Activated Carbons from Fast Pyrolysis Biochar as Novel Catalysts for the Post-Treatment of Pyrolysis Vapors, Studied by Analytical Pyrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochars Production
2.2. Activation
2.3. Analysis of Biochar and Activated Carbons
2.4. Post-Treatment
2.5. Data Analysis
3. Results
3.1. Chemical Charasteristic of the Biochars and Activated Carbons
3.1.1. Elemental Composition
3.1.2. Surface Properties
3.2. Post-Treatment of Pyrolysis Vapors
3.2.1. Gas and Water
3.2.2. Condensable Gases
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Compound | Type | No Catalyst | Willow BC | Willow BC-AW | Birch BC-WC | Willow BC-WC | Willow AC | Willow AC-AW | Birch AC-WC | Willow AC-S |
---|---|---|---|---|---|---|---|---|---|---|
Acetic acid | Ac | 4.3 | 6.1 | 6.5 | 5.0 | 6.1 | 0.3 | 5.7 | 6.5 | 5.9 |
Methanol | Al | 1.8 | 2.3 | 2.1 | 2.1 | 2.0 | 3.8 | 1.8 | 1.9 | 2.3 |
Acetaldehyde | A | 1.3 | 2.1 | 2.1 | 1.9 | 1.8 | 2.7 | 1.8 | 2.0 | 2.1 |
2-Propenal | A | 1.0 | 1.2 | 1.4 | 1.2 | 1.4 | 1.8 | 1.3 | 1.3 | 1.3 |
Propanal-2-one | A | 4.8 | 7.2 | 7.2 | 7.1 | 7.5 | 6.6 | 7.8 | 7.5 | 8.0 |
Hydroxyacetaldehyde | A | 22.8 | 3.0 | 14.5 | 15.2 | 11.6 | 9.6 | 11.3 | 7.3 | 15.9 |
3-Hydroxypropanal | A | 2.5 | 3.0 | 3.2 | 3.0 | 3.1 | 3.9 | 3.2 | 3.3 | 3.1 |
3-Butenal-2-one | A | 2.1 | 0.7 | 0.4 | 0.2 | 1.2 | 0.2 | 1.2 | 0.6 | 0.5 |
Butanedial | A | 2.5 | 3.1 | 3.6 | 3.4 | 3.0 | 5.2 | 3.2 | 3.4 | 3.2 |
1-Hydroxy-2-propanone | K | 3.7 | 3.9 | 4.7 | 4.6 | 3.8 | 8.8 | 4.3 | 4.7 | 4.2 |
2-Hydroxy-3-methyl-2-cyclopenten-1-one | K | 0.6 | 0.9 | 0.9 | 0.8 | 0.6 | 1.6 | 0.6 | 0.8 | 0.8 |
Cyclopentanedione | K | 2.0 | 2.0 | 2.4 | 2.7 | 2.1 | 1.9 | 2.4 | 2.6 | 2.6 |
5,6-dihydropyran-2,5-dione | K | 1.5 | 0.8 | 1.0 | 0.8 | 1.0 | 0.0 | 0.9 | 0.5 | 1.1 |
Furan | F | 0.2 | 0.4 | 0.4 | 0.3 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 |
2-Furaldehyde | F | 1.7 | 2.8 | 1.5 | 1.3 | 2.5 | 2.6 | 2.1 | 2.3 | 2.0 |
2-Furanemethanol | F | 0.9 | 1.1 | 0.8 | 0.8 | 0.5 | 1.3 | 0.7 | 0.7 | 0.7 |
5-Methylfurfural | F | 0.2 | 0.9 | 0.5 | 0.7 | 0.9 | 0.3 | 0.9 | 0.8 | 0.8 |
5-Hydroxymethyl-2-furaldehyde | F | 3.0 | 0.7 | 1.2 | 0.9 | 1.1 | 0.9 | 1.0 | 0.7 | 1.1 |
Furan derivative from cellulose | F | 2.6 | 3.5 | 4.3 | 4.0 | 3.2 | 3.2 | 3.1 | 3.4 | 4.0 |
2(5H)-Furanone | L | 1.6 | 1.4 | 2.0 | 1.7 | 0.4 | 2.1 | 2.2 | 2.0 | 2.0 |
Unidentified lactone derivative | L | 1.5 | 0.9 | 1.0 | 1.3 | 0.6 | 0.2 | 0.8 | 0.8 | 0.9 |
1,5-Anhydro-4-deoxypent-1-en-3-ulose | P | 1.8 | 2.5 | 2.7 | 3.0 | 2.0 | 0.9 | 2.2 | 1.9 | 3.1 |
1,4-Dideoxy-d-glycero-hex-1-enopyranos-3-ulose | P | 4.4 | 3.6 | 3.6 | 4.7 | 3.3 | 0.0 | 3.4 | 2.6 | 4.1 |
1,5-Anhydroarabinofuranose | As | 0.7 | 1.0 | 0.9 | 1.0 | 0.9 | 1.1 | 0.9 | 0.8 | 0.6 |
1,4-Anhydroxylopyranose | As | 0.5 | 0.7 | 0.5 | 0.6 | 0.5 | 0.7 | 0.6 | 0.6 | 0.4 |
