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Abstract: Metal-carbon composites have recently gained attention as potential hydrogen storage
materials. In the present investigation, carbon blacks (CBs) with 0.6 mass %, 4.9 mass %, and 9.3 mass
% of Pd were prepared to investigate the cooperative effect together with Pd and CB for hydrogen
storage. The hydrogen adsorption isotherms were measured at 77 K, 98 K, 123 K, 148 K, 173 K, 223 K,
and 273 K under mild pressures below 1 MPa. The lower temperature gave the higher hydrogen
content. Almost all the hydrogen contents of Pd-modified CBs exceeded the sum of the adsorption
contents of CB and the occluded amounts of the assumed hydride, PdH0.6. The highest hydrogen
content was recorded for Pd 0.6 mass %-modified CB at 77 K. At temperatures above 77 K, CBs with
the higher Pd contents adsorbed more hydrogen than Pd 0.6 mass %-modified CB, and they indicated
an increase in the absolute values of adsorption enthalpy with the progress of adsorption. Pd was
thought to be at first blocking deep potential sites, with accessibility to hydrogen acceptable sites
gradually increasing as adsorption progressed.

Keywords: carbon black; hydrogen adsorption; hydrogen storage; temperature dependence; Pd
modification; cooperative effect; enthalpy change; entropy change

1. Introduction

Rapid population growth and expanding economic activity have increased energy
consumption by a significant magnitude. At the moment, fossil fuels are required for
human development. Fossil fuels, account for more than 80% of total energy consump-
tion [1–3]. Because of the release of greenhouse gases, the continued widespread use of
fossil fuels has resulted in significant global, environmental, and climate issues, such as
global warming [1,2,4–8]. To address these issues, today’s society must transition from a
fossil-fuel-dependent framework to a sustainable approach, which necessitates the use of
new energies.

Hydrogen is a potential new energy carrier because it can be produced from the elec-
trolysis of water using renewable energy, such as hydropower and sunlight. Furthermore,
by utilizing surplus power, it is possible to convert the power into hydrogen and store
it for a long period. Hydrogen has two to three times the energy density of most other
fuels, and roughly three times the capacity of gasoline and petroleum [2–4]. Hydrogen
has the potential to solve a wide range of societal problems in terms of environmental
load and energy density. The Department of Energy formed target values for light-duty
fuel cell vehicles as an indication of the amount of hydrogen required. Targeted hydrogen
contents are 4.5 mass %, 5.5 mass %, and 6.5 mass %, by 2020, by 2025, and as the ultimate
goal, respectively [2,5]. These targets are system targets including the vessel and heat
management system. As a result, the most meaningful target is 6.5 mass % hydrogen
storage capacity [9–11]. Safe and efficient hydrogen storage technologies are needed to
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realize a sustainable hydrogen society. Currently, the primary hydrogen storage meth-
ods are compressed hydrogen gas, liquid hydrogen, and solid-state hydrogen storage
with metal hydrides and adsorption materials [1–3,5,6,12–18]. Among these methods,
hydrogen storage in materials appears to be promising, with adsorption materials, such as
carbon-based materials, having advantages for hydrogen storage, such as fast kinetics and
reversibility of hydrogen adsorption-desorption [2,5,12,14,18–22]. For these reasons, vari-
ous types of carbon-based materials, including carbonized materials [6,7,14,20,23], carbon
nanotubes [10,15,24], and carbon nanofibers [9,11,25,26], have been studied regarding their
hydrogen adsorption properties.

Temperature is an important factor for hydrogen adsorption on carbon-based materials
since the heat of hydrogen adsorption on most adsorbent materials is 4–7 kJ mol H2

−1 [27].
Low heat values indicate that hydrogen’s interaction with the adsorption surface is weak.
As a result, characteristic hydrogen adsorption at low temperatures was observed [3].
However, for the practical application of carbon materials, it is preferable to demonstrate
required adsorption performance at a milder temperature while taking into consideration
the temperature dependence of hydrogen adsorption. Increasing the strength of hydrogen
gas-solid interactions is also important for increasing hydrogen storage capacity [21,28].
Metal modification and metal-carbon composite are promising methods for enhancing
hydrogen content [29,30]. The cooperative effect, also known as the spillover phenomenon,
allows for an increase in hydrogen content [17,21,31]. Hydrogen molecules are adsorbed
onto the metal surface in these processes, and the adsorbed hydrogen molecules are then
dissociated into atoms. Finally, on the adsorption surface, atomic hydrogen is diffused.
The adsorption of atomic hydrogen increases the capacity of hydrogen storage. Pd was
chosen as the modifying metal because it is a promising catalyst for promoting hydro-
gen adsorption [17,31]. Some papers have shown that there is no positive effect of metal
modification [32–34]. In order to clarify and to emphasize the effect of Pd, an apparent over-
abundance of Pd modification was also evaluated. The first objective of this study was, thus,
to investigate the effects of Pd coexistence on the temperature for hydrogen adsorption.

