Comparative Kinetic Study of Removal of Pb2+ Ions and Cr3+ Ions from Waste Water using Carbon Nanotubes Produced using Microwave Heating
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Carbon Nanotubes (CNTs)
2.2. Statistical Analysis of Adsorption of Pb2+ and Cr3+ onto CNTs
2.3. Adsorption Kinetics and Adsorption Isotherm Studies
3. Materials and Method
3.1. Raw Material
3.2. Preparation of Stock Solution
3.3. Batch Adsorption
3.4. Kinetic Study
3.5. Adsorption Isotherm
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stafiej, A.; Pyrzynska, K. Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 2007, 58, 49–52. [Google Scholar] [CrossRef]
- Ramos, R.L.; Jacome, L.A.B.; Barron, J.M.; Rubio, L.F.; Coronado, R.M.G. Adsorption of zinc(II) from an aqueous solution onto activated carbon. J. Hazard. Mater. 2002, 90, 27–38. [Google Scholar] [CrossRef]
- Keith, L.H.; Telliard, W. Priority pollutants I. A perspective view. Environ. Sci. Technol. 1979, 13, 416. [Google Scholar] [CrossRef]
- Hyung, H.; Kim, J.H. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ. Sci. Technol. 2008, 42, 4416–4421. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.T.; Tan, X.; Chen, C.; Wang, X. Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 2008, 154, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Benaïssa, H. Identification Of New Sorbent Materials For Cadmium Removal From Aqueous Solution. In Proceedings of the Twelfth International Water Technology Conference, Alexandria, Egypt, 18–21 December 2008.
- Rodríguez García, J.C.; Barciela García, J.; Herrero Latorre, C.; García Martín, S.; Peña Crecente, R.M. Direct and combined methods for the determination of chromium, copper, and nickel in honey by electrothermal atomic absorption spectrscopy. J. Agric. Food Chem. 2005, 53, 6616–6623. [Google Scholar] [CrossRef] [PubMed]
- Lahari, S.B.; King, P.; Prasad, V. Biosorption of Copper from aqueous solution by chaetomorpha antennina algae biomass. J. Environ. Health. Sci. Eng. 2011, 8, 353–362. [Google Scholar]
- Department of Environment-DOE. Environmental Quality (Sewage and Industrial Effluents) Regulations 1978. In Environmental Quality Act 1974; E-Publishing Lawnet: Kuala Lumpur, Malaysia, 1979. [Google Scholar]
- Badmus, M.A.O.; Audu, T.O.K.; Anyata, B.U. Removal of lead ion from industrial wastewaters by activated carbon prepared from periwinkle shells. Turkish J. Eng. Environ. Sci. 2007, 31, 251–263. [Google Scholar]
- Kabbashi, N.A.; Atieh, M.A.; Al-Mamun, A.; Mirghami, M.E.S.; Alam, M.D.Z.; Yahya, N. Pb(II) removal from aqueous solution. Kinet. Adsorpt. Appl. Carbon Nanotub. J. Environ. Sci. 2009, 21, 539–541. [Google Scholar]
- Singanan, M. Removal of lead(II) and cadmium(II) ions from wastewater using activated biocarbon. Sci. Asia 2011, 37, 115–119. [Google Scholar] [CrossRef]
