (4) | Active Training zet (4) | Active Training set (4) |
MY ' MY ’ MY . MY )
5 - B ' 5 b (ii)
E . E E . .l E .
L Le="" x L Lar.em- x L . x L L. X

Passive Training set (P) | i Pazsive Training zet (P) | Pazzive Training zet (P) | Passive Training set (P) | .
jgl[ Y }E;[ ¥ - MY . g[ Y

o es
D . D ] D it D o (iii)
e E -, L
L ey x L G X L - X L " 'f X
Calibration zet (C) | Calibration zet (C) | Calibration zet (C) Calibration zet (C) .

MY 2 _ MY 2 M7 R2= . MM R2= .
MR = 041 T R==0.76. M T RT=0.84 MITR7=087 (iv)
D . D . D . D .t
E R E . E -0 E .
L P S X L il X L X L L

Validation zet (V)

Validation zet (V)

Validation zet (V)

Validation zet (V)

TF,

TFyc TF¢yy TFceep

Figure 1. Comparison of the models for split 2 obtained with different target functions: TFy, TFc,
TFcyy, and TFcccp. The statistical status of the models in the experiment (abscissa)—calculated model
(ordinate) coordinates is presented separately for (i) the active training set; (ii) the passive training
set; (iii) the calibration set; and (iv) the validation set.
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Figure 1 contains the comparison of the best models observed in the cases of the
considered target functions for split 2. The target function preferable according to the
determination coefficient value (Table 4) of the validation set is TFcccp. It is confirmed by
the average values.

Table 4. The statistical characteristics of models build up using TFcccp on five random splits. The
best model is indicated in bold.

n* R? ccc Iic CI1 Q? cccp RMSE F
A 18 0.7775 0.8748 0.7054 0.8024 0.7430 —0.4113 0.551 56
P 18 0.6895 0.7424 0.7674 0.7852 0.6157 —0.7758 0.790 36
C 16 0.2700 0.5142 0.3941 0.5092 —1.0093 1.1379 0.801 5
\Y% 17 0.8432 - - - - - 0.47 -
A 18 0.7080 0.8291 0.8414 0.7762 0.6376 —0.3017 0.566 39
P 16 0.8308 0.8231 0.2762 0.8667 0.8015 0.2512 0.917 79
C 18 0.7013 0.7369 0.1887 0.8478 0.5838 0.6864 0.400 33
A 17 0.8696 - - - - - 0.46 -
A 18 0.6995 0.8232 0.6691 0.7666 0.6472 0.1098 0.756 37
P 18 0.9350 0.6279 0.1702 0.9526 0.9176 0.8963 0.785 230
C 17 0.7652 0.7661 0.2206 0.8839 0.6057 0.9142 0.378 49
\Y% 16 0.8498 - - - - - 0.77 -
A 18 0.7010 0.8242 0.5328 0.8040 0.6470 0.3868 0.766 38
P 16 0.5630 0.6925 0.5178 0.7620 0.4662 0.0715 1.06 18
C 17 0.7572 0.8614 0.7692 0.8895 —0.0759 6.7240 0.266 47
\% 18 0.8668 - - - - - 0.34 -
A 17 0.7624 0.8652 0.7761 0.8021 0.7254 —0.1380 0.652 48
P 18 0.7340 0.6887 0.7656 0.8275 0.6721 0.4612 1.36 44
C 17 0.7127 0.7032 0.3162 0.8847 0.0267 2.0307 0.527 37
\Y% 17 0.8388 - - - - - 1.40 -

* n = number of compounds in a set; R? = determination coefficient; CCC = concordance correlation coefficient;
IIC = index of ideality of correlation; CII = correlation intensity index; Q? = cross-validated R%; CCCP = coefficient
of conformism of the correlative prediction; RMSE = root mean square error; F = Fischer F-ratio.

The best model has been observed by considering the computational experiment obtained
with the target function TFcccp (split 2), demonstrated in the Supplementary Materials section
(Table S1). The model is as follows:

logK = —3.193 + 0.3878 x DCW(1,15) (16)

Table 5 contains the correlation weights to calculate the optimal descriptor using
Equation (6).

Figure 2 contains the comparison of the average and dispersion of determination
coefficients observed for the models obtained with different target functions. One can
see that the largest value observed for the model is obtained with the target function
TFcccp. Furthermore, the approach (building up models using the target function TFcccp)
is characterized by the smallest value of dispersion of the determination coefficient of
validation sets.
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Figure 2. Statistical parameters for the models obtained with different target functions: TFy (1),
TFyc (2), TFcy (3), and TFcccp (4)-

Table 5. The correlation weights of SMILES attributes (SA) were observed in the case of the Monte
Carlo optimization with the target function TFcccp.