Regarding the adsorbent, since the potential fields of the opposite pore walls in the
micropores overlap, having micropores is also important to enhance gas-solid interac-
tions [22]. The isotherms at 77–293 K and enthalpy on hydrogen adsorption of activated
carbon, AX-21, have already been reported [35]. For Ketjen Black (KB), which is a type of
carbon black (CB), hydrogen adsorption at various temperatures, and enthalpy–entropy
changes on hydrogen adsorption have not yet been reported. The same also applies to
metal-modified KBs. Because of its commercial availability and suitable characteristics,
such as large specific surface area and branched-chain structure [36], KB was selected as
the carbon material. The second objective was, thus, to clarify the effects of Pd coexis-
tence on KB for hydrogen storage through the enthalpy change and entropy change on
hydrogen adsorption.

By combining a hydrogen sorption apparatus and dedicated cooling system, the
temperature was able to be set to any temperature in 0.1 K steps, and the hydrogen
storage characteristics were able to be measured while maintaining the temperature error
within ± 0.1 K. As a result, the first step was to characterize KB and Pd-modified KBs
with varying Pd contents. The hydrogen adsorption properties at arbitrary temperatures,
ranging from 77–273 K, were then investigated to evaluate the temperature dependence.
Finally, the enthalpy changes and entropy changes on hydrogen adsorption were calculated
for each sample.

2. Materials and Methods
2.1. Materials

KB EC600JD was obtained from Lion Specialty Chemicals Co., Ltd., Tokyo, Japan.
The purity of the Pd (II) acetylacetonate (Pd(acac)2, Sigma-Aldrich Co. LLC., Saint Louis,
MO, USA) and methanol (Kanto Chemical Co., Inc., Tokyo, Japan) used were 99% and
>99.8%, respectively.
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2.2. Synthesis of Pd-Modified KBs

Pellet-like KB was powdered using a mortar. The target modification content of Pd to
KB was varyingly set to 0.5 mass %, 5.0 mass %, or 10 mass %. To obtain 0.06 g of the final
product, the required contents of KB and Pd(acac)2 were weighed separately. Pd(acac)2
was dissolved in 20 mL of methanol under irradiation with an ultrasonic wave of 100 kHz
in a water bath to maintain the temperature. Then, KB was added to the methanol solution
of Pd(acac)2 and dispersed for 30 min under the same conditions. The obtained dispersion
was transferred to a Petri dish and vacuum dried. After confirming the volatilization
of methanol, exhausting at 343 K was performed. Pd-modified KBs were prepared by
calcining the obtained dry samples at 1073 K for 2 h in Ar-5% H2 with steam. The heating
rate was 20 K min−1 and steam was introduced by bubbling water. The samples after
calcination were labeled as KB_x, in which x is the Pd content in mass % determined by
energy dispersive X-ray spectroscopy (EDX) analysis.

