Electrochemical Properties of Graphene Oxide Nanoribbons/Polypyrrole Nanocomposites
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, X.; Liu, Y.; Dong, P.; Ajayan, P.M.; Shen, J.; Ye, M. Mesostructured CuCo2S4/CuCo2O4 nanoflowers as advanced electrodes for asymmetric supercapacitors. J. Power Sources 2018, 400, 96. [Google Scholar] [CrossRef]
- Luo, Q.; Gu, Y.; Li, J.; Wang, N.; Lin, H. Efficient ternary cobalt spinel counter electrodes for quantum-dot sensitized solar cells. J. Power Sources 2016, 312, 93. [Google Scholar] [CrossRef]
- Chen, H.; Hu, L.; Chen, M.; Yan, Y.; Wu, L. Nickel-Cobalt Layered Double Hydroxide Nanosheets for High-performance Supercapacitor Electrode Materials. Adv. Funct. Mater. 2014, 24, 934. [Google Scholar] [CrossRef]
- Hsu, Y.-K.; Chen, Y.-C.; Lin, Y.-G. Synthesis of copper sulfide nanowire arrays for high-performance supercapacitors. Electrochim. Acta 2014, 139, 401. [Google Scholar] [CrossRef]
- Yoo, J.J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B.G.; Srivastava, A.; Conway, M.; Mohana Reddy, A.L.; Yu, J.; Vajtai, R.; et al. Ultrathin planar graphene supercapacitors. Nano Lett. 2011, 11, 1423. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yu, D.; Xiong, W.; Liu, P.; Liu, Y.; Dai, L. Graphene-based nanowire supercapacitors. Langmuir 2014, 30, 3567. [Google Scholar] [CrossRef]
- Cruz-Silva, R.; Morelos-Gómez, A.; Vega-Díaz, S.; Tristán-López, F.; Elias, A.L.; Perea-López, N.; Muramatsu, H.; Hayashi, T.; Fujisawa, K.; Kim, Y.A.; et al. Formation of nitrogen-doped graphene nanoribbons via chemical unzipping. ACS Nano 2013, 7, 2192. [Google Scholar] [CrossRef] [PubMed]
- Scuseria, G.E. Electromechanical properties of suspended graphene membranes. Science 2012, 336, 1557–1561. [Google Scholar]
- Krepel, D.; Peralta, J.E.; Scuseria, G.E.; Hod, O. Graphene Nanoribbons-Based Ultrasensitive Chemical Detectors. J. Phys. Chem. C 2016, 120, 3791. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmed, A.; Rafat, M. Nitrogen doped activated carbon from pea skin for high performance supercapacitor. Mater. Res. Express 2018, 5, 045508. [Google Scholar] [CrossRef]
- Hu, J.; Qian, F.; Song, G.; Li, W.; Wang, L. Ultrafine MnO2 Nanowire Arrays Grown on Carbon Fibers for High-Performance Supercapacitors. Nanoscale Res. Lett. 2016, 11, 469. [Google Scholar] [CrossRef]
- Fan, L.Z.; Maier, J. High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem. Commun. 2006, 8, 937. [Google Scholar] [CrossRef]
- An, H.; Wang, Y.; Wang, X.; Zheng, L.; Wang, X.; Yi, L.; Bai, L.; Zhang, X. Polypyrrole/carbon aerogel composite materials for supercapacitor. J. Power Sources 2010, 195, 6964. [Google Scholar] [CrossRef]
- Bibi, S.; Ullah, H.; Ahmad, S.M.; Ali Shah, A.U.; Bilal, S.; Tahir, A.A.; Ayub, K. Molecular and electronic structure elucidation of polypyrrole gas sensors. J. Phys. Chem. C 2015, 119, 15994. [Google Scholar] [CrossRef]
- Lee, D.J.; Kim, E.; Kim, D.; Park, J.; Hong, S. Nano-storage wires. ACS Nano 2013, 7, 6906. [Google Scholar] [CrossRef]
- Sultana, I.; Rahman, M.M.; Li, S.; Wang, J.; Wang, C.; Wallace, G.G.; Liu, H.K. Electrodeposited polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) free-standing film for lithium secondary battery application. Electrochim. Acta 2012, 60, 201. [Google Scholar] [CrossRef]
- Biswas, S.; Drzal, L.T. Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem. Mater. 2010, 22, 5667. [Google Scholar] [CrossRef]
- Tran, V.C.; Sahoo, S.; Hwang, J.; Nguyen, V.Q.; Shim, J.-J. Poly(aniline-co-pyrrole)-spaced graphene aerogel for advanced supercapacitor electrodes. J. Electroanal. Chem. 2018, 810, 1541–1560. [Google Scholar] [CrossRef]
- Sun, H.; She, P.; Xu, K.; Shang, Y.; Yin, S.; Liu, Z. A self-standing nanocomposite foam of polyaniline@reduced graphene oxide for flexible super-capacitors. Synth. Met. 2015, 209, 67–83. [Google Scholar] [CrossRef]
- Bora, C.; Dolui, S.K. Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer 2012, 53, 923–932. [Google Scholar] [CrossRef]