1,6-Anhydromannopyranose | As | 0.5 | 1.6 | 0.7 | 0.6 | 0.8 | 0.4 | 0.8 | 1.0 | 0.4 |
1,6-Anhydroglucopyranose | As | 5.0 | 8.6 | 7.9 | 7.5 | 7.7 | 4.9 | 7.8 | 8.9 | 5.8 |
1,6-Anhydroglucofuranose | As | 0.5 | 1.0 | 0.4 | 0.8 | 0.8 | 0.0 | 0.7 | 0.7 | 0.5 |
Dianhydrosugars | As | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 |
Phenol | H | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.2 | 0.3 | 0.3 |
2-Methylphenol | H | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
4-Methylphenol | H | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.4 | 0.3 | 0.3 | 0.2 |
Guaiacol | G | 2.6 | 3.7 | 3.3 | 3.3 | 3.0 | 5.4 | 3.0 | 3.4 | 3.3 |
4-Methylguaiacol | G | 2.9 | 4.3 | 3.9 | 3.8 | 3.5 | 6.5 | 3.7 | 4.3 | 5.0 |
4-Ethylguaiacol | G | 0.4 | 0.6 | 0.6 | 0.5 | 0.5 | 0.7 | 0.5 | 0.6 | 0.5 |
4-Propylguaiacol | G | 0.1 | 0.3 | 0.2 | 0.2 | 0.2 | 0.3 | 0.2 | 0.3 | 0.2 |
4-Vinylguaiacol | G | 3.1 | 4.6 | 2.6 | 3.0 | 3.6 | 5.4 | 3.5 | 4.0 | 2.5 |
Eugenol | G | 0.9 | 1.4 | 1.0 | 1.2 | 1.2 | 2.0 | 1.2 | 1.4 | 1.0 |
cis-Isoeugenol | G | 0.4 | 0.7 | 0.4 | 0.5 | 0.6 | 0.9 | 0.6 | 0.7 | 0.4 |
trans-Isoeugenol | G | 2.4 | 4.1 | 3.3 | 4.0 | 4.3 | 5.6 | 4.1 | 4.7 | 3.2 |
Guaiacylpropyne | G | 0.2 | 0.3 | 0.3 | 0.3 | 0.9 | 0.4 | 0.6 | 0.7 | 0.6 |
Vanillin | G | 2.2 | 2.1 | 1.7 | 1.6 | 2.0 | 1.4 | 2.0 | 1.9 | 1.6 |
Acetoguaiacone | G | 0.8 | 1.1 | 0.7 | 0.7 | 0.9 | 1.1 | 0.9 | 0.9 | 0.7 |
4-(oxyallyl)guaiacol | G | 0.6 | 0.8 | 0.3 | 0.3 | 1.1 | 0.4 | 0.6 | 0.6 | 0.5 |
Homovanillin | G | 1.0 | 1.2 | 0.8 | 0.9 | 1.1 | 0.6 | 1.1 | 1.2 | 0.7 |
Guaiacylacetone | G | 0.5 | 0.7 | 0.3 | 0.4 | 0.5 | 0.7 | 0.5 | 0.6 | 0.4 |
4-(1-hydroxyprop-2-enyl)guaiacol | G | 0.7 | 0.8 | 0.3 | 0.3 | 1.2 | 0.5 | 0.6 | 0.6 | 0.5 |
Dihydroconiferyl alcohol | G | 0.9 | 1.4 | 0.5 | 0.6 | 0.9 | 1.1 | 1.0 | 1.2 | 0.3 |
cis-Coniferyl alcohol | G | 0.6 | 0.8 | 0.2 | 0.2 | 0.5 | 0.1 | 0.5 | 0.5 | 0.0 |
trans-Coniferyl alcohol | G | 1.7 | 1.8 | 0.0 | 0.1 | 1.1 | 0.2 | 0.7 | 0.9 | 0.0 |
Coniferaldehyde | G | 1.9 | 1.7 | 0.4 | 0.3 | 1.3 | 0.1 | 1.0 | 1.0 | 0.3 |
References
- Gadipelli, S.; Howard, C.A.; Guo, J.; Skipper, N.T.; Zhang, H.; Shearing, P.R.; Brett, D.J.L. Superior Multifunctional Activity of Nanoporous Carbons with Widely Tunable Porosity: Enhanced Storage Capacities for Carbon-Dioxide, Hydrogen, Water, and Electric Charge. Adv. Energy Mater. 2020, 10, 1903649. [Google Scholar] [CrossRef]
- Lam, E.; Luong, J.H.T. Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals. ACS Catal. 2014, 4, 3393–3410. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for preparation and activation of activated carbon: A review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Li, Y.; Feng, Y.; Feng, W. Carbon-based functional nanomaterials: Preparation, properties and applications. Compos. Sci. Technol. 2019, 179, 10–40. [Google Scholar] [CrossRef]