2.3. Characterization Techniques

A JEOL JEM-2000EX transmission electron microscope (TEM) was used to confirm
the size and shape of the Pd particles. Using a Hitachi TM3000 scanning electron micro-
scope, Bruker Quantax 70 EDX, the average Pd content of five places after calcination
was determined. A BEL JAPAN BELSORP-mini II volumetric adsorption apparatus was
used to measure nitrogen adsorption-desorption isotherms. Before measuring the nitro-
gen isotherms, the samples were evacuated at 403 K for 6 h. The BELMaster software
was used to calculate the Brunauer–Emmett–Teller (BET) specific surface area, pore size
distribution (PSD), and pore volume. The specific surface area was calculated from the
nitrogen adsorption data at the relative pressure of 0.05–0.3. The micropore analysis method
and Barret–Joyner–Halenda method were applied to the micropore region and mesopore
region, respectively. A structural analysis was conducted using a Rigaku MultiFlex Cu
Kα X-ray diffractometer (XRD) and a JASCO NRS-4100 Raman micro-spectrometer. The
hydrogen sorption isotherms were measured at 77 K, 98 K, 123 K, 148 K, 173 K, 223 K,
and 273 K using a Suzuki Shokan Pressure-Composition-Temperature (PCT)-4SDWIN
hydrogen sorption apparatus with a cooling system. The reservoir volume provided by
the maker was 27.997 cm3. The sample mass ranged between 0.0443 and 0.05 g. To fill the
empty volume, a glass rod was placed in the sample cell. Prior to the PCT evaluation, an
activation treatment was performed at 653 K. This treatment consisted of six cycles of 5-min
evacuation and 5-min hydrogenation under 1.1 MPa of hydrogen. Finally, the samples
were evacuated at 653 K for 1 h. Correction by blank measurements without samples was
performed at each temperature. As an example, for the hydrogen adsorption measure-
ments at 77 K, the corrected sample cell volume and the line volume were 2.734 cm3 and
15.831 cm3, respectively.

2.4. Enthalpy and Entropy Evaluation

The enthalpy change (∆H) and entropy change (∆S) on hydrogen adsorption were
calculated using the van’t Hoff Equation (1), in which the pressures at 12 hydrogen adsorp-
tion points were used as the hydrogen pressure (Phyd). These points included 0.05 mass %,
0.35 mass %, and 0.1 mass % steps between 0.1 and 1.0 mass %.

ln(Phyd/P0) = (∆H/RT) − (∆S/R), (1)

where P0 is the reference pressure (0.101325 MPa), R is the gas constant (8.314 J K−1 mol−1),
and T is the absolute temperature (K).

3. Results and Discussion
3.1. Characterization of Samples

The Pd contents of three prepared samples were 0.6 mass %, 4.9 mass %, and 9.3 mass
%. These observed values approximately match the intended values.
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Nitrogen adsorption-desorption isotherms at 77 K for KB, KB_0.6, KB_4.9, and KB_9.3
are shown in Figure 1. Steep increases in the adsorbed amounts at very low relative
pressure, P/P0 < 0.01, and hysteresis loops at the relative pressure range 0.45 < P/P0 < 0.85
were observed for all samples. According to the IUPAC classification [37], the observed
isotherms consisted of type I isotherm, type IV isotherm, and type H4 hysteresis loop.
These features indicated the presence of micropores (<2 nm) and mesopores (2–50 nm). The
presence of mesopores was also confirmed by the hysteresis loop, which was related to
capillary condensation. No isotherms reached a saturation point even though the relative
pressures were close to P/P0 = 1. The phenomena were caused by macropores (<50 nm) or
external surfaces [22]. The samples would have macropores.
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Figure 1. Nitrogen adsorption-desorption isotherms at 77 K for KB, KB_0.6, KB_4.9, and KB_9.3.

Differential PSDs for KB, KB_0.6, KB_4.9, and KB_9.3 are shown in Figure 2. In the
micropore region, all samples had multiple differential PSD peaks. However, no PSD
peaks were observed in the mesopore region. The KB and Pd-modified KBs would be
micropore-dominant carbon materials. The PSD volumes of Pd-modified KBs were lower
than those of KB. Table 1 summarizes the specific surface areas, micropore volumes, and
mesopore volumes of each sample. The specific surface area, micropore volume, and
mesopore volume of KB were 1925 m2 g−1, 0.290 cm3 g−1, and 2.09 cm3 g−1, respectively.
The specific surface areas and pore volumes tended to decrease with increase in Pd contents.
Pd modification, especially at higher concentrations, had negative effects on the porous
properties. Excess Pd would most likely cover the KB surface, mechanically blocking
and/or entering the pores.

As shown in Figure 3, dispersed spherical Pd particles were observed for all Pd-
modified KBs. The sizes of the Pd particles in KB_0.6 (Figure 3b) were approximately
25 nm, and those in KB_4.9 (Figure 3c) ranged approximately from 25 nm to 30 nm. Further,
although the Pd content of KB_4.9 was approximately 8.2 times that of KB_0.6, the increase
in the Pd content affected only the number of Pd particles. Conversely, for KB_9.3, as
shown in Figure 3d, in addition to a further increase in the number of particles, the size of
the Pd particles increased and became heterogeneous. The presence of these Pd particles
supports the explanation for the decrease in the porous properties of the Pd-modified KBs,
as summarized in Table 1.
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Table 1. Specific surface areas, micropore volumes, and mesopore volumes of KB, KB_0.6, KB_4.9,
and KB_9.3.

