Nitrogen-Doped Hollow Carbon Spheres with Embedded Co Nanoparticles as Active Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction
Abstract
:1. Introduction
2. Experiment Section
2.1. Reagents
2.2. Sample Preparation
2.3. Characterization
2.4. Electrode Preparation and Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chaudhari, K.N.; Song, M.Y.; Yu, J.S. Transforming Hair into Heteroatom-Doped Carbon with High Surface Area. Small 2014, 10, 2625–2636. [Google Scholar] [CrossRef] [PubMed]
- Gröger, O.; Gasteiger, H.A.; Suchsland, J.P. Review—Electromobility: Batteries or Fuel Cells? J. Electrochem. Soc. 2015, 162, A2605–A2622. [Google Scholar] [CrossRef]
- Razmjooei, F.; Singh, K.P.; Bae, E.J.; Yu, J.-S. A new class electroactive Fe and P-functionalized graphene for oxygen reduction. J. Mater. Chem. A 2015, 3, 11031–11039. [Google Scholar] [CrossRef]
- Siebel, A.; Gorlin, Y.; Durst, J.; Proux, O.; Hasché, F.; Tromp, M.; Gasteiger, H.A. Identification of Catalyst Structure during the Hydrogen Oxidation Reaction in an Operating PEM Fuel Cell. ACS Catal. 2016. [Google Scholar] [CrossRef]
- Song, M.Y.; Park, H.Y.; Yang, D.-S.; Bhattacharjya, D.; Yu, J.-S. Back Cover: Seaweed-Derived Heteroatom-Doped Highly Porous Carbon as an Electrocatalyst for the Oxygen Reduction Reaction (ChemSusChem 6/2014). Chemsuschem 2014, 7, 1755–1763. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F.W.T.; Hor, T.S.A.; Zong, Y.; Liu, Z. Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catal. 2015, 5, 4643–4667. [Google Scholar] [CrossRef]
- Gasteiger, H.A.; Kocha, S.S.; Sompalli, B.; Wagner, F.T. Activity Benchmarks for Pt, Pt-alloy and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 2005, 56, 9–35. [Google Scholar] [CrossRef]
- Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878–1889. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, C.W.B.; Zhang, L.; Lee, K.; Liu, H.; Marques, A.L.B.; Marques, E.P.; Wang, H.; Zhang, J. A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 2008, 53, 4937–4951. [Google Scholar] [CrossRef]
- Gu, D.; Ma, R.; Zhou, Y.; Wang, F.; Yan, K.; Liu, Q.; Wang, J. Synthesis of Nitrogen-Doped Porous Carbon Spheres with Improved Porosity toward the Electrocatalytic Oxygen Reduction. ACS Sustain. Chem. Eng. 2017, 5, 11105–11116. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, Y.; Ma, R.; Zhou, Z.; Liu, G.; Liu, Q.; Zhu, Y.; Wang, J. Nitrogen-doped hollow mesoporous carbon spheres as a highly active and stable metal-free electrocatalyst for oxygen reduction. Carbon 2017, 114, 177–186. [Google Scholar] [CrossRef]
- Hu, C.; Zhou, Y.; Ma, R.; Liu, Q.; Wang, J. Reactive template synthesis of nitrogen-doped graphene-like carbon nanosheets derived from hydroxypropyl methylcellulose and dicyandiamide as efficient oxygen reduction electrocatalysts. J. Power Sources 2017, 345, 120–130. [Google Scholar] [CrossRef]
- Singh, K.; Razmjooei, F.; Yu, J.S. Active sites and factors influencing them for efficient oxygen reduction reaction in metal-N coordinated pyrolyzed and non-pyrolyzed catalysts: A review. J. Mater. Chem. A 2017, 5, 20095–20119. [Google Scholar] [CrossRef]