- Lee, J.; Kim, K.H.; Kwon, E.E. Biochar as a Catalyst. Renew. Sustain. Energy Rev. 2017, 77, 70–79. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, K.; Bhaskar, T. Advances in design strategies for preparation of biochar based catalytic system for production of high value chemicals. Bioresour. Technol. 2020, 299, 122564. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- González-García, P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew. Sustain. Energy Rev. 2018, 82, 1393–1414. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Oasmaa, A.; Solantausta, Y.; Arpiainen, V.; Kuoppala, E.; Sipilä, K. Fast Pyrolysis Bio-Oils from Wood and Agricultural Residues. Energy Fuels 2010, 24, 1380–1388. [Google Scholar] [CrossRef]
- Si, Y.; Samulski, E.T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682. [Google Scholar] [CrossRef]
- Jaatinen, S. Hiilet Sokerien Dehydratoinnissa ja Furfuraalien Jatkoreaktioissa; Carbons in the Sugar Dehydration and Reactions of Furfurals; Aalto University: Helsinki, Finland, 2014. [Google Scholar]
- Schönherr, J.; Buchheim, J.R.; Scholz, P.; Adelheim, P. Boehm Titration Revisited (Part I): Practical Aspects for Achieving a High Precision in Quantifying Oxygen-Containing Surface Groups on Carbon Materials. J. Carbon Res. 2018, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Boehm, H.-P.; Diehl, E.; Heck, W.; Sappok, R. Surface oxides of carbon. Angew. Chem. Int. Ed. 1964, 3, 669–677. [Google Scholar] [CrossRef]
- Ohra-aho, T.; Linnekoski, J. Catalytic pyrolysis of lignin by using analytical pyrolysis-GC-MS. J. Anal. Appl. Pyrolysis 2015, 113, 186–192. [Google Scholar] [CrossRef]
- Ohra-aho, T.; Gomes, F.J.B.; Colodette, J.L.; Tamminen, T. S/G ratio and lignin structure among Eucalyptus hybrids determined by Py-GC/MS and nitrobenzene oxidation. J. Anal. Appl. Pyrolysis 2013, 101, 166–171. [Google Scholar] [CrossRef]
- Xiong, X.; Yu, I.K.M.; Cao, L.; Tsang, D.C.W.; Zhang, S.; Ok, Y.S. A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresour. Technol. 2017, 246, 254–270. [Google Scholar] [CrossRef]
- Cao, Y.; Mao, S.; Li, M.; Chen, Y.; Wang, Y. Metal/Porous Carbon Composites for Heterogeneous Catalysis: Old Catalysts with Improved Performance Promoted by N-Doping. ACS Catal. 2017, 7, 8090–8112. [Google Scholar] [CrossRef]
- Yao, D.; Hu, Q.; Wang, D.; Yang, H.; Wu, C.; Wang, X.; Chen, H. Hydrogen production from biomass gasification using biochar as a catalyst/support. Bioresour. Technol. 2016, 216, 159–164. [Google Scholar] [CrossRef]
- Zhang, S.P.; Chen, Z.Q.; Cai, Q.J.; Ding, D. The integrated process for hydrogen production from biomass: Study on the catalytic conversion behavior of pyrolytic vapor in gas-solid simultaneous gasification process. Int. J. Hydrogen Energy 2016, 41, 6653–6661. [Google Scholar] [CrossRef]