- Souundarrajan, M.; Gomathi, T.; Sudha, P.N. Adsorptive removal of chromium (VI) from aqueous solutions and its kinetic study. Arch. Appl. Res. Libr. Sch. Res. Libr. 2012, 4, 225–235. [Google Scholar]
- Mujawar, N.; Thines, R.K.; Sajuni, N.R.; Abdullah, E.C.; Sahu, J.N.; Ganesan, P.; Jayakumar, N.S. Adsorption of chromium (VI) on functionalized and non-functionalized carbon nanotubes. Korean J. Chem. Eng. 2014, 31, 1582–1591. [Google Scholar]
- Panayotova, M. Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite. Waste Manag. 2001, 21, 671–676. [Google Scholar] [CrossRef]
- Atieh, M.A. Removal of Zinc from Water Using Modified and Non-Modified Carbon Nanofibers. In 2nd International Conference on Environmental Science and Technology; IACSIT Press: Jurong West, Singapore, 2011. [Google Scholar]
- Jung, C.; Heo, J.; Han, J.; Her, N.; Lee, S.-J.; Oh, J.; Ryu, J.; Yoon, Y. Hexavalent chromium removal by various adsorbents: Powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Sep. Purif. Technol. 2013, 106, 63–71. [Google Scholar] [CrossRef]
- HO, Y.; Mckay, G.; Wase, D.A. Study of the sorption of divalent metal ions on to peat. Adsorpt. Sci. Technol. 2000, 18, 639–650. [Google Scholar] [CrossRef]
- Hsieh, S.H. Growth of carbon nanotube on micro-sized Al2O3 particle and its application to adsorption of metal ions. J. Mater. Res. 2006, 21, 1269–1273. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Mubarak, N.M.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S.; Ganesan, P. Novel microwave-assisted multiwall carbon nanotubes enhancing Cu(II) adsorption capacity in water. J. Taiwan Inst. Chem. Eng. 2015, 53, 140–152. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Mostofi, M.; Alimohammadi, M.; McKay, G.; Yetilmezsoy, K.; Albadarin, A.B.; Heibati, B.; AlGhouti, M.; Mubarak, N.M.; Sahu, J.N. High-performance removal of toxic phenol by single-walled and multi-walled carbon nanotubes: Kinetics, adsorption, mechanism and optimization studies. J. Ind. Eng. Chem. 2015, in press. [Google Scholar] [CrossRef]
- Mubarak, N.M.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S.; Ganesan, P. Microwave assisted multiwall carbon nanotubes enhancing Cd(II) adsorption capacity in aqueous media. J. Ind. Eng. Chem. 2015, 24, 24–33. [Google Scholar] [CrossRef]
- Terrones, M. Science and technology of the twenty-first century: Synthesis, properties and applications of carbon nanotubes. Annu. Rev. Mater. Res. 2003, 13, 419–501. [Google Scholar] [CrossRef]
- Tehrani, M.S.; Azar, P.A.; Namin, P.E.; Dehaghi, S.M. Removal of lead ions from aqueous solution using multi-walled carbon nanotubes: The effect of functionalization. J. Appl. Environ. Biol. Sci 2014, 4, 316–326. [Google Scholar]
- Hone, J. Phonons and thermal properties of carbon nanotubes. In Carbon Nanotubes; Dresselhaus, M., Dresselhaus, G., Avouris, P., Eds.; Springer: Heidelberg, Germany, 2001; pp. 273–286. [Google Scholar]
