Morphological Characterization and Lumped Element Model of Graphene and Biochar Thick Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microstrip Circuit Fabrication
2.2. Raman and FESEM Analysis
2.3. Four Point Analysis
2.4. Circuit Model
2.5. Scattering Parameter Measurements
3. Results
3.1. Raman Characterization of Graphene and Biochar Filler and Films
3.2. FESEM Characterization of Graphene and Biochar Filler and Films
3.3. Electrical Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.-G.; Kavak, E.; Hashemi, N.; Montazami, R.; Hashemi, N.N. Synthesis of Graphene Nanosheets through Spontaneous Sodiation Process. C J. Carbon Res. 2018, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Khurram, A.A.; Rakha, S.A.; Zhou, P.; Shafi, M.; Munir, A. Correlation of electrical conductivity, dielectric properties, microwave absorption, and matrix properties of composites filled with graphene nanoplatelets and carbon nanotubes. J. Appl. Phys. 2015, 118, 044105. [Google Scholar] [CrossRef]
- Bellucci, S.; Maffucci, A.; Maksimenko, S.; Micciulla, F.; Migliore, M.D.; Paddubskaya, A.; Pinchera, D.; Schettino, F. Electri-cal Permittivity and Conductivity of a Graphene Nanoplatelet Contact in the Microwave Range. Materials 2018, 11, 2519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinenko, T.L.; Matsushima, A.; Nosich, A.I. Surface-plasmon, grating-mode and slab-mode resonances in THz wave scat-tering by a graphene strip grating embedded into a dielectric slab. IEEE J. Sel. Topics Quant. Electron. 2017, 23, 4601809. [Google Scholar] [CrossRef]
- Xia, J.; Chen, F.; Li, J.; Tao, N. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 2009, 4, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Enzheng, S.; Hongbian, L.; Long, Y.; Junfeng, H.; Yuanchang, L.; Li, L.; Anyuan, C.; Ying, F. Carbon Nanotube Network Em-broidered Graphene Films for Monolithic All-Carbon Electronics. Adv. Mater. 2015, 27, 682–688. [Google Scholar]
- Su, W.; Xu, J.; Ding, X. An Electrochemical pH Sensor Based on the Amino-Functionalized Graphene and Polyaniline Com-posite Film. IEEE Trans. Nanobiosci. 2016, 15, 812–819. [Google Scholar] [CrossRef]
- Itapu, B.M.; Jayatissa, A.H. A Review in Graphene/Polymer Composites. Chem. Sci. Int. J. 2018, 23, 1–16. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [Green Version]
- González, R.; González, J.; Rosas, J.G.; Smith, R.; Gómez, X. Biochar and Energy Production: Valorizing Swine Manure through Coupling Co-Digestion and Pyrolysis. C J. Carbon Res. 2020, 6, 43. [Google Scholar] [CrossRef]
- Ohra-Aho, T.; Lindfors, C.; Lehtonen, J.; Tamminen, T.; Siipola, V. Activated Carbons from Fast Pyrolysis Biochar as Novel Catalysts for the Post-Treatment of Pyrolysis Vapors, Studied by Analytical Pyrolysis. C J. Carbon Res. 2020, 6, 65. [Google Scholar] [CrossRef]
- Bedia, J.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodriguez, J.J.; Belver, C. A Review on the Synthesis and Characterization of Biomass-Derived Carbons for Adsorption of Emerging Contaminants from Water. C J. Carbon Res. 2018, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- Tolkou, A.K.; Zouboulis, A.I. Graphene Oxide/Fe-Based Composite Pre-Polymerized Coagulants: Synthesis, Characterization, and Potential Application in Water Treatment. C J. Carbon Res. 2020, 6, 44. [Google Scholar] [CrossRef]
- Richards, K.R.; Stokes, C. A Review of Forest Carbon Sequestration Cost Studies: A Dozen Years of Research. Clim. Chang. 2004, 63, 1–48. [Google Scholar] [CrossRef]
- Das, O.; Sarmah, A.K.; Bhattacharyya, D. Biocomposites from waste derived biochars: Mechanical, thermal, chemical, and morphological properties. Waste Manag. 2016, 49, 560–570. [Google Scholar] [CrossRef]
- Giorcelli, M.; Savi, P.; Khan, A.; Tagliaferro, A. Analysis of biochar with different pyrolysis temperatures used as filler in epoxy resin composites. Biomass Bioenergy 2019, 122, 466–471. [Google Scholar] [CrossRef]
- Andersson, M.; Habibpour, O.; Vukusic, J.; Stake, J. 10 dB small-signal graphene FET amplifier. Electron. Lett. 2012, 48, 861. [Google Scholar] [CrossRef] [Green Version]
- Savi, P.; Naishadham, K.; Quaranta, S.; Giorcelli, M.; Bayat, A. Microwave characterization of graphene films for sensor applications. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 22–25 May 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Quaranta, S.; Miscuglio, M.; Bayat, A.; Savi, P. Morphological and Radio Frequency Characterization of Graphene Composite Films. C J. Carbon Res. 2018, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Available online: www.bioforcetech.com (accessed on 25 March 2021).