Sample SBET Vmicro
1 Vmeso

2

(m2 g−1) (cm3 g−1) (cm3 g−1)

KB 1925 0.290 2.09
KB_0.6 1750 0.152 1.98
KB_4.9 1686 0.203 1.81
KB_9.3 1650 0.139 1.85

1 calculated within the pore size range < 2 nm. 2 calculated within the pore size range 2–50 nm.

The XRD patterns of KB, KB_0.6, KB_4.9, KB_9.3, and Pd(acac)2 are shown in Figure 4.
The XRD patterns of KB_9.3 showed typical XRD peaks at 2θ = 40◦, 47◦, 68◦, 82◦, and
87◦. For KB_0.6 and KB_4.9, similar XRD peaks to that of KB_9.3 were observed. These
peaks correspond to the peaks of Pd (JCPDS #00-005-0681), which is included at the bottom
of Figure 4. Meanwhile, no peaks corresponding to Pd(acac)2 were observed for all Pd-
modified KBs. Pd(acac)2 was completely pyrolyzed, and Pd was present as the metal
phase. Furthermore, the intensity of the Pd peaks gradually increased with increasing
Pd content. Two other broad peaks at approximately 2θ = 24◦ and 44◦ were observed for
all samples. These two diffraction peaks were assigned to the (002) and (10) planes of
graphite, respectively [6–8]. The carbon structures of the KB and Pd-modified KBs were
amorphous [8] and disordered [7].

The Raman spectra of KB, KB_0.6, KB_4.9, and KB_9.3 are shown in Figure 5. All
samples exhibited two clear peaks, which were classified to be in the D band at approxi-
mately 1345 cm−1 and the G band at approximately 1595 cm−1. The disordered carbons and
graphitized carbons are represented by the D and G bands, respectively [7,8,31]. As a result,
the intensity ratio of the D band to the G band (ID/IG) is used as a measure of the degree
of disorder [7,8,31]. The ID/IG ratio of KB was 1.18, indicating that disordered carbons
were present. The disorder of the KB structure was confirmed by both the XRD patterns
in Figure 4 and the ID/IG ratios. The ratios of KB_0.6, KB_4.9, and KB_9.3 were 1.21, 1.25,
and 1.21, respectively. The Pd modification process slightly increased the proportion of
disordered carbon.
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3.2. Hydrogen Adsorption

The hydrogen adsorption isotherms at 77 K, 98 K, 123 K, 148 K, 173 K, 223 K, and
273 K for KB, KB_0.6, KB_4.9, and KB_9.3 are shown in Figure 6. While the hydrogen
contents of KB and KB_0.6 at 273 K reached a saturated hydrogen content below 1 MPa
of hydrogen pressure, KB_4.9 and KB_9.3 exhibited increases in their hydrogen contents
with the hydrogen pressure at each temperature. Regardless of the Pd content, the lower
temperature gave the higher hydrogen content. The cited target of 6.5 mass % will possibly
be attained under higher pressures.
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Figure 6. Hydrogen adsorption isotherms for (a) KB, (b) KB_0.6, (c) KB_4.9, and (d) KB_9.3. Tem-
perature/K, 3: 77, N: 98, 4: 123, �: 148, �: 173, •: 223, #: 273. The insets in (a,b) are hydrogen
adsorption isotherms plotted by the linear pressure.