- Ruoff, R.S.; Lorents, D.C. Mechanical and thermal properties of carbon nanotubes. Carbon 1995, 33, 925–930. [Google Scholar] [CrossRef]
- Lu, C.; Chiu, H. Adsorption of zinc(II) from water with purified carbon nanotubes. Chem. Eng. Sci. 2006, 61, 1138–1145. [Google Scholar] [CrossRef]
- Yang, S.; Hu, J.; Chen, C.; Shao, D.; Wang, X. Mutual effects of Pb(II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions. Environ.Sci. Technol. 2011, 45, 3621–3627. [Google Scholar] [CrossRef] [PubMed]
- Vukovic, G.D.; Marinković, A.D.; Čolić, M.; Ristić, M.Đ.; Aleksić, R.; Perić-Grujić, A.A.; Uskoković, P.S. Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multiwalled carbon nanotubes. Chem. Eng. J. 2010, 157, 238–248. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Zhang, S.; Pan, B. Application potential of carbon nanotubes in water: A review. J. Environ. Sci 2013, 25, 1263–1280. [Google Scholar] [CrossRef]
- Mubarak, N.M.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S.; Ganesan, P. Single stage production of carbon nanotubes using microwave technology. Diam. Relat. Mater. 2014, 48, 52–59. [Google Scholar] [CrossRef]
- Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis—A review. Tetrahedron 2001, 57, 9225–9283. [Google Scholar] [CrossRef]
- Economopoulos, S.P.; Karousis, N.; Rotas, G.; Pagona, G.; Tagmatarchis, N. Microwave-assisted functionalization of carbon nanostructured materials. Curr. Org. Chem. 2011, 15, 1121–1132. [Google Scholar] [CrossRef]
- Ruthiraan, M.; Mubarak, N.M.; Thines, R.K.; Abdullah, E.C.; Sahu, J.N.; Jayakumar, N.S. Poobalan ganesan comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd2+ ions from wastewater. Korean J. Chem. Eng. 2015, 32, 446–457. [Google Scholar] [CrossRef]
- Wang, S.-G.; Gong, W.-X.; Liu, X.-W.; Yao, Y.-W.; Gao, B.-Y.; Yue, Q.-Y. Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Sep. Purif. Technol. 2007, 58, 17–23. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, W.; Liao, D.; Ng, C.; Au, C. In situ FTIR studies of NO reduction over carbon nanotubes (CNTs) and 1 wt % Pd/CNTs. Catal. Today 2004, 93, 711–714. [Google Scholar] [CrossRef]
- Kuan, H.-C.; Ma, C.-C.M.; Chang, W.-P.; Yuen, S.-M.; Wu, H.-H.; Lee, T.-M. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos. Sci. Technol. 2005, 65, 1703–1710. [Google Scholar] [CrossRef]
- Li, Y.W. Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 2002, 357, 263–266. [Google Scholar] [CrossRef]
- Wang, H.Z. Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb(II) in aqueous solution. Mater. Sci. Eng. A 2007, 466, 201–206. [Google Scholar] [CrossRef]
- Mehmood, F.R.; Mehmooda, F.; Akhtarb, J. Adsorption of Cd (II) by sol-gel silica doped with N-(dipropylcarbamothioyl) thiophene-2-carboxamide. J. Dispers. Sci. Technol. 2013, 34, 153–160. [Google Scholar] [CrossRef]