SAy CW(SAy) * NA NP NC DEFECT of SAy
(elovrene —0.4067 3 3 2 0.0104
(covreevenes 0.1922 17 18 14 0.0051
Lo 0.1304 11 15 10 0.0123
T —0.1853 18 18 16 0.0000
2 —0.2441 3 6 2 0.0379
ST (R —0.4736 12 12 10 0.0025
TR 0.0237 18 18 16 0.0000
=.1... —0.1245 18 15 16 0.0068
=.2.... 0.0228 2 4 1 0.0456
Colon 0.3560 17 18 14 0.0051
Coerens —0.4398 18 18 16 0.0000
C.1l.. —0.0480 18 18 16 0.0000
C.2.... —0.1285 3 6 2 0.0379

C..=... —0.4080 17 18 16 0.0022
C.C.... 0.2619 18 16 16 0.0044
Cl.(ceueue. 0.2425 7 4 4 0.0222
Cl......... 0.2188 7 4 4 0.0222
N..(ooeeene —0.4308 3 4 1 0.0399
N —0.1021 4 4 1 0.0355
N..1.... —0.2286 2 0 1 0.0741
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Table 5. Cont.
SA; CW(SAy) * NA NP NC DEFECT of SAy
O...leunnene —0.1898 10 10 9 0.0005
O —0.2509 10 14 11 0.0127
O...=....... 0.4619 6 6 3 0.0194
O..C....... —0.1823 3 4 2 0.0216
[N+]........ —0.1048 2 2 2 0.0046
[O—]........ 0.4524 2 2 2 0.0046

* CWs = correlation weights; NA, NP, and NC are the numbers of SMILES attributes in the active training set,
passive training set, and calibration set, respectively.

3.5. Mechanistic Interpretation

The influence of SMILES atoms and their connected pairs can be estimated by running
a computer experiment running a Monte Carlo optimization. As a result of stochastic
optimization of the correlation weights of the specified SMILES attributes, two groups
of SMILES attributes can be distinguished. First, those that have positive values of the
correlation weight in all runs. Second, those that have negative values of the correlation
weight in all runs. These two groups do not exhaust all possible situations, since SMILES
attributes that have both positive and negative correlation weights can be observed in
the specified study, depending on the split. However, for determining the mechanistic
interpretation of models, such SMILES attributes are less reliable than the two groups with
stable positive and negative correlation weights. Table 6 contains a collection of SMILES
attributes with stable positive and stable negative weights (T’Fcccp is the target function
for the study). It should be noted that the prevalence of the corresponding attributes in the
active and passive training sets and the calibration set also needs to be taken into account.

Table 6. SMILES attributes (S; and SS;) promoters of increase (all correlation weights > 0) or decrease
(all correlation weights < 0) for logK.

;ﬁg‘iﬁs CWs * Run 1 CWs Run 2 CWs Run 3 CWs Run 4 CWs Run 5 NA NP NC
Lo 0.6723 1.0064 1.7081 0.8739 1.8681 18 18 16
=.1.... 1.0086 0.5197 3.3561 2.1575 0.4241 18 15 16
C. = 0.6019 0.0956 0.3528 0.2506 0.2050 17 18 16
CL.(....... 0.2058 0.1434 1.2270 0.7832 0.3002 7 4 4
I 1.0902 1.0887 1.3159 0.5377 0.4817 3 6 2
O..C..... 0.3976 0.6187 0.7488 0.4841 0.4969 3 4 2
=2 1.0285 1.3549 2.4826 1.2312 0.9400 2 4 1
[N+]........ 1.5490 1.7140 3.0811 0.7048 1.4949 2 2 2
[O—]........ 0.9550 1.9835 2.2483 1.4910 1.8871 2 2 2
C.l.... —1.5184 —1.4368 —2.8522 —1.9809 —-1.1727 18 18 16
(© —0.1404 —0.2616 —0.2447 —0.3083 —0.4433 10 14 11
Nuooeeene —0.3332 —0.7337 —1.2481 —0.3569 —0.5047 4 4 1

* CWs = correlation weights; NA, NP, and NC are the numbers of SMILES attributes in the active training set,
passive training set, and calibration set, respectively.
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3.6. Applicability Domain

The outliers for the models considered are defined via the so-called statistical defect
for corresponding SMILES [20]. The total number of outliers for the best model is seven.
Only one outlier occurs in the validation set. Figure 3 contains the structures of the outliers.
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Figure 3. Structures of outliers according to the statistical defects [20].

