Compositing Fullerene-Derived Porous Carbon Fibers with Reduced Graphene Oxide for Enhanced ORR Catalytic Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of Graphene Oxide (GO)
2.3. Synthesis of Fullerene Carbon Fibers (FCFs)
2.4. Synthesis of FCFs Embedded in GO (FCFs@GO)
2.5. Synthesis of Reduced Graphene Oxide (rGO), Fullerene-Derived Porous Carbon Fibers (FPCFs), and FPCFs Composited with rGO (FPCFs@rGO)
2.6. Materials Characterization
2.7. Electrochemical Tests
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, L.; Xue, Y.; Qu, L.; Choi, H.-J.; Baek, J.-B. Metal-Free Catalysts for Oxygen Reduction Reaction. Chem. Rev. 2015, 115, 4823–4892. [Google Scholar] [CrossRef]
- Chen, L.; Xu, X.; Yang, W.; Jia, J. Recent Advances in Carbon-based Electrocatalysts for Oxygen Reduction Reaction. Chin. Chem. Lett. 2020, 31, 626–634. [Google Scholar] [CrossRef]
- Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science 2009, 323, 760–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zhao, Y.; Yang, Y.; Gao, S. A Universal Strategy for Carbon–based ORR–active Electrocatalyst: One Porogen, Two Pore–creating Mechanisms, Three Pore Types. Nano Energy 2019, 62, 628–637. [Google Scholar] [CrossRef]
- Zhu, J.; Li, W.; Li, S.; Zhang, J.; Zhou, H.; Zhang, C.; Zhang, J.; Mu, S. Defective N/S-Codoped 3D Cheese-Like Porous Carbon Nanomaterial toward Efficient Oxygen Reduction and Zn–Air Batteries. Small 2018, 14, 1800563–1800572. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, Y.; Dai, L.; Yao, J. Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Zn-Air Batteries. Adv. Mater. 2016, 28, 3000–3006. [Google Scholar] [CrossRef] [PubMed]
- Echegoyen, L.; Echegoyen, L.E. Electrochemistry of Fullerenes and Their Derivatives. Acc. Chem. Res. 1998, 31, 593–601. [Google Scholar] [CrossRef]
- Wang, Y.; Jiao, M.; Song, W.; Wu, Z. Doped Fullerene as a Metal-free Electrocatalyst for Oxygen Reduction Reaction: A First-principles Study. Carbon 2017, 114, 393–401. [Google Scholar] [CrossRef]
- Guldi, D.M. Fullerene–porphyrin Architectures; Photosynthetic Antenna and Reaction Center Models. Chem. Soc. Rev. 2002, 31, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Ni, K.; Chen, G.; Zeng, W.; Tao, Z.; Ikram, M.; Zhang, Q.; Wang, H.; Sun, L.; Zhu, X.; et al. Incorporating Pyrrolic and Pyridinic Nitrogen into a Porous Carbon made from C60 Molecules to Obtain Superior Energy Storage. Adv. Mater. 2017, 29, 1603414–1603422. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chang, J.; Ke, Q. Probing the Activity of Pure and N-doped Fullerenes towards Oxygen Reduction Reaction by Density Functional Theory. Carbon 2018, 126, 53–57. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, Y.; Mei, W.; Zhao, C.; Zhang, C.; Zhang, J.; Amiinu, I.S.; Mu, S. Effects of Intrinsic Pentagon Defects on Electrochemical Reactivity of Carbon Nanomaterials. Angew. Chem. Int. Ed. 2019, 58, 3859–3864. [Google Scholar] [CrossRef]
- Zheng, S.; Cuong, N.T.; Okada, S.; Xu, T.; Shen, W.; Lu, X.; Tsukagoshi, K. Solvent-Mediated Shape Engineering of Fullerene (C60) Polyhedral Microcrystals. Chem. Mater. 2018, 30, 7146–7153. [Google Scholar] [CrossRef]
- Shrestha, R.G.; Shrestha, L.K.; Khan, A.H.; Kumar, G.S.; Acharya, S.; Ariga, K. Demonstration of Ultrarapid Interfacial Formation of 1D Fullerene Nanorods with Photovoltaic Properties. ACS Appl. Mater. Interfaces 2014, 6, 15597–15603. [Google Scholar] [CrossRef]
- Sathish, M.; Miyazawa, K.; Sasaki, T. Nanoporous Fullerene Nanowhiskers. Chem. Mater. 2007, 19, 2398–2400. [Google Scholar] [CrossRef]
- Shrestha, L.K.; Shrestha, R.G.; Yamauchi, Y.; Hill, J.P.; Nishimura, T.; Miyazawa, K.i.; Kawai, T.; Okada, S.; Wakabayashi, K.; Ariga, K. Nanoporous Carbon Tubes from Fullerene Crystals as the π-Electron Carbon Source. Angew. Chem. Int. Ed. 2015, 54, 951–955. [Google Scholar] [CrossRef]
- Tang, Q.; Bairi, P.; Shrestha, R.G.; Hill, J.P.; Ariga, K.; Zeng, H.; Ji, Q.; Shrestha, L.K. Quasi 2D Mesoporous Carbon Microbelts Derived from Fullerene Crystals as an Electrode Material for Electrochemical Supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 44458–44465. [Google Scholar] [CrossRef] [PubMed]