- Lefèvre, M.; Dodelet, J.P. Fe-based electrocatalysts made with microporous pristine carbon black supports for the reduction of oxygen in PEM fuel cells. Electrochim. Acta 2008, 53, 8269–8276. [Google Scholar] [CrossRef]
- Min, J.P.; Lee, J.H.; Hembram, K.P.S.S.; Lee, K.-R.; Han, S.S.; Yoon, C.W.; Nam, S.-W.; Kim, J.Y. Oxygen Reduction Electrocatalysts Based on Coupled Iron Nitride Nanoparticles with Nitrogen-Doped Carbon. Catalysts 2016, 6, 86. [Google Scholar] [CrossRef]
- Sun, T.; Tian, B.; Lu, J.; Su, C. Recent Advances of Fe (or Co)/N/C Electrocatalysts for Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells. J. Mater. Chem. A 2017, 5, 18933–18950. [Google Scholar] [CrossRef]
- Sun, T.; Wu, Q.; Che, R.; Bu, Y.; Jiang, Y.; Li, Y.; Yang, L.; Wang, X.; Hu, Z. Alloyed Co–Mo Nitride as High-Performance Electrocatalyst for Oxygen Reduction in Acidic Medium. ACS Catal. 2016, 5, 1857–1862. [Google Scholar] [CrossRef]
- Chung, H.T.; Won, J.H.; Zelenay, P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 2013, 4, 1922. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Yu, L.; Chen, X.; Wang, G.; Jin, L.; Pan, X.; Deng, J.; Sun, G.; Bao, X. Iron Encapsulated within Pod-like Carbon Nanotubes for Oxygen Reduction Reaction. Angew. Chem. 2013, 52, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Strickland, K.; Miner, E.; Jia, Q.; Tylus, U.; Ramaswamy, N.; Liang, W.; Sougrati, M.-T.; Jaouen, F.; Mukerjee, S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination. Nat. Commun. 2015, 6, 7343. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Liu, X.; Yue, X.; Jia, J.; Guo, S. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 1436–1439. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, J. Direct Observation of Fe-N4 Species as Active Sites for the Electrocatalytic Oxygen Reduction. Nano Adv. 2017, 2, 45–46. [Google Scholar] [CrossRef]
- Malko, D.; Kucernak, A.; Lopes, T. In situ electrochemical quantification of active sites in Fe–N/C non-precious metal catalysts. Nat. Commun. 2016, 7, 13285. [Google Scholar] [CrossRef] [PubMed]
- Sahraie, N.R.; Kramm, U.I.; Steinberg, J.; Zhang, Y.; Thomas, A.; Reier, T.; Paraknowitsch, J.-P.; Strasser, P. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Cai, S.; Xie, S.; Wang, Z.; Tong, Y.; Pan, M.; Lu, X. Metal–Organic-Framework-Derived Dual Metal- and Nitrogen-Doped Carbon as Efficient and Robust Oxygen Reduction Reaction Catalysts for Microbial Fuel Cells. Adv. Sci. 2016, 3, 1487–1498. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, B.; Ge, X.; Goh, F.W.T.; Zhang, X.; Du, G.; Wuu, D.; Liu, Z.; Hor, T.S.A.; Zhang, H.; et al. Co@Co3O4@PPD Core@bishell Nanoparticle-Based Composite as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Small 2016, 12, 2580–2587. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Shin, D.Y.; Byeon, A.; Lim, A.; Jo, Y.S.; Begler, A.; Lim, D.H.; Sung, Y.E.; Park, H.S.; Chae, K.H.; et al. Hierarchical cobalt-nitride and -oxide co-doped porous carbon nanostructures for highly efficient and durable bifunctional oxygen reaction electrocatalysts. Nanoscale 2017, 9, 15846–15855. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Liu, L.; Jiang, Y.; Wang, X.; Wang, L.; Zhuang, G.; Li, X.; Mer, D.; Wang, J.; Su, D. Synergistic Effect of Nitrogen in Cobalt Nitride and Nitrogen-Doped Hollow Carbon Spheres for the Oxygen Reduction Reaction. Chemcatchem 2015, 7, 1826–1832. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, Y.; Ma, R.; Zhou, Z.; Liu, G.; Liu, Q.; Zhu, Y.; Wang, J. In situ formation of nitrogen-doped carbon nanoparticles on hollow carbon spheres as efficient oxygen reduction electrocatalysts. Nanoscale 2016, 8, 18134–18142. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Zhu, J.; Feng, L.; Liu, C.; Xing, W. Meso/Macroporous Nitrogen-Doped Carbon Architectures with Iron Carbide Encapsulated in Graphitic Layers as an Efficient and Robust Catalyst for the Oxygen Reduction Reaction in Both Acidic and Alkaline Solutions. Adv. Mater. 2015, 27, 2521–2527. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Ma, R.; Zhou, Y.; Xing, R.; Liu, Q.; Zhu, Y.; Wang, J. Efficient N-doping of hollow core-mesoporous shelled carbon spheres via hydrothermal treatment in ammonia solution for the electrocatalytic oxygen reduction reaction. Microporous Mesoporous Mater. 2018, 261, 88–97. [Google Scholar] [CrossRef]
- Gabe, A.; García-Aguilar, J.; Berenguer-Murcia, Á.; Morallón, E.; Cazorla-Amorós, D. Key factors improving oxygen reduction reaction activity in cobalt nanoparticles modified carbon nanotubes. Appl. Catal. B Environ. 2017, 217, 303–312. [Google Scholar] [CrossRef]
- Ratso, S.; Kruusenberg, I.; Käärik, M.; Kook, M.; Saar, R.; Kanninen, P.; Kallio, T.; Leis, J.; Tammeveski, K. Transition metal-nitrogen co-doped carbide-derived carbon catalysts for oxygen reduction reaction in alkaline direct methanol fuel cell. Appl. Catal. B Environ. 2017, 219, 276–286. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, L.; Yan, W.; Liu, X.; Yang, X.; Miao, S.; Wang, W.; Wang, A.; Zhang, T. Single-atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 2016, 7, 5758–5764. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q. An Ordered Mesoporous Aluminosilicate Oxynitride Template to Prepare N-Incorporated Ordered Mesoporous Carbon. J. Phys. Chem. C 2007, 111, 7266–7272. [Google Scholar] [CrossRef]
- Ma, R.; Zhou, Y.; Wang, F.; Yan, K.; Liu, Q.; Wang, J. Efficient electrocatalysis of hydrogen evolution by ultralow-Pt-loading bamboo-like nitrogen-doped carbon nanotubes. Mater. Today Energy 2017, 6, 173–180. [Google Scholar] [CrossRef]
- Liu, G.; Li, X.; Ganesan, P.; Popov, B.N. Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Appl. Catal. B Environ. 2009, 93, 156–165. [Google Scholar] [CrossRef]
- Gao, R.; Zhou, Y.; Liu, X.; Wang, J. N-Doped Defective Carbon Layer Encapsulated W2C as a Multifunctional Cathode Catalyst for High Performance Li-O2 Battery. Electrochim. Acta 2017, 245, 430–437. [Google Scholar] [CrossRef]
- Daems, N.; Sheng, X.; Vankelecom, I.F.J.; Pescarmona, P.P. Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 4085–4110. [Google Scholar] [CrossRef]
- Singh, D.; Soykal, I.I.; Tian, J.; von Deak, D.; King, J.; Miller, J.T.; Ozkan, U.S. In situ characterization of the growth of CNx carbon nano-structures as oxygen reduction reaction catalysts. J. Catal. 2013, 304, 100–111. [Google Scholar] [CrossRef]