The hydrogen contents under 0.8 MPa of hydrogen of all samples at various tempera-
tures are shown in Figure 7. The measurement accuracy based on the blank measurements
at 77 K, 223 K, and 273 K were ±0.093 mass %, ±0.057 mass %, and ±0.035 mass %, respec-
tively. The hydrogen content of KB was 2.61 mass % at 77 K. An almost continuous increase
in hydrogen content caused by the Pd coexistence was observed at each temperature. At
77 K, KB_0.6 showed the maximum hydrogen content of 2.81 mass % and this is reflected in
the figure. The fact that KB_0.6 had the highest hydrogen capacity at 77 K compared with
other samples was confirmed by a repeated measurement giving 2.94 mass % of hydrogen
content. The highest hydrogen contents at 98 K and temperatures above 98 K were observed
for KB_4.9 and KB_9.3, respectively. While a difference in hydrogen content between KB
and KB_0.6 could not be noticed at 223 K and 273 K, there was a distinct difference in the
hydrogen content between the two groups, the KB and KB_0.6 group and the KB_4.9 and
KB_9.3 group. At those temperatures, Pd contents above some threshold value seemed to
be necessary to bring about notable effects of metal modification. The Pd content needs to
be changed depending on the desired temperature. The hydrogen adsorption using carbon
materials and carbon-dominant materials was advantageous at lower temperatures.
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Figure 8 shows the excessive hydrogen contents under 0.8 MPa of hydrogen of Pd-
modified KBs at various temperatures. At least three forms of hydrogen uptake mecha-
nisms were assumed: (1) physisorption of hydrogen, (2) formation of Pd hydrides, and
(3) spillover of hydrogen atoms from Pd to KB [33]. The excessive hydrogen content was
calculated by subtracting the sum of the physisorption content and the occluded content to
form Pd hydride from the measured hydrogen content; thus, the excessive content would
be approximately equal to the spillover contribution. It is of note that the maximum temper-
ature of the present adsorption measurement was 273 K, while Pd rapidly forms hydride
at room temperature under low pressures [38]. When Pd formed a hydride, PdH0.6 [4],
the hydrogen content was calculated to be 0.565 mass %. Considering the difference in
the specific surface area of KB and the Pd content, the hydrogen contents of mechanisms
(1) and (2) for KB_0.6 at 77 K were 2.63 mass % and 3.39 × 10−3 mass %, respectively.
The total hydrogen content was thus calculated to be 2.63 mass %. The calculated value
differed by 0.18 mass % from the measured value. The excessive hydrogen content, through
the cooperative effect, also tended to be advantageous at lower temperatures. KB_0.6
showed a strong tendency in this regard. Furthermore, despite reduced surface area and
pore volume, a higher Pd content was more effective. The saturated hydrogen content
would be dependent on the Pd content based on the relationship between the excessive
hydrogen content and the Pd content. KB_0.6 had the maximum hydrogen content at 77 K,
as shown in Figures 6 and 7. An appropriate combination of atomic hydrogen production
and adsorption is expected to further increase the hydrogen content.

3.3. Enthalpy and Entropy Change

Figure 9 illustrates the van’t Hoff plots derived from the hydrogen adsorption data
shown in Figure 6. The plot of the 0.05 mass % of hydrogen content for KB_9.3 was not
able to be calculated owing to the lack of plural isotherm data. The van’t Hoff plots of
KB demonstrated good linearity under all hydrogen content conditions. However, for the
Pd-modified KBs, the linearity was not very good for the lower hydrogen contents.
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The absolute values of enthalpy changes (|∆H|) and entropy change (|∆S|) on
hydrogen adsorption in the hydrogen content range of 0.05–1.0 mass % contents are
shown in Figure 10a and b, respectively. The hydrogen contents of 0.05 mass % and
0.35 mass % were added as the hydrogen adsorption point to examine the |∆H| and
|∆S| in detail. Although the |∆H| and |∆S| were calculated using the van’t Hoff
plots of various hydrogen contents, the changes were relatively smooth. The |∆H| of
KB at 0.05 mass % of hydrogen content was 7.0 kJ mol H2

−1, and the |∆H| gradually
decreased with increase in hydrogen content. KB had heterogeneous binding energy sites
for hydrogen adsorption [18,39]. Further, hydrogen settled only at deep potential sites
at higher temperatures, and shallow potential sites at lower temperatures [27]. After the
0.4 mass % of hydrogen content, the |∆H| was approximately 5.7 ± 0.1 kJ mol H2