- Li, Y.; Dinga, J.; Luanb, Z.; Dia, Z.; Zhua, Y.; Xua, C.; Wua, D.; Weic, B. Competitive adsorption of Pb, Cu and Cd ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 2003, 41, 2787–2792. [Google Scholar] [CrossRef]
- Nemr, E.A.; El-Sikaily, A.; Khaled, A.; Abdelwahab, O. Removal of toxic chromium from aqueous solution, wastewater and saline water by marinered alga Pterocladia capillacea and its activated carbon. Arab. J. Chem. 2011, 8, 105–117. [Google Scholar] [CrossRef]
- Di, Z.C.; Ding, J.; Peng, X.J.; Li, H.Y.; Luan, K.Z.; Liang, J. Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles. Chemosphere 2006, 62, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Moradi, O.; Zara, K.; Yari, M. Interaction of some heavy metal ions with single walled carbon nanotube. Int. J. Nano. Dim. 2011, 1, 203–220. [Google Scholar]
- Hu, J.; Chen, C.; Zhu, X.; Wang, X. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 2009, 162, 1542–1550. [Google Scholar] [CrossRef] [PubMed]
- Khosa, M.A.; Wu, J.; Ullah, A. Chemical modification, characterization, and application of chicken feathers as novel biosorben. RSC Adv. 2013, 3, 20800–20810. [Google Scholar] [CrossRef]
- Meena, A.K.; Kadirvelu, K.; Mishraa, G.; Rajagopal, C.; Nagar, P. Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. J. Hazard. Mater. 2008, 150, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Mubarak, N.M.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S. Removal of heavy metals from wastewater using carbon nanotubes. Sep. Purif. Rev. 2014, 43, 311–338. [Google Scholar] [CrossRef]
- Beheshti, H.T.; Beheshti, M. Kinetic and equilibrium study of lead (II) removal by functionalized multiwalled carbon nanotubes with isatin derivative from aqueous solutions. Bull. Korean Chem. Soc. Vol. 2013, 34. [Google Scholar] [CrossRef]
- Khosa, M.A.; Ullah, A. In-situ modification, regeneration, and application of keratin biopolymer for arsenic removal. J. Hazard. Mater. 2014, 278, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.H.; Singh, K.K.; Prakash, O.; Talat, M.; Ho, Y.S. Removal of Cr(VI) from aqueous solutions using agricultural waste “maize bran”. J. Hazard. Mater. 2008, 152, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Thines, R.K.; Mubarak, N.M.; Ruthiraan, M.; Abdullah, E.C.; Sahu, J.N.; Jayakumara, N.S.; Ganesan, P.; Sajuni, N.R. Adsorption isotherm and thermodynamics studies of Zn (II) on functionalized and non-functionalized carbon nanotubes. Adv. Sci. Eng. Med. 2014, 6, 974–984. [Google Scholar] [CrossRef]
- Khosa, M.A.; Ullah, A. A sustainable role of keratin biopolymer in green chemistry: A review. J. Food Process. Beverages 2013, 1, 8. [Google Scholar]
- Günay, A.; Arslankaya, E.; Tosun, İ. Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. J. Hazard. Mater. 2007, 146, 362–371. [Google Scholar] [CrossRef] [PubMed]