- Antolini, E.; Zhecheva, E. Lithiation of spinel cobalt oxide by solid state reaction of Li2CO3 and Co3O4: An EPR study. Mater. Lett. 1998, 35, 380–382. [Google Scholar] [CrossRef]
- Xiu, T.; Wang, J.; Liu, Q. Ordered bimodal mesoporous boria–alumina composite: One-step synthesis, structural characterization, active catalysis for methanol dehydration. Microporous Mesoporous Mater. 2011, 143, 362–367. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q. Mesoporous silicon oxynitride thin films. Chem. Commun. 2006, 900–902. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.C.; Liu, Q. Synthesis and characterization of ordered mesoporous SiOxNy thin films with different nitrogen contents. Nanotechnology 2006, 17, 2828–2834. [Google Scholar] [CrossRef]
- Xiu, T.P.; Liu, Q.; Wang, J.C. Alkali-free borosilicate glasses with wormhole-like mesopores. J. Mater. Chem. 2006, 16, 4022–4024. [Google Scholar] [CrossRef]
- Ghosh, K.; Kumar, M.; Maruyama, T.; Ando, Y. Micro-structural, electron-spectroscopic and field-emission studies of carbon nitride nanotubes grown from cage-like and linear carbon sources. Carbon 2009, 47, 1565–1575. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B Condens. Matter 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Yang, Q.H.; Hou, P.X.; Unno, M.; Yamauchi, S.; Saito, R.; Kyotani, T. Dual Raman features of double coaxial carbon nanotubes with N-doped and B-doped multiwalls. Nano Lett. 2005, 5, 2465–2469. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Zhou, Y.; Ma, R.; Liu, Q.; Zhu, Y.; Wang, J. Achieving excellent activity and stability for oxygen reduction electrocatalysis by hollow mesoporous iron–nitrogen-doped graphitic carbon spheres. J. Mater. Chem. A 2017, 5, 12243–12251. [Google Scholar] [CrossRef]
- Katagiri, G. Raman spectroscopy of graphite and carbon materials and its recent application. Carbon 1997, 35, 716. [Google Scholar] [CrossRef]
- Li, P.; Ma, R.; Zhou, Y.; Chen, Y.; Zhou, Z.; Liu, G.; Liu, Q.; Peng, G.; Liang, Z.; Wang, J. In situ growth of spinel CoFe2O4 nanoparticles on rod-like ordered mesoporous carbon for bifunctional electrocatalysis of both oxygen reduction and oxygen evolution. J. Mater. Chem. A 2015, 3, 15598–15606. [Google Scholar] [CrossRef]
- Zheng, Z.; Xu, B.; Huang, L.; He, L.; Ni, X. Novel composite of Co/carbon nanotubes: Synthesis, magnetism and microwave absorption properties. Solid State Sci. 2008, 10, 316–320. [Google Scholar] [CrossRef]
- Zhou, J.; Lian, J.; Hou, L.; Zhang, J.; Gou, H.; Xia, M.; Zhao, Y.; Strobel, T.A.; Tao, L.; Gao, F. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat. Commun. 2015, 6, 8503. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, Q.; Wang, J. Carbon dioxide activated carbon nanofibers with hierarchical micro-/mesoporosity towards electrocatalytic oxygen reduction. J. Mater. Chem. A 2016, 4, 5553–5560. [Google Scholar] [CrossRef]
- Ma, R.; Ren, X.; Xia, B.Y.; Zhou, Y.; Sun, C.; Liu, Q.; Liu, J.; Wang, J. Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction. Nano Res. 2016, 9, 808–819. [Google Scholar] [CrossRef]