- Norouzi, O.; Jafarian, S.; Safari, F.; Tavasoli, A.; Nejati, B. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char. Bioresour. Technol. 2016, 219, 643–651. [Google Scholar] [CrossRef]
- Ren, S.; Lei, H.; Wang, L.; Bu, Q.; Chen, S.; Wu, J. Hydrocarbon and hydrogen-rich syngas production by biomass catalytic pyrolysis and bio-oil upgrading over biochar catalysts. RSC Adv. 2014, 4, 10731–10737. [Google Scholar] [CrossRef]
- Lei, H.; Ren, S.; Julson, J. The effects of reaction temperature and time and particle size of corn stover on microwave pyrolysis. Energy Fuels 2009, 23, 3254–3261. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, B.; Chen, Z.; Zhu, L.; Schnoor, J.L. Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environ. Sci. Technol. 2018, 52, 5027–5047. [Google Scholar] [CrossRef] [PubMed]
- Poggi, L.A.; Singh, K. Thermal degradation capabilities of modified bio-chars and fluid cracking catalyst (FCC) for acetic acid. Biomass Bioenergy 2016, 90, 243–251. [Google Scholar] [CrossRef]
- Iwazaki, T.; Yang, H.; Obinata, R.; Sugimoto, W.; Takasu, Y. Oxygen-reduction activity of silk-derived carbons. J. Power Sources 2010, 195, 5840–5847. [Google Scholar] [CrossRef] [Green Version]
- Rajapaksha, A.U.; Vithanage, M.; Lee, S.S.; Seo, D.C.; Tsang, D.C.W.; Ok, Y.S. Steam activation of biochars facilitates kinetics and pH-resilience of sulfamethazine sorption. J. Soils Sediments 2016, 16, 889–895. [Google Scholar] [CrossRef]
- Oasmaa, A.; Kuoppala, E.; Ardiyanti, A.; Venderbosch, R.H.; Heeres, H.J. Characterization of hydrotreated fast pyrolysis liquids. Energy Fuels 2010, 24, 5264–5272. [Google Scholar] [CrossRef]
- Li, Z.; Kelkar, S.; Raycraft, L.; Garedew, M.; Jackson, J.E.; Miller, D.J.; Saffron, C.M. A mild approach for bio-oil stabilization and upgrading: Electrocatalytic hydrogenation using ruthenium supported on activated carbon cloth. Green Chem. 2014, 16, 844–852. [Google Scholar] [CrossRef]
- Sundqvist, T.; Oasmaa, A.; Koskinen, A. Upgrading fast pyrolysis bio-oil quality by esterification and azeotropic water removal. Energy Fuels 2015, 29, 2527–2534. [Google Scholar] [CrossRef] [Green Version]
Sample | C, wt.% | H, wt.% | N, wt.% | S, wt.% | O, wt.% | Ash, wt.% |
---|---|---|---|---|---|---|
Willow biochar | 76.2 | 3.5 | 0.9 | 0.019 | 19.1 | 7.4 |
Willow AC | 87.4 | 0.6 | 0.8 | 0.06 | 6.3 | 8.6 |
Willow biochar S | 72.5 | 3.3 | 0.9 | 0.08 | 18.7 | n.m. |
Willow AC S | 89.6 | 0.8 | 1.0 | 0.06 | 6.3 | n.m. |
Birch biochar | 76.7 | 3.5 | 0.3 | 0.016 | 18.8 | 2.2 |
Birch AC | 93.7 | 0.6 | 0.5 | 0.02 | 3.8 | 3.1 |
Pine biochar | 77.7 | 3.7 | 0.1 | 0.01 | 18.1 | 1.5 |
Pine AC | 94.6 | 0.6 | 0.4 | <0.02 | 2.7 | 2.3 |