- Li, L.; Xia, K.; Li, L.; Shang, S.; Guo, Q.; Yan, G. Fabrication and characterization of free-standing polypyrrole/graphene oxide nanocomposite paper. J. Nanopart. Res. 2012, 14. [Google Scholar] [CrossRef]
- Konwer, S.; Boruah, R.; Dolui, S.K. Studies on Conducting Polypyrrole/Graphene Oxide Composites as Supercapacitor Electrode. J. Electron. Mater. 2011, 40, 2248. [Google Scholar] [CrossRef]
- Pham, H.D.; Pham, V.H.; Oh, E.-S.; Chung, J.S.; Kim, S. Synthesis of polypyrrole-reduced graphene oxide composites by in-situ photopolymerization and its application as a supercapacitor electrode. Korean J. Chem. Eng. 2012, 29, 125–129. [Google Scholar] [CrossRef]
- Zhu, C.; Zhai, J.; Wen, D.; Dong, S. Graphene oxide/polypyrrole nanocomposites: One-step electrochemical doping, coating and synergistic effect for energy storage. J. Mater. Chem. 2012, 22, 63006. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Zhu, J.; Ren, P. Electrochemical in situ polymerization of reduced graphene oxide/polypyrrole composite with high power density. J. Power Sources 2012, 208, 138. [Google Scholar] [CrossRef]
- Fan, L.Q.; Liu, G.J.; Wu, J.H.; Liu, L.; Lin, J.M.; Wei, Y.L. Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes. Electrochim. Acta 2014, 137, 26. [Google Scholar] [CrossRef]
- Kovtyukhova, N.I. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 1999, 11, 771. [Google Scholar] [CrossRef]
- Jurewicz, K.; Delpeux, S.; Bertagna, V.; Béguin, F.; Frackowiak, E. Supercapacitors from nanotubes/polypyrrole composites. Chem. Phys. Lett. 2001, 347, 36. [Google Scholar] [CrossRef]
- Schlange, A.; Dos Santos, A.R.; Kunz, U.; Turek, T. Continuous preparation of carbon-nanotubesupported platinum catalysts in a flow reactor directly heated by electric current. Beilstein J. Org. Chem. 2011, 7, 1412. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, C.; Yue, B.; Gambhir, S.; Too, C.O.; Wallace, G.G. Electrochemically synthesized polypyrrole/graphene composite film for lithium batteries. Adv. Energy Mater. 2012, 2, 266. [Google Scholar] [CrossRef]
- Shannon, M.L.; Cole, D.I. Job satisfaction: RNs’ status perceptions. Nurs. Manag. 1994, 25, 554. [Google Scholar] [CrossRef]
- Scarlatescu, I.; Spunei, M.; Chis, A.; Negru, S.; Bunoiu, M.; Avram, N. Experimental dosimetric checkup under positioning errors according to gamma criterion. UPB Sci. Bull. Ser. A Appl. Math. Phys. 2018, 80, 271. [Google Scholar] [CrossRef]
- Grover, S.; Goel, S.; Sahu, V.; Singh, G.; Sharma, R.K. Asymmetric Supercapacitive Characteristics of PANI Embedded Holey Graphene Nanoribbons. ACS Sustain. Chem. Eng. 2015, 3, 1460. [Google Scholar] [CrossRef]
- Sahu, V.; Shekhar, S.; Sharma, R.K.; Singh, G. Ultrahigh performance supercapacitor from lacey reduced graphene oxide nanoribbons. ACS Appl. Mater. Interfaces 2015, 7, 3110. [Google Scholar] [CrossRef]
- Li, L.; Raji, A.R.O.; Fei, H.; Yang, Y.; Samuel, E.L.G.; Tour, J.M. Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors. ACS Appl. Mater. Interfaces 2013, 5, 6622. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Dream, J.; Zequine, C.; Siam, K.; Kahol, P.K.; Mishra, S.R.; Gupta, R.K. Electrochemical Properties of Graphene Oxide Nanoribbons/Polypyrrole Nanocomposites. C 2019, 5, 18. https://doi.org/10.3390/c5020018
Al Dream J, Zequine C, Siam K, Kahol PK, Mishra SR, Gupta RK. Electrochemical Properties of Graphene Oxide Nanoribbons/Polypyrrole Nanocomposites. C. 2019; 5(2):18. https://doi.org/10.3390/c5020018
Chicago/Turabian StyleAl Dream, Johara, Camila Zequine, K. Siam, Pawan K. Kahol, S. R. Mishra, and Ram K. Gupta. 2019. "Electrochemical Properties of Graphene Oxide Nanoribbons/Polypyrrole Nanocomposites" C 5, no. 2: 18. https://doi.org/10.3390/c5020018
APA StyleAl Dream, J., Zequine, C., Siam, K., Kahol, P. K., Mishra, S. R., & Gupta, R. K. (2019). Electrochemical Properties of Graphene Oxide Nanoribbons/Polypyrrole Nanocomposites. C, 5(2), 18. https://doi.org/10.3390/c5020018