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Bokobza, L.; Bruneel, J.-L.; Couzi, M. Raman Spectra of Carbon-Based Materials (from Graphite to Carbon Black) and of Some Silicone Composites. C J. Carbon Res. 2015, 1, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Garg, L.; Bahl, I.J. Microstrip discontinuities. Int. J. Electron. 1978, 45, 81–87. [Google Scholar] [CrossRef]
- Edwards, T.C.; Steer, M.B. Discontinuities in microstrip and stripline. In Foundations of Interconnect and Microstrip Design, 1st ed.; Wiley & Sons Ltd.: Hoboken, NJ, USA, 2000; pp. 225–268. [Google Scholar]
- Björkman, C.-I.Å. Thermische Klärschlammbehandlung. Aquat. Sci. 1969, 31, 632–645. [Google Scholar] [CrossRef]
- Roppolo, I.; Chiappone, A.; Bejtka, K.; Celasco, E.; Chiodoni, A.; Giorgis, F.; Sangermano, M.; Porro, S. A powerful tool for graphene functionalization: Benzophenone mediated UV-grafting. Carbon 2014, 77, 226–235. [Google Scholar] [CrossRef]
- Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R.D.; Stankovich, S.; Jung, I.; Field, D.A.; Ventrice, C.A.; et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47, 145–152. [Google Scholar] [CrossRef]
- Fuertes, A.B.; Arbestain, M.C.; Sevilla, M.; Maciá-Agulló, J.A.; Fiol, S.; López, R.; Smernik, R.J.; Aitkenhead, W.P.; Arce, F.; Macias, F. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisa-tion of corn stover. Aust. J. Soil Res. 2009, 48, 618–626. [Google Scholar] [CrossRef]
- Yasir, M.; Savi, P. Dynamically Tunable Phase Shifter with Commercial Graphene Nanoplatelets. Micromachines 2020, 11, 600. [Google Scholar] [CrossRef]
- Yasir, M.; Savi, P. Commercial graphene nanoplatelets-based tunable attenuator. Electron. Lett. 2020, 56, 184–187. [Google Scholar] [CrossRef]
- Dsoke, S.; Tian, X.; Täubert, C.; Schlüter, S.; Wohlfahrt-Mehrens, M. Strategies to reduce the resistance sources on Electro-chemical Double Layer Capacitor electrodes. J. Power Sources 2013, 238, 422–429. [Google Scholar] [CrossRef]
- Krupka, J. Frequency domain complex permittivity measurements at microwave frequencies. Meas. Sci. Technol. 2006, 17, R55–R70. [Google Scholar] [CrossRef]
- Ghodgaonkar, D.; Varadan, V. Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies. IEEE Trans. Instrum. Meas. 1990, 39, 387–394. [Google Scholar] [CrossRef]
- Li, B.; Zhong, W.-H. Review on polymer/graphite nanoplatelet nanocomposites. J. Mater. Sci. 2011, 46, 5595–5614. [Google Scholar] [CrossRef]
- Byrne, M.T.; Guin’Ko, Y.K. Recent advances in research on carbon nanotube – polymer composites. Adv. Mater. 2012, 22, 1672–1688. [Google Scholar] [CrossRef] [PubMed]
- Giambra, M.; Benfante, A.; Zeiss, L.; Pernice, R.; Miseikis, V.; Pernice, W.; Jang, M.; Ahn, J.; Cino, A.; Stivala, S.; et al. Layout influence on microwave performance of graphene field effect transistors. Electron. Lett. 2018, 54, 984–986. [Google Scholar] [CrossRef]
- Yasir, M.; Aldrigo, M.; Dragoman, M.; Dinescu, A.; Bozzi, M.; Iordanescu, S.; Vasilache, D. Integration of Antenna Array and Self-Switching Graphene Diode for Detection at 28 GHz. IEEE Electron. Device Lett. 2019, 40, 628–631. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasir, M.; Zaccagnini, P.; Palmara, G.; Frascella, F.; Paccotti, N.; Savi, P. Morphological Characterization and Lumped Element Model of Graphene and Biochar Thick Films. C 2021, 7, 36. https://doi.org/10.3390/c7020036
Yasir M, Zaccagnini P, Palmara G, Frascella F, Paccotti N, Savi P. Morphological Characterization and Lumped Element Model of Graphene and Biochar Thick Films. C. 2021; 7(2):36. https://doi.org/10.3390/c7020036
Chicago/Turabian StyleYasir, Muhammad, Pietro Zaccagnini, Gianluca Palmara, Francesca Frascella, Niccolò Paccotti, and Patrizia Savi. 2021. "Morphological Characterization and Lumped Element Model of Graphene and Biochar Thick Films" C 7, no. 2: 36. https://doi.org/10.3390/c7020036
APA StyleYasir, M., Zaccagnini, P., Palmara, G., Frascella, F., Paccotti, N., & Savi, P. (2021). Morphological Characterization and Lumped Element Model of Graphene and Biochar Thick Films. C, 7(2), 36. https://doi.org/10.3390/c7020036