- Bairi, P.; Shrestha, R.G.; Hill, J.P.; Nishimura, T.; Ariga, K.; Shrestha, L.K. Mesoporous Graphitic Carbon Microtubes Derived from Fullerene C70 Tubes as a High Performance Electrode Material for Advanced SuperCapacitors. J. Mater. Chem. A 2016, 4, 13899–13906. [Google Scholar] [CrossRef] [Green Version]
- Benzigar, M.R.; Joseph, S.; Ilbeygi, H.; Park, D.-H.; Sarkar, S.; Chandra, G.; Umapathy, S.; Srinivasan, S.; Talapaneni, S.N.; Vinu, A. Highly Crystalline Mesoporous C60 with Ordered Pores: A Class of Nanomaterials for Energy Applications. Angew. Chem. Int. Ed. 2018, 57, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Benzigar, M.R.; Joseph, S.; Baskar, A.V.; Park, D.-H.; Chandra, G.; Umapathy, S.; Talapaneni, S.N.; Vinu, A. Ordered Mesoporous C70 with Highly Crystalline Pore Walls for Energy Applications. Adv. Funct. Mater. 2018, 28, 1803701–1803710. [Google Scholar] [CrossRef]
- He, Z.; Wei, P.; Xu, T.; Han, J.; Gao, X.; Lu, X. Defect-rich N/S-co-doped Porous Hollow Carbon Nanospheres Derived from Fullerenes as Efficient Electrocatalysts for the Oxygen Reduction Reaction and Zn–air Batteries. Mater. Chem. Front. 2021, 5, 7873–7882. [Google Scholar] [CrossRef]
- He, Z.; Wei, P.; Chen, N.; Han, J.; Lu, X. N,S-Co-Doped Porous Carbon Nanofiber Films Derived from Fullerenes (C60) as Efficient Electrocatalysts for Oxygen Reduction and a Zn–Air Battery. Chem. Eur. J. 2021, 27, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Chen, X.; Wei, T.; Liu, F.; Wang, S.; Yang, Q.; Lu, Y.; Yang, S. Directly Bonded Hybrid of Graphene Nanoplatelets and Fullerene: Facile Solid-state Mechanochemical Synthesis and Application as Carbon-based Electrocatalyst for Oxygen Reduction Reaction. J. Mater. Chem. A 2015, 3, 4139–4146. [Google Scholar] [CrossRef]
- Gao, R.; Dai, Q.; Du, F.; Yan, D.; Dai, L. C60-Adsorbed Single-Walled Carbon Nanotubes as Metal-Free, pH-Universal, and Multifunctional Catalysts for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution. J. Am. Chem. Soc. 2019, 141, 11658–11666. [Google Scholar] [CrossRef]
- Yang, J.; Heo, M.; Lee, H.J.; Park, S.-M.; Kim, J.Y.; Shin, H.S. Reduced Graphene Oxide (rGO)-Wrapped Fullerene (C60) Wires. ACS Nano 2011, 5, 8365–8371. [Google Scholar] [CrossRef]
- Hawkins, J.M.; Meyer, A.; Lewis, T.A.; Loren, S.; Hollander, F.J. Crystal Structure of Osmylated C60: Confirmation of the Soccer Ball Framework. Science 1991, 252, 312. [Google Scholar] [CrossRef]
- Zheng, S.; Lu, X. Formation Kinetics and Photoelectrochemical Properties of Crystalline C70 One-dimensional Microstructures. RSC Adv. 2015, 5, 38202–38208. [Google Scholar] [CrossRef]
- Huang, B.; Liu, Y.; Huang, X.; Xie, Z. Multiple Heteroatom-doped Few-layer Carbons for the Electrochemical Oxygen Reduction Reaction. J. Mater. Chem. A 2018, 6, 22277–22286. [Google Scholar] [CrossRef] [Green Version]
- Bian, Y.; Wang, H.; Hu, J.; Liu, B.; Liu, D.; Dai, L. Nitrogen-rich Holey Graphene for Efficient Oxygen Reduction Reaction. Carbon 2020, 162, 66–73. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S.J. The Chemical and Structural Analysis of Graphene Oxide with Different Degrees of Oxidation. Carbon 2013, 53, 38–49. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Y.; Wu, H.; Liu, X.; Wang, L.; Yu, Q.; Li, A.; Wang, H.; Song, C.; Gao, Z.; et al. Construction of a sp3/sp2 Carbon Interface in 3D N-Doped Nanocarbons for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2019, 58, 15089–15097. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Guo, Z.; Guo, K.; Akasaka, T.; Lu, X. Compositing Fullerene-Derived Porous Carbon Fibers with Reduced Graphene Oxide for Enhanced ORR Catalytic Performance. C 2022, 8, 13. https://doi.org/10.3390/c8010013
He Z, Guo Z, Guo K, Akasaka T, Lu X. Compositing Fullerene-Derived Porous Carbon Fibers with Reduced Graphene Oxide for Enhanced ORR Catalytic Performance. C. 2022; 8(1):13. https://doi.org/10.3390/c8010013
Chicago/Turabian StyleHe, Zhimin, Ziqian Guo, Kun Guo, Takeshi Akasaka, and Xing Lu. 2022. "Compositing Fullerene-Derived Porous Carbon Fibers with Reduced Graphene Oxide for Enhanced ORR Catalytic Performance" C 8, no. 1: 13. https://doi.org/10.3390/c8010013
APA StyleHe, Z., Guo, Z., Guo, K., Akasaka, T., & Lu, X. (2022). Compositing Fullerene-Derived Porous Carbon Fibers with Reduced Graphene Oxide for Enhanced ORR Catalytic Performance. C, 8(1), 13. https://doi.org/10.3390/c8010013