No. | pH | Adsorbent Dosage(mg) | Agitation Time(min) | Agitation Speed(rpm) | Removal Percentage of Pb (%) |
---|---|---|---|---|---|
1 | 6 | 90 | 50 | 100 | 97.5 |
2 | 5 | 60 | 10 | 125 | 94.5 |
3 | 5 | 60 | 30 | 100 | 94.2 |
4 | 5 | 60 | 30 | 125 | 96.5 |
5 | 6 | 60 | 30 | 125 | 95.6 |
6 | 5 | 60 | 30 | 125 | 96.5 |
7 | 5 | 30 | 30 | 125 | 95.5 |
8 | 5 | 60 | 30 | 150 | 94.9 |
9 | 6 | 90 | 10 | 100 | 95.5 |
10 | 4 | 30 | 10 | 100 | 91 |
11 | 4 | 30 | 50 | 100 | 99 |
12 | 6 | 90 | 50 | 150 | 96.5 |
13 | 6 | 30 | 10 | 100 | 89.9 |
14 | 4 | 90 | 50 | 100 | 99.5 |
15 | 6 | 30 | 50 | 150 | 98.5 |
16 | 4 | 30 | 10 | 150 | 94.5 |
17 | 6 | 90 | 10 | 150 | 95.8 |
18 | 4 | 90 | 50 | 150 | 99.9 |
19 | 4 | 90 | 10 | 100 | 98.5 |
20 | 4 | 30 | 50 | 150 | 99.5 |
21 | 4 | 90 | 10 | 150 | 99.5 |
22 | 6 | 30 | 10 | 150 | 93 |
23 | 5 | 90 | 30 | 125 | 97.65 |
24 | 5 | 60 | 50 | 125 | 97.9 |
25 | 4 | 60 | 30 | 125 | 99.3 |
26 | 6 | 30 | 50 | 100 | 97.5 |
No. | pH | Adsorbent Dosage(mg) | Agitation Time(min) | Agitation Speed(rpm) | Removal Percentage of Cr (%) |
---|---|---|---|---|---|
1 | 6 | 30 | 35 | 125 | 65.55 |
2 | 6 | 60 | 35 | 150 | 63.05 |
3 | 4 | 30 | 60 | 150 | 72.05 |
4 | 8 | 90 | 10 | 100 | 88.35 |
5 | 4 | 90 | 10 | 150 | 73.6 |
6 | 8 | 60 | 35 | 125 | 91.8 |
7 | 8 | 30 | 60 | 100 | 92.05 |
8 | 4 | 30 | 10 | 150 | 70.1 |
9 | 6 | 60 | 35 | 125 | 68.05 |
10 | 8 | 90 | 10 | 150 | 92.35 |
11 | 8 | 90 | 60 | 100 | 85.55 |
12 | 6 | 90 | 35 | 125 | 69.25 |
13 | 6 | 60 | 10 | 125 | 70.1 |
14 | 4 | 30 | 10 | 100 | 73.05 |
15 | 4 | 30 | 60 | 100 | 74.5 |
16 | 8 | 90 | 60 | 150 | 95.3 |
17 | 4 | 90 | 60 | 100 | 75.55 |
18 | 4 | 60 | 35 | 125 | 76.5 |
19 | 6 | 60 | 60 | 125 | 72.8 |
20 | 8 | 30 | 60 | 150 | 95.5 |
21 | 4 | 90 | 10 | 100 | 74.1 |
22 | 6 | 60 | 35 | 125 | 68.35 |
23 | 4 | 90 | 60 | 150 | 76.65 |
24 | 6 | 60 | 35 | 100 | 67.9 |
25 | 8 | 30 | 10 | 150 | 94.5 |
26 | 8 | 30 | 10 | 100 | 94.05 |
Source | Sum of Squares | DF | Mean Square | F Value | Probability > F | Status |
---|---|---|---|---|---|---|
Model | 168.4039 | 14 | 12.02884674 | 48.81014 | <0.0001 | significant |
A | 24.26722 | 1 | 24.26722222 | 98.47049 | <0.0001 | - |
B | 26.76681 | 1 | 26.76680556 | 108.6132 | <0.0001 | - |
C | 62.72 | 1 | 62.72 | 254.5025 | <0.0001 | - |
D | 5.013889 | 1 | 5.013888889 | 20.34514 | 0.0009 | - |
A2 | 4.693757 | 1 | 4.693756678 | 19.04612 | 0.0011 | - |
B2 | 0.587126 | 1 | 0.587125581 | 2.382413 | 0.1510 | - |
C2 | 0.027598 | 1 | 0.027598142 | 0.111987 | 0.7442 | - |
D2 | 6.122537 | 1 | 6.122537166 | 24.84377 | 0.0004 | - |
AB | 3.0625 | 1 | 3.0625 | 12.42688 | 0.0048 | - |
AC | 0.1225 | 1 | 0.1225 | 0.497075 | 0.4954 | - |
AD | 0.25 | 1 | 0.25 | 1.014439 | 0.3355 | - |
BC | 30.25 | 1 | 30.25 | 122.7472 | <0.0001 | - |
BD | 3.4225 | 1 | 3.4225 | 13.88767 | 0.0033 | - |
