Thermogravimetric Analysis (TGA) of Graphene Materials: Effect of Particle Size of Graphene, Graphene Oxide and Graphite on Thermal Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Characterization Techniques
2.2.1. Thermogravimetric Analysis
2.2.2. Scanning and Transmission Electron Microscopy (SEM and TEM)
2.2.3. Raman Spectroscopy
2.2.4. FTIR Spectroscopy
2.2.5. Powder X-ray Diffraction (XRD)
2.2.6. X-ray Photoelectron Spectroscopy (XPS)
2.2.7. Particle Size Distribution (PSD) by Laser Diffraction (LD)
3. Results and Discussion
3.1. Structural and Chemical Characterization of GO, Graphene and Graphite
3.2. Elucidating the Impact of Particle Size of GO, Graphene and Graphite on Their TGA Characteristics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- El-Kady, M.F.; Shao, Y.; Kaner, R.B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1, 16033. [Google Scholar] [CrossRef]
- Yi, M.; Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Bonaccorso, F.; Fal’Ko, V.; Novoselov, K.S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F.H.; Palermo, V.; Pugno, N. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’Ko, Y.K.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Ji, H.; Cheng, H.-M.; Ruoff, R.S. Mass production and industrial applications of graphene materials. Natl. Sci. Rev. 2017, 5, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Kovtun, A.; Treossi, E.; Mirotta, N.; Scidà, A.; Liscio, A.; Christian, M.; Valorosi, F.; Boschi, A.; Young, R.J.; Galiotis, C.; et al. Benchmarking of graphene-based materials: Real commercial products versus ideal graphene. 2D Mater. 2019, 6, 025006. [Google Scholar] [CrossRef]
- Kauling, A.P.; Seefeldt, A.T.; Pisoni, D.P.; Pradeep, R.C.; Bentini, R.; Oliveira, R.V.B.; Novoselov, K.S.; Castro Neto, A.H. The Worldwide Graphene Flake Production. Adv. Mater. 2018, 30, 1803784. [Google Scholar] [CrossRef]
- Bøggild, P. The war on fake graphene. Nature 2018, 562, 502–503. [Google Scholar] [CrossRef] [Green Version]
- ISO Nanotechnologies. Matrix of properties and measure-ment techniques for graphene and related two-dimensional (2D) materials. In Nanotechnologies—Matrix of Properties and Measurement Techniques for Graphene and Related Two-Dimensional (2D) Materials; ISO Nanotechnologies: Geneva, Switzerland, 2019. [Google Scholar]
- Pollard, A.; Paton, K.; Clifford, C.; Legge, E. Characterisation of the Structure of Graphene. Good Practice Guide No 145; National Physical Laboratory (NPL): Teddington, UK, 2017. [Google Scholar]
- ISO. Nanotechnologies—Vocabulary—Part 13: Graphene and Related Two-Dimensional (2D) Materials; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Ţucureanu, V.; Matei, A.; Avram, A.M. FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef]
- Shtein, M.; Pri-Bar, I.; Varenik, M.; Regev, O. Characterization of Graphene-Nanoplatelets Structure via Thermogravimetry. Anal. Chem. 2015, 87, 4076–4080. [Google Scholar] [CrossRef]
- McAllister, M.J.; Li, J.-L.; Adamson, D.H.; Schniepp, H.C.; Abdala, A.A.; Liu, J.; Herrera-Alonso, M.; Milius, D.L.; Car, R.; Prud’homme, R.K.; et al. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chem. Mater. 2007, 19, 4396–4404. [Google Scholar] [CrossRef]
- Marchesini, S.; Turner, P.; Paton, K.R.; Reed, B.P.; Brennan, B.; Koziol, K.; Pollard, A.J. Gas physisorption measurements as a quality control tool for the properties of graphene/graphite powders. Carbon 2020, 167, 585–595. [Google Scholar] [CrossRef]
- Gaisford, S.; Kett, V.; Haines, P. Principles of Thermal Analysis and Calorimetry; Royal Society of Chemistry: Cambridge, UK, 2019. [Google Scholar]
- ASTM International. ASTM E2550-17: Standard Test Method for Thermal Stability by Thermogravimetry; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Jiang, W.; Nadeau, G.; Zaghib, K.; Kinoshita, K. Thermal analysis of the oxidation of natural graphite—Effect of particle size. Thermochim. Acta 2000, 351, 85–93. [Google Scholar] [CrossRef]
- Farivar, F.; Pei Lay, Y.; Hassan, K.; Tran Thanh, T.; Tran, D.; Pollard, A. Unlocking Thermogravimetric Analysis (TGA) in the Fight against “Fake Graphene” Materials. Carbon 2021. [Google Scholar] [CrossRef]