- Ma, R.; Xia, B.Y.; Zhou, Y.; Li, P.; Chen, Y.; Liu, Q.; Wang, J. Ionic liquid-assisted synthesis of dual-doped graphene as efficient electrocatalysts for oxygen reduction. Carbon 2016, 102, 58–65. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S.Z. Two-Step Boron and Nitrogen Doping in Graphene for Enhanced Synergistic Catalysis. Angew. Chem. 2013, 52, 3110–3116. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.M.; Zhang, J.H.; Xiao, C.H.; Zhong, J.D.; Zhang, X.H.; Chen, J.H. High Active Hollow Nitrogen-Doped Carbon Microspheres for Oxygen Reduction in Alkaline Media. Fuel Cells 2012, 12, 506–510. [Google Scholar] [CrossRef]
- Zheng, F.; Mu, G.; Zhang, Z.; Shen, Y.; Zhao, M.; Pang, G. Nitrogen-doped hollow macroporous carbon spheres with high electrocatalytic activity for oxygen reduction. Mater. Lett. 2012, 68, 453–456. [Google Scholar] [CrossRef]
Samples | Carbon (at.%) | Nitrogen (at.%) | Oxygen (at.%) | Cobalt (at.%) | N/C Molar Ratio |
---|---|---|---|---|---|
CoNHCS-750 | 88.0 | 6.6 | 4.9 | 0.5 | 0.075 |
CoNHCS-900 | 91.7 | 3.8 | 4.1 | 0.4 | 0.041 |
CoNHCS-1050 | 94.6 | 2.1 | 3.0 | 0.3 | 0.022 |
CoHCS-900 | 96.0 | 0 | 3.8 | 0.2 | - |
NHCS-900 | 91.0 | 4.5 | 4.5 | 0 | 0.049 |
Sample | Pyridine-N | Pyrrolic-N | Quaternary-N | Pyridine-N-O | ||||
---|---|---|---|---|---|---|---|---|
Peak Position (eV) | at.% | Peak Position (eV) | at.% | Peak Position (eV) | at.% | Peak Position (eV) | at.% | |
NHCS-900 | 398.3 | 44.1 | 400.2 | 9.3 | 401.1 | 35.1 | 402.2 | 11.5 |
CoNHCS-750 | 398.3 | 42.6 | 400.2 | 16.9 | 401.1 | 28.9 | 402.2 | 11.6 |
CoNHCS-900 | 398.3 | 28 | 400.2 | 16.1 | 401.1 | 38.8 | 402.2 | 17.1 |
CoNHCS-1050 | 398.3 | 23.8 | 400.2 | 16 | 401.1 | 38.4 | 402.2 | 21.8 |
Sample | SBET a (m2·g−1) | Vtotal b (cm3·g−1) | Pore Size c (nm) |
---|---|---|---|
CoNHCS-750 | 617 | 1.11 | 2.0, 20~40 |
CoNHCS-900 | 582 | 1.86 | 1.7, 20~40 |
CoNHCS-1050 | 522 | 1.50 | 1.9, 20~40 |
CoHCS-900 | 436 | 1.27 | 1.9, 20~40 |
NHCS-950 | 805 | 1.31 | 1.9, 20~40 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, R.; Zhou, Y.; Ma, R.; Liu, Q.; Luo, J.; Yang, M.; Wang, J. Nitrogen-Doped Hollow Carbon Spheres with Embedded Co Nanoparticles as Active Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction. C 2018, 4, 11. https://doi.org/10.3390/c4010011
Xing R, Zhou Y, Ma R, Liu Q, Luo J, Yang M, Wang J. Nitrogen-Doped Hollow Carbon Spheres with Embedded Co Nanoparticles as Active Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction. C. 2018; 4(1):11. https://doi.org/10.3390/c4010011
Chicago/Turabian StyleXing, Ruohao, Yao Zhou, Ruguang Ma, Qian Liu, Jun Luo, Minghui Yang, and Jiacheng Wang. 2018. "Nitrogen-Doped Hollow Carbon Spheres with Embedded Co Nanoparticles as Active Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction" C 4, no. 1: 11. https://doi.org/10.3390/c4010011
APA StyleXing, R., Zhou, Y., Ma, R., Liu, Q., Luo, J., Yang, M., & Wang, J. (2018). Nitrogen-Doped Hollow Carbon Spheres with Embedded Co Nanoparticles as Active Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction. C, 4(1), 11. https://doi.org/10.3390/c4010011