CD | 3.0625 | 1 | 3.0625 | 12.42688 | 0.0048 | - |
Residual | 2.710857 | 11 | 0.246441558 | - | - | - |
Lack of Fit | 2.710857 | 10 | 0.271085714 | - | 0.234 | Insignificant |
Pure Error | 0 | 1 | 0 | - | - | - |
Cor Total | 171.1147 | 25 | - | - | - | - |
Source | Sum of Squares | DF | Mean Square | F Value | Probability > F | Status |
---|---|---|---|---|---|---|
Model | 2867.508216 | 14 | 204.8220154 | 60.03209 | <0.0001 | significant |
A | 1482.40125 | 1 | 1482.40125 | 434.4828 | <0.0001 | - |
B | 0.023472222 | 1 | 0.023472222 | 0.00688 | 0.9354 | - |
C | 5.28125 | 1 | 5.28125 | 1.547902 | 0.2393 | - |
D | 3.555555556 | 1 | 3.555555556 | 1.042112 | 0.3293 | - |
A2 | 628.7683072 | 1 | 628.7683072 | 184.2882 | <0.0001 | - |
B2 | 2.992392567 | 1 | 2.992392567 | 0.877052 | 0.3691 | - |
C2 | 22.57562427 | 1 | 22.57562427 | 6.616779 | 0.0259 | - |
D2 | 23.14033464 | 1 | 23.14033464 | 6.782292 | 0.0245 | - |
AB | 38.28515625 | 1 | 38.28515625 | 11.22115 | 0.0065 | - |
AC | 4.78515625 | 1 | 4.78515625 | 1.4025 | 0.2613 | - |
AD | 31.50015625 | 1 | 31.50015625 | 9.232505 | 0.0113 | - |
BC | 0.31640625 | 1 | 0.31640625 | 0.092737 | 0.7664 | - |
BD | 15.70140625 | 1 | 15.70140625 | 4.601987 | 0.0551 | - |
CD | 7.35765625 | 1 | 7.35765625 | 2.156484 | 0.1700 | - |
Residual | 37.53062996 | 11 | 3.411875451 | - | - | - |
Lack of Fit | 37.48562996 | 10 | 3.748562996 | 83.3014 | 0.0851 | Insignificant |
Pure Error | 0.045 | 1 | 0.045 | - | - | - |
Cor Total | 2905.038846 | 25 | - | - | - | - |
Adsorbate | Langmuir Isotherm | Freundlich Isotherm | ||||
---|---|---|---|---|---|---|
qm (mg/g) | KL (L/mg) | R2 | n | KF (mg1−1/n L1/n g−1) | R2 | |
Pb2+ metal ions | 15.34 | 0.078 | 0.9941 | 1.438 | 1.34 | 0.9946 |
Cr3+ metal ions | 24.45 | 0.071 | 0.9846 | 1.818 | 1.312 | 0.9925 |
Adsorbent | qm (mg/g) | KL (L/mg) | R2 | KF (mg1−1/n L1/n g−1) | n | R2 | References |
---|---|---|---|---|---|---|---|
CNTs | 15.34 | 0.073 | 0.9941 | 1.438 | 1.34 | 0.9946 | This Study |
CNTs-soaked in HNO3 | 2 | - | - | 0.175 | 0.944 | 0.99 | [1] |
CNT reflexed in HNO3 | - | - | - | 0.183 | 0.944 | 0.99 | [1] |
CNTs | 11.23 | 0.04 | 0.993 | 0.68 | 1.52 | 0.97 | [24] |
CNT/Al203 | 67.11 | 0.04 | 0.989 | 3.22 | 1.39 | 0.979 | [24] |
CNTs | 17.44 | 0.586 | 0.995 | 5.99 | 1.91 | 0.987 | [39] |
MWCNT Oxidized | 49.71 | 1.73 | 0.996 | 3.29 | 5.01 | 0.855 | [40] |
MWCNTs | 6.71 | 3.71 | 0.96 | 4.76 | 7 | 0.98 | [25] |
MWCNTs-coxidized | 27.8 | 1.33 | 0.93 | 12.8 | 3.42 | 0.899 | [25] |
MWCNT-TAA | 71 | 0.13 | 0.945 | 8.34 | 1.43 | 0.99 | [25] |
MWCNT-oxidized | 9.92 | 1.78 | 0.97 | 7.57 | 0.518 | 0.99 | [29] |
CNTs –oxidized | 28 | - | - | 15.56 | 4.48 | 0.965 | [29] |
Adsorbent | qm (mg/g) | KL (L/mg) | R2 | KF (mg1−1/n L1/n g−1) | n | R2 | References |
---|---|---|---|---|---|---|---|