The backside of the OECD principle, which proclaimed the need for an applicability
domain, is the requirement of representativeness. Table 7 contains the numbers of active
SMILES attributes together with the total quantities of SMILES attributes observed for each
split. One can see that Table 7 confirms the representativeness of the considered models.

Table 7. The representativeness of SMILES attributes involved in the building up models on five splits.

Split Number of Active SMILES Attributes Total Number of SMILES Attributes
1 30 53
2 28 50
3 31 54
4 34 51
5 28 53

3.7. Comparison with Models logK from the Literature

There are two works where the endpoint is considered. Table 8 contains the com-
parison of the statistical characteristics of our models for validation sets and those in the
literature. Our model has values in the highest range, and it refers to the highest number of

substances used for validation.
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Table 8. The comparison of the predictive potential of models suggested for logK values.

n R? Method Reference
0.61 Genetic algorithm [11]

8 0.92 Radial basis function neural network [11]

30 0.83 Support vector machines [21]

30 0.78 Artificial Neural Networks [21]

30 0.51 Multiple regression [21]

17 0.87 Monte Carlo optimization This work

4. Discussion

The proposed modeling scheme allows us to consider stochastic natural processes by
means of modeling, based on available eclectic data. In particular, the adsorption of organic
substances on multi-walled carbon nanotubes is a rather complex polymorphic process
and it is unlikely that highly accurate and universal quantitative models will be obtained.
However, qualitative models oriented to separated classes of chemicals can be used too.
The approach used in this study can provide certain clues for the practice of predicting the
adsorption of organic compounds on nanotubes, using exclusive data on the structure of
organic molecules (represented via SMILES).

A useful feature of the approach under consideration is the ability to attract and evalu-
ate external additional data as a basis for modifying the optimal descriptor by adding new
components to the list of correlation weights. For example, it is possible to include hybrid
descriptors as well as quasi-SMILES (i.e., SMILES supplemented with code-transmitting
experimental conditions).

The above indicated that the hypothesis used here (the possibility of using SMILES
to predict the adsorption ability of organic compounds) is confirmed by the described
computational experiments.

The philosophy of technology continues in the twenty-first century thanks to the
emergence of nanotechnology, which has sufficient capabilities for this, and a number of
specific features that distinguish it from past technologies and require deep understanding.
The evolution associated with nanotechnology is faster than what occurred with past
technologies. One of the main problems of our time is the convergence of technologies. The
opposite of divergence.

The terms convergence and divergence are used in various natural and humanitarian
sciences. Nanotechnology acts as a “root technology” and in this, it opens new scenarios
and new issues, not only technical ones, and this has occurred in the past with other new
sectors, in all sciences. In particular, there is the problem of modernization of the proven and
tested technique of QSPRs/QSARs analysis, providing the possibility of extending classical
methods of the QSPRs/QSARs and improving their use in relation to the nanomaterials.
The conceptualization of this modernization process requires further studies, intending to
work on the nano-QSPRs/QSARs.

Three levels of the conceptualization of modeling of nano-reality phenomena were
mentioned above. From this point of view, this study is in preparation for the second level,
i.e., it proceeds towards the convergence of traditional methods of QSPR/QSAR analysis
into methods of nano-QSPRs/QSARs analysis.

The evaluation of the capabilities of the three criteria of predictive potential considered
here is possible only based on a large number of corresponding computational experiments.
It is clear that the impact of these criteria on stochastic processes of optimization using the
Monte Carlo method is different. It is shown that for some data arrays, the IIC becomes
better than the CII [22], and for others, the CII becomes better than the IIC [14]. Furthermore,
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this criterion is able to affect cooperation [22]. The same is expected for the CCCP; it can
probably also be both preferable and less effective in comparison with the IIC and the CII
In any case, these criteria can be used only for sufficiently large data arrays (at least 100).
It should be noted that broad prospects for the application of the discussed criteria are
opened for the construction of models using quasi-SMILES [14], i.e., by taking into account
codes of molecular structure together with codes of experimental conditions including the
described stochastic process of the Monte Carlo optimization.

5. Conclusions

The considered concept of stochastic modeling makes models comparable to those
published in the corresponding literature. In the case we addressed here, we showed a quite
effective model for its ability to predict the adsorption of organic substances on multi-wall
carbon tubes. The model has been obtained with the Monte Carlo algorithm, optimizing
parameters using the new criterion of the predictive potential of the CCCP. The mechanistic
interpretation and applicability domain for the developed model have been described.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390/c11010007/s1, Table S1: Technical details on split 2 with
target function TFcccp.
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