- Gadipelli, S.; Guo, Z.X. Graphene-based Materials: Synthesis and Gas Sorption, Storage and Separation. Prog. Mater. Sci. 2015, 69, 1–60. [Google Scholar] [CrossRef] [Green Version]
- Yap, P.L.; Kabiri, S.; Auyoong, Y.L.; Tran, D.N.H.; Losic, D. Tuning the multifunctional surface chemistry of reduced graphene oxide via combined elemental doping and chemical modifications. ACS Omega 2019, 4, 19787–19798. [Google Scholar] [CrossRef]
- Malvern Instrments Limited. A Basic Guide to Particle Characterization; Malvern Instrments Limited: Malvern, UK, 2015. [Google Scholar]
- Pabst, W.; Gregorova, E. Characterization of particles and particle systems. ICT Prague 2007, 122, 122. [Google Scholar]
- Rabchinskii, M.K.; Saveliev, S.D.; Ryzhkov, S.A.; Nepomnyashchaya, E.K.; Pavlov, S.I.; Baidakova, M.V.; Brunkov, P.N. Establishing the applicability of the laser diffraction technique for the graphene oxide platelets lateral size measurements. J. Phys. Conf. Ser. 2020, 1695, 012070. [Google Scholar] [CrossRef]
- Lotya, M.; Rakovich, A.; Donegan, J.F.; Coleman, J.N. Measuring the lateral size of liquid-exfoliated nanosheets with dynamic light scattering. Nanotechnology 2013, 24, 265703. [Google Scholar] [CrossRef]
- ISO/TS 21356-1:2021. Nanotechnologies—Structural Characterization of Graphene—Part 1: Graphene from Powders Anddispersions; ISO: Geneva, Switzerland, 2021. [Google Scholar]
- Childres, I.; Jauregui, L.A.; Park, W.; Cao, H.; Chen, Y.P. Raman spectroscopy of graphene and related materials. New Dev. Photon Mater. Res. 2013, 1, 1–20. [Google Scholar]
- Gayathri, S.; Jayabal, P.; Kottaisamy, M.; Ramakrishnan, V. Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study. AIP Adv. 2014, 4, 027116. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Johra, F.T.; Lee, J.-W.; Jung, W.-G. Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 2014, 20, 2883–2887. [Google Scholar] [CrossRef]
- Su, M.; Wang, Z.; Guo, H.; Li, X.; Huang, S.; Xiao, W.; Gan, L. Enhancement of the Cyclability of a Si/Graphite@Graphene composite as anode for Lithium-ion batteries. Electrochim. Acta 2014, 116, 230–236. [Google Scholar] [CrossRef]
- Yap, P.L.; Kabiri, S.; Tran, D.N.H.; Losic, D. Multifunctional binding chemistry on modified graphene composite for selective and highly efficient adsorption of mercury. ACS Appl. Mater. Interfaces 2019, 11, 6350–6362. [Google Scholar] [CrossRef]
GO | Graphene | Graphite | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GO1 | GO2 | GO3 * | Gr1 | Gr2 | Gr3 | Gr4 | Gr5 * | Gft1 | Gft2 | Gft3 | Gft4 * | |
Sieve fraction/μm | <25 | 25–53 | un-sieved | N.A. | <25 | 25–53 | 53–100 | 100–150 | ||||
Average lateral size, SEM ± stdev (μm) | 23.5 ± 10.6 | 46.4 ± 21.2 | 73.4 ± 40.4 | 7.0 ± 2.8 | 15.9 ± 3.7 | 28.3 ± 0.5 | 49.4 ± 6.0 | 52.8 ± 3.4 | 11.3 ± 2.1 | 44.9 ± 37.0 | 130.6 ± 13.7 | 158.8 ± 20.2 |
Average d(50) from LD ± stdev (μm) | 28.6 ± 0.010 | 45.7 ± 0.077 | 120.2 ± 0.032 | 7.6 ± 0.028 | 13.2 ± 0.018 | 36.8 ± 0.043 | 60.3 ± 0.060 | 73.4 ± 0.100 | 24.2 ± 0.099 | 60.0 ± 0.028 | 104.0 ± 0.056 | 148.8 ± 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farivar, F.; Lay Yap, P.; Karunagaran, R.U.; Losic, D. Thermogravimetric Analysis (TGA) of Graphene Materials: Effect of Particle Size of Graphene, Graphene Oxide and Graphite on Thermal Parameters. C 2021, 7, 41. https://doi.org/10.3390/c7020041
Farivar F, Lay Yap P, Karunagaran RU, Losic D. Thermogravimetric Analysis (TGA) of Graphene Materials: Effect of Particle Size of Graphene, Graphene Oxide and Graphite on Thermal Parameters. C. 2021; 7(2):41. https://doi.org/10.3390/c7020041
Chicago/Turabian StyleFarivar, Farzaneh, Pei Lay Yap, Ramesh Udayashankar Karunagaran, and Dusan Losic. 2021. "Thermogravimetric Analysis (TGA) of Graphene Materials: Effect of Particle Size of Graphene, Graphene Oxide and Graphite on Thermal Parameters" C 7, no. 2: 41. https://doi.org/10.3390/c7020041
APA StyleFarivar, F., Lay Yap, P., Karunagaran, R. U., & Losic, D. (2021). Thermogravimetric Analysis (TGA) of Graphene Materials: Effect of Particle Size of Graphene, Graphene Oxide and Graphite on Thermal Parameters. C, 7(2), 41. https://doi.org/10.3390/c7020041