CNTs | 24.45 | 0.071 | 0.9846 | 1.312 | 1.818 | 0.9925 | This study |
Raw CNTs | 0.3853 | 0.0741 | 0.9089 | 2.4802 | 0.0642 | 0.9494 | [16] |
PAC | 46.9 | 1.022 | 0.998 | 13.3 | 1.583 | 0.971 | [17] |
Chitosan | 35.6 | 1.149 | 0.635 | 0.999 | 8.25 | 2.050 | |
SWNTs | 20.3 | 1.831 | 0.522 | 0.997 | 5.90 | 1.285 | |
MWNTs | 2.48 | 0.838 | 0.705 | 0.956 | 0.98 | 2.212 | |
dried red alga | 12.85 | 0.015 | 0.998 | 0.688 | 0.752 | 0.913 | [43] |
Activated Carbon | 66.75 | 0.06 | 0.994 | 0.401 | 10.32 | 0.996 | |
CeO2/ACNTs | 26.81 | 0.7064 | 0.9264 | 4.01 | 12.5021 | 0.9685 | [44] |
Heavy Metal Ions | Pseudo-First-Order | Pseudo-Second-Order | |||||
---|---|---|---|---|---|---|---|
C0 (mg/L) | K1 (1/min) | R2 | C0 (mg/L) | qe | K2 (g/mg/min) | R2 | |
Pb2+ metal ions | 5 | 0.0004 | 0.9856 | 5 | 0.337 | 1.1724 | 0.999 |
10 | 0.0005 | 0.9567 | 10 | 0.8328 | 0.6379 | 0.9567 | |
15 | 0.0003 | 0.9619 | 15 | 1.2675 | 0.7424 | 0.9619 | |
20 | 0.0001 | 0.9783 | 20 | 1.7277 | 1.2495 | 0.9783 | |
Cr3+ metal ions | 5 | −0.0002 | 0.9611 | 5 | 0.1899 | 2.2940 | 0.9994 |
10 | −0.0001 | 0.9542 | 10 | 0.4228 | 1.4640 | 0.9997 | |
15 | −0.00005 | 0.9848 | 15 | 0.6442 | 2.5560 | 0.9999 | |
20 | −0.00004 | 0.9782 | 20 | 0.8835 | 2.5862 | 1.0000 |
(a) Pb2+ | (b) Cr3+ | ||||
---|---|---|---|---|---|
No. | Parameters | Variations | No. | Parameters | Variations |
1 | Pb2+ stock solution | 2 mg/L | 1 | Cr3+ stock solution | 2 mg/L |
2 | Adsorbent Dosage (g) | 0.03, 0.06, 0.09 | 2 | Adsorbent Dosage (g) | 0.03, 0.06, 0.09 |
3 | pH values | 4, 5, 6 | 3 | pH values | 4, 6, 8 |
4 | Agitation Time (min) | 10, 30, 50 | 4 | Agitation Time (min) | 10, 35, 60 |
5 | Agitation Speed (rpm) | 100, 125, 150 | 5 | Agitation Speed (rpm) | 100, 125, 150 |
6 | Volume (mL) | 10 | 6 | Volume (mL) | 10 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mubarak, N.M.; Thobashinni, M.; Abdullah, E.C.; Sahu, J.N. Comparative Kinetic Study of Removal of Pb2+ Ions and Cr3+ Ions from Waste Water using Carbon Nanotubes Produced using Microwave Heating. C 2016, 2, 7. https://doi.org/10.3390/c2010007
Mubarak NM, Thobashinni M, Abdullah EC, Sahu JN. Comparative Kinetic Study of Removal of Pb2+ Ions and Cr3+ Ions from Waste Water using Carbon Nanotubes Produced using Microwave Heating. C. 2016; 2(1):7. https://doi.org/10.3390/c2010007
Chicago/Turabian StyleMubarak, Nabisab M., Manimaran Thobashinni, Ezzat C. Abdullah, and Jaya N. Sahu. 2016. "Comparative Kinetic Study of Removal of Pb2+ Ions and Cr3+ Ions from Waste Water using Carbon Nanotubes Produced using Microwave Heating" C 2, no. 1: 7. https://doi.org/10.3390/c2010007
APA StyleMubarak, N. M., Thobashinni, M., Abdullah, E. C., & Sahu, J. N. (2016). Comparative Kinetic Study of Removal of Pb2+ Ions and Cr3+ Ions from Waste Water using Carbon Nanotubes Produced using Microwave Heating. C, 2(1), 7. https://doi.org/10.3390/c2010007