Pine | Birch | Willow | |
---|---|---|---|
mg/kg | mg/kg | mg/kg | |
As | <0.5 | <0.5 | <0.5 |
Cd | 0.15 | 0.3 | 0.83 |
Co | <0.5 | 0.69 | <0.5 |
Cr | 17 | 4.6 | 32 |
Cu | 20 | 9.7 | 13 |
Hg | <0.02 | <0.02 | <0.02 |
Mn | 390 | 780 | 120 |
Mo | 2.3 | <0.5 | 4.2 |
Ni | 11 | 3.5 | 20 |
Pb | 3.8 | 3.9 | 0.5 |
Sb | 2.5 | 0.92 | <0.5 |
Tl | 2 | 1.5 | <0.5 |
V | <0.5 | <0.5 | <0.5 |
Zn | 61 | 180 | 320 |
Ca | 3800 | 5900 | 10,300 |
Mg | 970 | 1700 | 2100 |
Na | 150 | 97 | 530 |
K | 3500 | 5100 | 17,400 |
P | 530 | 640 | 4900 |
S | 130 | 110 | 500 |
Fe | 460 | 160 | 240 |
Al | 240 | 74 | 330 |
Si | 280 | 100 | 360 |
Ti | 13 | 4.7 | 8.3 |
Mn | 430 | 840 | na |
Ba | 43 | 140 | 14 |
Sample | Carboxylic Groups, % | Lactonic Groups, % | Phenolic Groups, % | Total Acidity, mmol/g |
---|---|---|---|---|
Willow biochar AW | 16 | 39 | 45 | 1.02 |
Willow AC AW | 15 | 13 | 71 | 0.10 |
Pine biochar AW | 10 | 35 | 55 | 0.58 |
Pine AC AW | 65 | 10 | 26 | 0.13 |
Birch biochar AW | 11 | 35 | 54 | 1.01 |
Birch AC AW | 58 | 15 | 27 | 0.20 |
Willow biochar S | 28 | 32 | 41 | 1.40 |
Willow AC S | 41 | 24 | 35 | 0.34 |
Sample | BET Surface Area m2/g | Total Pore Volume cm3/g | Micropores (<2 nm) | Mesopores (2–50 nm) | Macropores (>50 nm) |
---|---|---|---|---|---|
Willow biochar AW | 5.1 | 0.004 | 10% | 76% | 13% |
Willow AC AW | 295 | 0.13 | 88% | 12% | 0.5% |
Willow biochar S | 23 | 0.033 | 0% | 87% | 13% |
Willow AC S | 382 | 0.18 | 64% | 34% | 2% |
Birch biochar AW | 24 | 0.03 | 0% | 96% | 4% |
Birch AC AW | 329 | 0.13 | 87% | 12% | 0.2% |
Pine biochar AW | 26 | 0.03 | 0% | 97% | 3% |
Pine AC AW | 340 | 0.15 | 84% | 16% | 0.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohra-aho, T.; Lindfors, C.; Lehtonen, J.; Tamminen, T.; Siipola, V. Activated Carbons from Fast Pyrolysis Biochar as Novel Catalysts for the Post-Treatment of Pyrolysis Vapors, Studied by Analytical Pyrolysis. C 2020, 6, 65. https://doi.org/10.3390/c6040065
Ohra-aho T, Lindfors C, Lehtonen J, Tamminen T, Siipola V. Activated Carbons from Fast Pyrolysis Biochar as Novel Catalysts for the Post-Treatment of Pyrolysis Vapors, Studied by Analytical Pyrolysis. C. 2020; 6(4):65. https://doi.org/10.3390/c6040065
Chicago/Turabian StyleOhra-aho, Taina, Christian Lindfors, Juha Lehtonen, Tarja Tamminen, and Virpi Siipola. 2020. "Activated Carbons from Fast Pyrolysis Biochar as Novel Catalysts for the Post-Treatment of Pyrolysis Vapors, Studied by Analytical Pyrolysis" C 6, no. 4: 65. https://doi.org/10.3390/c6040065
APA StyleOhra-aho, T., Lindfors, C., Lehtonen, J., Tamminen, T., & Siipola, V. (2020). Activated Carbons from Fast Pyrolysis Biochar as Novel Catalysts for the Post-Treatment of Pyrolysis Vapors, Studied by Analytical Pyrolysis. C, 6(4), 65. https://doi.org/10.3390/c6040065