−1. The
highly active sites of KB would be occupied with approximately 0.4 mass % of hydrogen
content. The enthalpies of hydrogen adsorption on various amorphous carbons in the
low-temperature range are summarized in Table 2. The |∆H| of KB was consistent with
that of the other activated carbons. The higher Pd content gave the smaller |∆H| as shown
in Figure 10a. When the Pd content was high, it was difficult for hydrogen adsorption
to reach equilibrium. Excessive Pd atoms would initially block the deep potential sites,
and successive adsorption sites would become accessible with the preceding hydrogen
adsorption. In the low hydrogen adsorption range, the |∆H| of KB_4.9 and KB_9.3 were
small and increased with increasing hydrogen contents. The increasing tendency of |∆H|
was seemingly unexpected behavior. The hydrogen adsorption was an exothermic reaction.
Conversely, the departing movement of the Pd was probably an endothermic process. The
smallness of |∆H| would be due to the suppression by the endothermic process. The
enthalpy changes were thus related to the hydrogen adsorption process and the process
associated with hydrogen adsorption, which was the collapse of the KB-Pd stable structures
to form hydrogen acceptable sites. The aforementioned phenomena were similar to the
rule of reversed stability in hydrogen storage alloys. According to the rule, some KB-Pd
stable structures would form, and hydrogen adsorption would be relatively unstable, i.e.,
the Pd-modified KBs would adsorb more hydrogen under higher pressures and at lower
temperatures. The results prompt further discussion. Pd-modified KBs adsorbed more
hydrogen than KB, demonstrating Pd’s effectiveness.
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Table 2. Enthalpies of hydrogen adsorption on various amorphous carbons.

Sample Classification Enthalpy Temperature Reference

(kJ mol H2−1) (K)

AX-21 Activated carbon 6.4 1 77–298 35
Litchi trunk based
activated carbon Activated carbon 5.6–7.9 77–90 20

SAC-02 Activated carbon 4.05–5.52 77.15–293.15 19
Filtercarb GCC 8×30 Activated carbon 6.8 1–7.7 ± 0.4 2 77–318 18

Filtercarb PHA Activated carbon 6.8 1–7.0 ± 0.4 2 77–318 18
Nuchar SA-1500 Activated carbon 7.0 ± 1.3 1 77–318 18

MWV-0260 3 Activated carbon 8.2 4 77–87 27
KB Carbon black 5.7 ± 0.1–7.0 77–273 The present study

1 Average value. 2 At very low hydrogen coverage. 3 Molded into monolith. 4 At low hydrogen coverage.

As shown in Figure 10b, |∆S| increased with the progress of hydrogen adsorption
in all samples. This was probably because, as hydrogen adsorption progressed, the range
in which hydrogen could be adsorbed became narrower. This can also be expressed as a
decrease in the degrees of freedom of hydrogen. Because the change in entropy corresponds
to the fixation of gaseous molecular hydrogen, it approximately matches 130 J K−1 mol
H2
−1, which is the standard entropy of hydrogen [3]. The |∆S| for all samples did not

yet reach the standard entropy of hydrogen. This was also supported by the unsaturation
of hydrogen adsorption, as shown in Figure 6. Furthermore, the |∆S| decreased with
increasing Pd content. The entropy changes would also be affected by the movement of
hydrogen on the solid, that is, the number of adsorption options. The decrease in the |∆S|
was consistent with the phenomenon that the hydrogen contents increased with increasing
Pd contents at each high temperature. For KB_4.9 and KB_9.3, the smallness of |∆S| in the
low hydrogen adsorption range was more prominent than in the other two samples. This
would be because the movement of hydrogen during adsorption was large and unstable.
This supposition is related to the above description about the enthalpy changes.

Pd coexistence has caused at least the characteristic enthalpy and entropy changes
on hydrogen adsorption in addition to increase in the hydrogen content. Hydrogen was
adsorbed by a chemical and physical process. The chemical process involved the acceptance
of atomic hydrogen produced by Pd on the carbon sites, and the physical process involved
Van der Waals interactions between hydrogen molecules and the carbon surface. CBs’ suit-
ability as hydrogen storage materials was also demonstrated. Studies are being conducted
to elucidate the essence of the cooperative effect and to increase the hydrogen content.

4. Conclusions

Hydrogen content increased as the temperature decreased from 273 K to 77 K for
KB, KB_0.6, KB_4.9, and KB_9.3, and almost all hydrogen contents of Pd-modified KBs
exceeded the hydrogen content of KB at each temperature. While KB_0.6 adsorbed the most
hydrogen at 77 K, KBs with the higher Pd contents adsorbed more hydrogen than KB_0.6
at higher temperatures, 98 K, 123 K, 148 K, 173 K, 223 K, and 273 K. Excessive hydrogen, as
evaluated by subtracting the sum of the physisorption content and the occluded content to
form Pd hydride, PdH0.6, from the measured hydrogen content, was significant at lower
temperatures and increased with Pd content. The efficiency at 77 K was demonstrated at
KB_0.6, and steeper increases were observed at higher temperatures for KBs with higher
Pd contents. The optimization of Pd modification must be performed specifically at each
objective temperature, with the excessive hydrogen content maximized.
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